असंगत प्रवाह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 69: Line 69:
== संबंधित प्रवाह की कमी ==
== संबंधित प्रवाह की कमी ==


द्रव की गतिशीलता में, प्रवाह वेग का विचलन शून्य है, तो एक प्रवाह को असंगत माना जाता है।हालांकि, संबंधित योगों का उपयोग कभी -कभी किया जा सकता है, जो प्रवाह प्रणाली को मॉडलिंग किया जा रहा है।कुछ संस्करण नीचे वर्णित हैं:
द्रव की गतिशीलता में, प्रवाह का वेग विचलन शून्य है, तो एक प्रवाह को असंगत माना जाता है। हालांकि, संबंधित योगों का उपयोग कभी -कभी किया जा सकता है, जो प्रवाह प्रणाली को मॉडलिंग किया जा रहा है। कुछ संस्करण नीचे वर्णित हैं:


# असंगत प्रवाह: <math> {\nabla \cdot \mathbf u = 0} </math>।यह या तो निरंतर घनत्व (सख्त असंगत) या अलग -अलग घनत्व प्रवाह को मान सकता है।अलग -अलग घनत्व सेट घनत्व, दबाव और/या तापमान क्षेत्रों में छोटे गड़बड़ियों से जुड़े समाधानों को स्वीकार करता है, और डोमेन में दबाव [[ वायुमंडलीय स्तरीकरण ]] के लिए अनुमति दे सकता है।
# असंगत प्रवाह: <math> {\nabla \cdot \mathbf u = 0} </math>। यह या तो निरंतर घनत्व (सख्त असंगत) या अलग -अलग घनत्व प्रवाह को मान सकता है। अलग -अलग घनत्व सेट घनत्व, दबाव और/या तापमान क्षेत्रों में छोटे गड़बड़ियों से जुड़े समाधानों को स्वीकार करता है, और डोमेन में दबाव [[ वायुमंडलीय स्तरीकरण ]] के लिए अनुमति दे सकता है।
# एनेलास्टिक प्रवाह: <math> {\nabla \cdot \left(\rho_{o}\mathbf u\right) = 0} </math>।मुख्य रूप से [[ वायुमंडलीय विज्ञान ]] के क्षेत्र में उपयोग किया जाता है, एनेलास्टिक बाधा असंगत प्रवाह वैधता को स्तरीकृत घनत्व और/या तापमान के साथ -साथ दबाव तक बढ़ाता है।यह थर्मोडायनामिक चर को एक 'वायुमंडलीय' आधार स्थिति में आराम करने की अनुमति देता है, जो कि मौसम विज्ञान के क्षेत्र में उपयोग किए जाने पर निचले वातावरण में देखा जाता है, उदाहरण के लिए।इस स्थिति का उपयोग विभिन्न खगोल भौतिकी प्रणालियों के लिए भी किया जा सकता है।<ref>{{cite journal | first= D.R. | last=Durran | title=Improving the Anelastic Approximation | journal=Journal of the Atmospheric Sciences | year=1989 | volume=46 | issue=11 | pages=1453–1461 | url=http://ams.allenpress.com/archive/1520-0469/46/11/pdf/i1520-0469-46-11-1453.pdf | doi= 10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2 |bibcode = 1989JAtS...46.1453D | issn= 1520-0469 }} {{dead link|date=June 2010}}</ref>
# एनेलास्टिक प्रवाह: <math> {\nabla \cdot \left(\rho_{o}\mathbf u\right) = 0} </math>। मुख्य रूप से [[ वायुमंडलीय विज्ञान ]] के क्षेत्र में उपयोग किया जाता है, एनेलास्टिक बाधा असंगत प्रवाह वैधता को स्तरीकृत घनत्व और/या तापमान के साथ -साथ दबाव तक बढ़ाता है। यह थर्मोडायनामिक चर को एक 'वायुमंडलीय' आधार स्थिति में आराम करने की अनुमति देता है, जो कि मौसम विज्ञान के क्षेत्र में उपयोग किए जाने पर निचले वातावरण में देखा जाता है, उदाहरण के लिए। इस स्थिति का उपयोग विभिन्न खगोल भौतिकी प्रणालियों के लिए भी किया जा सकता है।