सारांशित क्षेत्र तालिका: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[File:integral_image_application_example.svg|thumb|upright|ऑर्डर -6 [[जादू वर्ग]] (1.) के | [[File:integral_image_application_example.svg|thumb|upright|ऑर्डर -6 [[जादू वर्ग]] (1.) के सारांशित क्षेत्र तालिका (2.) का उपयोग करके इसके मानों के एक उप-आयत का योग करना; प्रत्येक रंगीन स्थान उस रंग के आयत के अंदर योग को हाइलाइट करता है।]]एक सारांशित क्षेत्र तालिका एक ग्रिड के एक आयताकार उपसमुच्चय में मूल्यों के योग को जल्दी और कुशलता से उत्पन्न करने के लिए एक [[डेटा संरचना]] और [[कलन विधि]] है। [[ मूर्ति प्रोद्योगिकी |छवि प्रोद्योगिकी]] डोमेन में, इसे अभिन्न छवि के रूप में भी जाना जाता है। यह 1984 में फ्रैंकलिन सी. क्रो द्वारा [[मिपमैप|मिपमैप्स]] के साथ उपयोग के लिए [[ कंप्यूटर चित्रलेख |कंप्यूटर चित्रलेख]] के लिए प्रस्तुत किया गया था। [[कंप्यूटर दृष्टि|कंप्यूटर विजन]] में इसे लुईस द्वारा लोकप्रिय बनाया गया था<ref>{{cite conference|last1=Lewis|first1=J.P.|title=तेज़ टेम्पलेट मिलान| journal=Proc. Vision Interface|date=1995|pages=120–123}}</ref> और उसके बाद "अभिन्न छवि" नाम दिया गया और 2001 में वियोला-जोन्स वस्तु पहचान रूपरेखा के अंदर प्रमुखता से उपयोग किया गया। ऐतिहासिक रूप से, यह सिद्धांत बहु-आयामी संभाव्यता वितरण कार्यों के अध्ययन में बहुत अच्छी तरह से जाना जाता है, अर्थात् 2D (या ND) संभावनाओं की गणना में ( संभाव्यता वितरण के अनुसार क्षेत्र) संबंधित [[संचयी वितरण कार्य|संचयी वितरण कार्यों]] से उपयोगी है ।<ref name="Finkelstein2010">{{cite conference | ||
| first = Amir | | first = Amir | ||
| last = Finkelstein | | last = Finkelstein | ||
Line 47: | Line 47: | ||
&= \frac{1}{n} \left[S_2 - \frac{S_1^2}{n}\right] | &= \frac{1}{n} \left[S_2 - \frac{S_1^2}{n}\right] | ||
\end{align} | \end{align} | ||
</math> | </math>कहाँ <math>\mu=S_1/n</math> और <math display="inline">S_2 = \sum_{i=1}^n x_i^2</math> | ||
माध्य के अनुमान के समान (<math>\mu</math>) और विचरण (<math>\operatorname{Var}</math>), जिसके लिए क्रमशः छवि की पहली और दूसरी शक्ति की अभिन्न छवियों की आवश्यकता होती है (अर्थात <math>I, I^2</math>); ऊपर उल्लिखित के समान हेरफेर छवियों की तीसरी और चौथी शक्तियों के लिए किया जा सकता है (अर्थात। <math>I^3(x,y), I^4(x,y)</math> तिरछापन और कर्टोसिस प्राप्त करने के लिए।<ref name="Phan-April2012" /> किन्तु एक महत्वपूर्ण कार्यान्वयन विवरण जिसे उपरोक्त विधियों के लिए ध्यान में रखा जाना चाहिए, जैसा कि एफ शाफेट एट अल द्वारा उल्लेख किया गया है।