<ref>{{cite journal | first= D.R. | last=Durran | title=Improving the Anelastic Approximation | journal=Journal of the Atmospheric Sciences | year=1989 | volume=46 | issue=11 | pages=1453–1461 | url=http://ams.allenpress.com/archive/1520-0469/46/11/pdf/i1520-0469-46-11-1453.pdf | doi= 10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2 |bibcode = 1989JAtS...46.1453D | issn= 1520-0469 }} {{dead link|date=June 2010}}</ref>
# कम मच-संख्या प्रवाह, या छद्म-असंगतता: <math>\nabla \cdot \left(\alpha \mathbf u \right) = \beta</math>।कम मच संख्या | मच-संख्या की कमी को गैर-आयामी मात्रा के पैमाने पर विश्लेषण का उपयोग करके संपीड़ित यूलर समीकरणों से प्राप्त किया जा सकता है।इस खंड में पिछले की तरह संयम, ध्वनिक तरंगों को हटाने की अनुमति देता है, लेकिन घनत्व और/या तापमान में बड़े गड़बड़ी के लिए भी अनुमति देता है।धारणा यह है कि प्रवाह इस तरह की बाधा का उपयोग करके किसी भी समाधान के लिए एक मच संख्या सीमा (सामान्य रूप से 0.3 से कम) के भीतर रहता है।फिर से, सभी असंगत प्रवाह के अनुसार दबाव विचलन दबाव आधार स्थिति की तुलना में छोटा होना चाहिए।<ref>{{cite journal | first1=A.S. |last1=Almgren | first2=J.B.| last2=Bell | first3=C.A. | last3=Rendleman | first4=M. | last4=Zingale | title=Low Mach Number Modeling of Type Ia Supernovae. I. Hydrodynamics | journal=Astrophysical Journal | year=2006 | volume=637 | pages=922–936 | url=http://seesar.lbl.gov/ccse/Publications/car/LowMachSNIa.pdf | doi=10.1086/498426 | bibcode=2006ApJ...637..922A|arxiv = astro-ph/0509892 | issue=2 }}</ref>
# कम मच-संख्या प्रवाह, या छद्म-असंगतता: <math>\nabla \cdot \left(\alpha \mathbf u \right) = \beta</math>। कम मच संख्या मच-संख्या की कमी को गैर-आयामी मात्रा के पैमाने पर विश्लेषण का उपयोग करके संपीड़ित यूलर समीकरणों से प्राप्त किया जा सकता है। इस खंड में पिछले की तरह संयम, ध्वनिक तरंगों को हटाने की अनुमति देता है, लेकिन घनत्व और/या तापमान में बड़े गड़बड़ी के लिए भी अनुमति देता है। धारणा यह है कि प्रवाह इस तरह की बाधा का उपयोग करके किसी भी समाधान के लिए एक मच संख्या सीमा (सामान्य रूप से 0.3 से कम) के भीतर रहता है। फिर से, सभी असंगत प्रवाह के अनुसार दबाव विचलन दबाव आधार स्थिति की तुलना में छोटा होना चाहिए।<ref>{{cite journal | first1=A.S. |last1=Almgren | first2=J.B.| last2=Bell | first3=C.A. | last3=Rendleman | first4=M. | last4=Zingale | title=Low Mach Number Modeling of Type Ia Supernovae. I. Hydrodynamics | journal=Astrophysical Journal | year=2006 | volume=637 | pages=922–936 | url=http://seesar.lbl.gov/ccse/Publications/car/LowMachSNIa.pdf | doi=10.1086/498426 | bibcode=2006ApJ...637..922A|arxiv = astro-ph/0509892 | issue=2 }}</ref>
ये विधियां प्रवाह के बारे में अलग -अलग धारणाएँ बनाते हैं, लेकिन सभी बाधा के सामान्य रूप को ध्यान में रखते हैं <math>\nabla \cdot \left(\alpha \mathbf u \right) = \beta</math> सामान्य प्रवाह पर निर्भर कार्यों के लिए <math>\alpha</math> और <math>\beta</math>।
ये विधियां प्रवाह के बारे में अलग -अलग धारणाएँ बनाते हैं, लेकिन सभी बाधा के सामान्य रूप को ध्यान में रखते हैं <math>\nabla \cdot \left(\alpha \mathbf u \right) = \beta</math> सामान्य प्रवाह पर निर्भर कार्यों के लिए <math>\alpha</math> और <math>\beta</math>।