<ref>{{cite journal| last1=Shafait|first1=Faisal| last2=Keysers|first2=Daniel| last3=M. Breuel|first3=Thomas| title=अभिन्न छवियों का उपयोग करके स्थानीय अनुकूली थ्रेशोल्डिंग तकनीकों का कुशल कार्यान्वयन| journal=Electronic Imaging| volume=6815| pages=681510–681510–6| date=January 2008| doi=10.1117/12.767755| url=http://www.csse.uwa.edu.au/~shafait/papers/Shafait-efficient-binarization-SPIE08.pdf| series=Document Recognition and Retrieval XV | citeseerx=10.1.1.109.2748}}</ref> 32-बिट पूर्णांकों का उपयोग किए जाने की स्थिति में उच्च क्रम की अभिन्न छवियों के लिए पूर्णांक अतिप्रवाह होता है। | माध्य के अनुमान के समान (<math>\mu</math>) और विचरण (<math>\operatorname{Var}</math>), जिसके लिए क्रमशः छवि की पहली और दूसरी शक्ति की अभिन्न छवियों की आवश्यकता होती है (अर्थात <math>I, I^2</math>); ऊपर उल्लिखित के समान हेरफेर छवियों की तीसरी और चौथी शक्तियों के लिए किया जा सकता है (अर्थात। <math>I^3(x,y), I^4(x,y)</math> तिरछापन और कर्टोसिस प्राप्त करने के लिए।<ref name="Phan-April2012" /> किन्तु एक महत्वपूर्ण कार्यान्वयन विवरण जिसे उपरोक्त विधियों के लिए ध्यान में रखा जाना चाहिए, जैसा कि एफ शाफेट एट अल द्वारा उल्लेख किया गया है।<ref>{{cite journal| last1=Shafait|first1=Faisal| last2=Keysers|first2=Daniel| last3=M. Breuel|first3=Thomas| title=अभिन्न छवियों का उपयोग करके स्थानीय अनुकूली थ्रेशोल्डिंग तकनीकों का कुशल कार्यान्वयन| journal=Electronic Imaging| volume=6815| pages=681510–681510–6| date=January 2008| doi=10.1117/12.767755| url=http://www.csse.uwa.edu.au/~shafait/papers/Shafait-efficient-binarization-SPIE08.pdf| series=Document Recognition and Retrieval XV | citeseerx=10.1.1.109.2748}}</ref> 32-बिट पूर्णांकों का उपयोग किए जाने की स्थिति में उच्च क्रम की अभिन्न छवियों के लिए पूर्णांक अतिप्रवाह होता है। | ||
Line 62: | Line 60: | ||
* [http://www.codeproject.com/Articles/441226/Haar-feature-Object-Detection-in-Csharp Summed table implementation in object detection] | * [http://www.codeproject.com/Articles/441226/Haar-feature-Object-Detection-in-Csharp Summed table implementation in object detection] | ||
=== व्याख्यान वीडियो === | === व्याख्यान वीडियो === | ||
* [https://www.youtube.com/watch?v=mM5JY-Q6hiM | * [https://www.youtube.com/watch?v=mM5JY-Q6hiM अभिन्न छवि एल्गोरिदम के पीछे के सिद्धांत का परिचय] | ||
* [https://www.youtube.com/watch?v=-SI117NdjJ8 वोल्फ्राम डिमॉन्स्ट्रेशन प्रोजेक्ट से | * [https://www.youtube.com/watch?v=-SI117NdjJ8 वोल्फ्राम डिमॉन्स्ट्रेशन प्रोजेक्ट से अभिन्न छवि एल्गोरिद्म के निरंतर संस्करण का एक प्रदर्शन] | ||
श्रेणी:डिजिटल ज्यामिति | श्रेणी:डिजिटल ज्यामिति |