== संख्यात्मक सन्निकटन ==
== संख्यात्मक सन्निकटन ==


असंगत प्रवाह समीकरणों की कठोर प्रकृति का मतलब है कि उन्हें हल करने के लिए विशिष्ट गणितीय तकनीकों को तैयार किया गया है।इनमें से कुछ विधियों में शामिल हैं:
असंगत प्रवाह समीकरणों की कठोर प्रकृति का मतलब है कि उन्हें हल करने के लिए विशिष्ट गणितीय तकनीकों को तैयार किया गया है। इनमें से कुछ विधियों में शामिल हैं:
# [[ प्रक्षेपण विधि ]] (द्रव की गतिशीलता) (अनुमानित और सटीक दोनों)
# [[ प्रक्षेपण विधि ]] (द्रव की गतिशीलता) (अनुमानित और सटीक दोनों)
# कृत्रिम संपीड़ितता तकनीक (अनुमानित)
# कृत्रिम संपीड़ितता तकनीक (अनुमानित)

Revision as of 22:10, 19 March 2023

Template:Use Canadian English

द्रव यांत्रिकी या अधिक सामान्यतः सातत्य यांत्रिकी में, असंपीड्य प्रवाह (आइसोकोरिक प्रवाह) एक प्रवाह को संदर्भित करता है जिसमें द्रव पार्सल के भीतर सामग्रीघनत्व स्थिर होता है - एक असीम मात्रा जोप्रवाह वेग के साथ चलती है। एक समतुल्य कथन जो असंपीड्यता का तात्पर्य है कि प्रवाह वेग काविचलन शून्य है।

असंगत प्रवाह का अर्थ यह नहीं है कि तरल पदार्थ स्वयं अक्षम्य है। यह नीचे की व्युत्पत्ति में दिखाया गया है कि (सही परिस्थितियों में) संपीड़ित तरल पदार्थ भी - एक अच्छे सन्निकटन के लिए - एक असंगत प्रवाह के रूप में तैयार किए जा सकते हैं। असंगत प्रवाह का तात्पर्य है कि घनत्व द्रव के एक पार्सल के अन्दर स्थिर रहता है जो प्रवाह वेग के साथ चलता है।

व्युत्पत्ति

असंगत प्रवाह के लिए मौलिक आवश्यकता यह है कि घनत्व, , एक छोटे तत्व आयतन, डीवी के अन्दर स्थिर है, जो प्रवाह वेग 'यू' पर चलता है। गणितीय रूप से, इस बाधा का तात्पर्य है कि घनत्व की द्रव्य व्युत्पन्न को अपूर्ण प्रवाह सुनिश्चित करने के लिए गायब हो जाना चाहिए। इस बाधा को आरंभ करने से पहले, हमें आवश्यक संबंध उत्पन्न करने के लिए द्रव्यमान के संरक्षण को प्रायौगिक करना होगा। द्रव्यमान की गणना घनत्व के एकआयत अभिन्न अंग द्वारा की जाती है, :

द्रव्यमान के संरक्षण के लिए आवश्यक है कि नियंत्रण आयतन के अंदर द्रव्यमान का समय व्युत्पन्न द्रव्यमान प्रवाह, जे के बराबर हो, इसकी सीमाओं के पार। गणितीय रूप से, हम सतह अभिन्न के संदर्भ में इस बाधा का प्रतिनिधित्व कर सकते हैं:

\oiint

उपरोक्त अभिव्यक्ति में नकारात्मक संकेत यह सुनिश्चित करता है कि बाहरी प्रवाह के परिणामस्वरूप समय के संबंध में द्रव्यमान में कमी आती है, इस सम्मेलन का उपयोग करते हुए कि सतह क्षेत्र वेक्टर बाहर की ओर इंगित करता है। अब,विचलन प्रमेय का उपयोग करके हम प्रवाह और आंशिक समय व्युत्पन्न के बीच संबंध को प्राप्त कर सकते हैं:

इसलिए:

असंगत प्रवाह सुनिश्चित करने के लिए समय के संबंध में घनत्व के आंशिक व्युत्पन्न को गायब होने की आवश्यकता नहीं है। जब हम समय के संबंध में घनत्व के आंशिक व्युत्पन्न की बात करते हैं, तो हम निश्चित स्थिति के नियंत्रण मात्रा के अन्दर परिवर्तन की इस दर को संदर्भित करते हैं। घनत्व के आंशिक समय व्युत्पन्न को गैर-शून्य होने देने से, हम खुद को असंगत तरल पदार्थों तक सीमित नहीं कर रहे हैं, चूंकि घनत्व एक निश्चित स्थिति से देखा जा सकता है चूंकि द्रव नियंत्रण मात्रा के माध्यम से प्रवाहित होता है। यह दृष्टिकोण व्यापकता को बनाए रखता है, और यह आवश्यक नहीं है कि घनत्व के गायब होने का आंशिक समय व्युत्पन्न दिखाता है कि संपीड़ित तरल पदार्थ अभी भी असंगत प्रवाह से प्रासंगिक होते हैं। क्या रुचियां हमें एक नियंत्रण मात्रा के घनत्व में परिवर्तन है जो प्रवाह वेग, 'यू' के साथ चलती है। प्रवाह निम्न कार्य के माध्यम से प्रवाह वेग से संबंधित है:

ताकि द्रव्यमान के संरक्षण का अर्थ है कि:

पिछला संबंध (जहां हमने उपयुक्त वेक्टर कैलकुलस पहचान का उपयोग किया है) निरंतरता समीकरण के रूप में जाना जाता है। अब, हमें घनत्व केकुल व्युत्पन्न के बारे में निम्नलिखित संबंध की आवश्यकता है (जहां हमश्रृंखला नियम लागू करते हैं):

इसलिए यदि हम एक नियंत्रण आयतन चुनते हैं जो द्रव के समान गति से चल रहा है (अर्थात (dx/dt, & nbsp; dy/dt, & nbsp; dz/dt) & nbsp; = & nbsp; 'u') तो यह अभिव्यक्ति सामग्री व्युत्पन्न को सरल बनाती है:

और इसलिए ऊपर दिए गए निरंतरता समीकरण का उपयोग करते हुए, हम देखते हैं कि:

समय के साथ घनत्व में बदलाव का अर्थ यह होगा कि द्रव या तो संकुचित या विस्तारित हो गया था (या यह कि हमारे निरंतर मात्रा में निहित द्रव्यमान, डीवी, बदल गया था), जिसे हमने निषिद्ध कर दिया है। हमें तब आवश्यकता होनी चाहिए कि घनत्व की सामग्री व्युत्पन्न गायब हो जाए, और समकक्ष (गैर-शून्य घनत्व के लिए) इसलिए प्रवाह वेग का विचलन होना चाहिए:

और इसलिए द्रव्यमान के संरक्षण और बाधा के साथ प्रारंभ करते हुए द्रव की गतिमान मात्रा के भीतर घनत्व स्थिर रहता है, यह दिखाया गया है कि असंगत प्रवाह के लिए आवश्यक एक समतुल्य स्थिति यह है कि प्रवाह वेग का विचलन गायब हो जाता है।

संपीड़ितता से संबंध

कुछ क्षेत्रों में, दबाव भिन्नताओं के परिणामस्वरूप घनत्व में परिवर्तन प्रवाह की असंगतता का एक उपाय है। यह संपीड्यता के संदर्भ में सबसे अच्छा व्यक्त किया गया है

यदि संपीड़ितता स्वीकार्य रूप से छोटी है, तो प्रवाह को असंगत माना जाता है।

सोलेनोइडल क्षेत्र से संबंध

एक असंगत प्रवाह को एक सोलनोइडल प्रवाह वेग क्षेत्र द्वारा वर्णित किया गया है। परंतु एक परिनालिका क्षेत्र, एक शून्य विचलन होने के अतिरिक्त, गैर-शून्य कर्ल (अर्थात, घूर्णी घटक) होने का अतिरिक्त अर्थ भी रखता है।

अन्यथा, यदि एक असंगत प्रवाह में शून्य का एक कर्ल भी होता है, तो यह एक अप्रिय क्षेत्र भी है, तो प्रवाह वेग क्षेत्र वास्तव मेंलाप्लासियन वेक्टर क्षेत्र है।

सामग्री से अंतर

जैसा कि पहले परिभाषित किया गया है, एक असंगत (आइसोचोरिक) प्रवाह वह है जिसमें

यह कहने के बराबर है

अर्थात् घनत्व कामूल व्युत्पन्न शून्य है। इस प्रकार यदि कोई भौतिक तत्व का अनुसरण करता है, तो इसका द्रव्यमान घनत्व स्थिर रहता है। ध्यान दें कि सामग्री व्युत्पन्न में दो शब्द होते हैं।पहला कार्यकाल वर्णन करता है कि समय के साथ भौतिक तत्व का घनत्व कैसे बदल जाता है।इस शब्द को अस्थिर शब्द के रूप में भी जाना जाता है।दूसरा कार्यकाल, घनत्व में परिवर्तन का वर्णन करता है क्योंकि भौतिक तत्व एक बिंदु से दूसरे बिंदु पर चलता है।यह एडव्यूशन टर्म (स्केलर फील्ड के लिए संवहन शब्द) है।एक प्रवाह को असंगतता के रूप में जिम्मेदार ठहराने के लिए, इन शर्तों का अभिवृद्धि शून्य शून्य सैंकोरो-सैंट होना चाहिए।

दूसरी ओर, एक 'सजातीय, असंगत सामग्री' वह है जिसमें निरंतर घनत्व होता है।ऐसी सामग्री के लिए, ।इसका अर्थ यह है कि,

और
स्वतंत्र रूप से।

निरंतरता समीकरण से यह इस प्रकार है

इस प्रकार सजातीय सामग्री हमेशा प्रवाह से गुजरती है जो असंगत है, लेकिन यह सच नहीं है।यही है, संपीड़ित सामग्री प्रवाह में संपीड़न का अनुभव नहीं कर सकती है।

संबंधित प्रवाह की कमी

द्रव की गतिशीलता में, प्रवाह का वेग विचलन शून्य है, तो एक प्रवाह को असंगत माना जाता है। हालांकि, संबंधित योगों का उपयोग कभी -कभी किया जा सकता है, जो प्रवाह प्रणाली को मॉडलिंग किया जा रहा है। कुछ संस्करण नीचे वर्णित हैं:

  1. असंगत प्रवाह: । यह या तो निरंतर घनत्व (सख्त असंगत) या अलग -अलग घनत्व प्रवाह को मान सकता है। अलग -अलग घनत्व सेट घनत्व, दबाव और/या तापमान क्षेत्रों में छोटे गड़बड़ियों से जुड़े समाधानों को स्वीकार करता है, और डोमेन में दबाव वायुमंडलीय स्तरीकरण के लिए अनुमति दे सकता है।
  2. एनेलास्टिक प्रवाह: । मुख्य रूप से वायुमंडलीय विज्ञान के क्षेत्र में उपयोग किया जाता है, एनेलास्टिक बाधा असंगत प्रवाह वैधता को स्तरीकृत घनत्व और/या तापमान के साथ -साथ दबाव तक बढ़ाता है। यह थर्मोडायनामिक चर को एक 'वायुमंडलीय' आधार स्थिति में आराम करने की अनुमति देता है, जो कि मौसम विज्ञान के क्षेत्र में उपयोग किए जाने पर निचले वातावरण में देखा जाता है, उदाहरण के लिए। इस स्थिति का उपयोग विभिन्न खगोल भौतिकी प्रणालियों के लिए भी किया जा सकता है।[1]
  3. कम मच-संख्या प्रवाह, या छद्म-असंगतता: । कम मच संख्या मच-संख्या की कमी को गैर-आयामी मात्रा के पैमाने पर विश्लेषण का उपयोग करके संपीड़ित यूलर समीकरणों से प्राप्त किया जा सकता है। इस खंड में पिछले की तरह संयम, ध्वनिक तरंगों को हटाने की अनुमति देता है, लेकिन घनत्व और/या तापमान में बड़े गड़बड़ी के लिए भी अनुमति देता है। धारणा यह है कि प्रवाह इस तरह की बाधा का उपयोग करके किसी भी समाधान के लिए एक मच संख्या सीमा (सामान्य रूप से 0.3 से कम) के भीतर रहता है। फिर से, सभी असंगत प्रवाह के अनुसार दबाव विचलन दबाव आधार स्थिति की तुलना में छोटा होना चाहिए।[2]

ये विधियां प्रवाह के बारे में अलग -अलग धारणाएँ बनाते हैं, लेकिन सभी बाधा के सामान्य रूप को ध्यान में रखते हैं सामान्य प्रवाह पर निर्भर कार्यों के लिए और

संख्यात्मक सन्निकटन

असंगत प्रवाह समीकरणों की कठोर प्रकृति का मतलब है कि उन्हें हल करने के लिए विशिष्ट गणितीय तकनीकों को तैयार किया गया है। इनमें से कुछ विधियों में शामिल हैं:

  1. प्रक्षेपण विधि (द्रव की गतिशीलता) (अनुमानित और सटीक दोनों)
  2. कृत्रिम संपीड़ितता तकनीक (अनुमानित)
  3. संपीड़ितता पूर्व-कंडीशनिंग

यह भी देखें

संदर्भ

  1. Durran, D.R. (1989). "Improving the Anelastic Approximation" (PDF). Journal of the Atmospheric Sciences. 46 (11): 1453–1461. Bibcode:1989JAtS...46.1453D. doi:10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2. ISSN 1520-0469.[dead link]
  2. Almgren, A.S.; Bell, J.B.; Rendleman, C.A.; Zingale, M. (2006). "Low Mach Number Modeling of Type Ia Supernovae. I. Hydrodynamics" (PDF). Astrophysical Journal. 637 (2): 922–936. arXiv:astro-ph/0509892. Bibcode:2006ApJ...637..922A. doi:10.1086/498426.