Revision as of 07:01, 20 March 2023
एक सारांशित क्षेत्र तालिका एक ग्रिड के एक आयताकार उपसमुच्चय में मूल्यों के योग को जल्दी और कुशलता से उत्पन्न करने के लिए एक डेटा संरचना और कलन विधि है। छवि प्रोद्योगिकी डोमेन में, इसे अभिन्न छवि के रूप में भी जाना जाता है। यह 1984 में फ्रैंकलिन सी. क्रो द्वारा मिपमैप्स के साथ उपयोग के लिए कंप्यूटर चित्रलेख के लिए प्रस्तुत किया गया था। कंप्यूटर विजन में इसे लुईस द्वारा लोकप्रिय बनाया गया था[1] और उसके बाद "अभिन्न छवि" नाम दिया गया और 2001 में वियोला-जोन्स वस्तु पहचान रूपरेखा के अंदर प्रमुखता से उपयोग किया गया। ऐतिहासिक रूप से, यह सिद्धांत बहु-आयामी संभाव्यता वितरण कार्यों के अध्ययन में बहुत अच्छी तरह से जाना जाता है, अर्थात् 2D (या ND) संभावनाओं की गणना में ( संभाव्यता वितरण के अनुसार क्षेत्र) संबंधित संचयी वितरण कार्यों से उपयोगी है ।[2]
एल्गोरिथम
जैसा कि नाम से पता चलता है, सारांशित क्षेत्र तालिका में किसी भी बिंदु (x, y) पर मान ऊपर और (x, y) के बाईं ओर के सभी पिक्सेल का योग होता है, जिसमें सम्मिलित हैं:[3][4]
सारांशित क्षेत्र तालिका को छवि पर एकल पास में कुशलता से गणना की जा सकती है, क्योंकि सारांशित क्षेत्र तालिका में मान (x, y) बस है:[5]
एक बार सारांशित क्षेत्र तालिका की गणना हो जाने के बाद, किसी भी आयताकार क्षेत्र पर तीव्रता के योग का मूल्यांकन करने के लिए क्षेत्र के आकार की परवाह किए बिना ठीक चार सरणी संदर्भों की आवश्यकता होती है। यही है, दाईं ओर की आकृति में अंकन, होना A = (x0, y0), B = (x1, y0), C = (x0, y1) और D = (x1, y1), कुल मिलाकर i(x,y) A, B, C, और D द्वारा फैलाए गए आयत के ऊपर है:
एक्सटेंशन
यह विधि स्वाभाविक रूप से निरंतर डोमेन तक विस्तारित है।[2]
विधि को उच्च-आयामी छवियों तक भी बढ़ाया जा सकता है।[6] यदि आयत के कोने हैं साथ में , फिर आयत में समाहित छवि मानों के योग की गणना सूत्र के साथ की जाती है
फान एट अल के काम के रूप में इस पद्धति को उच्च-क्रम की अभिन्न छवि तक बढ़ा दिया गया है।[7] जिन्होंने छवि में स्थानीय ब्लॉक के मानक विचलन (विचरण), तिरछापन और कर्टोसिस की त्वरित और कुशलता से गणना करने के लिए दो, तीन, या चार अभिन्न छवियां प्रदान कीं। यह नीचे विस्तृत है:
किसी ब्लॉक के प्रसरण या मानक विचलन की गणना करने के लिए, हमें दो अभिन्न छवियों की आवश्यकता होती है:
माध्य के अनुमान के समान () और विचरण (), जिसके लिए क्रमशः छवि की पहली और दूसरी शक्ति की अभिन्न छवियों की आवश्यकता होती है (अर्थात ); ऊपर उल्लिखित के समान हेरफेर छवियों की तीसरी और चौथी शक्तियों के लिए किया जा सकता है (अर्थात। तिरछापन और कर्टोसिस प्राप्त करने के लिए।[7] किन्तु एक महत्वपूर्ण कार्यान्वयन विवरण जिसे उपरोक्त विधियों के लिए ध्यान में रखा जाना चाहिए, जैसा कि एफ शाफेट एट अल द्वारा उल्लेख किया गया है।[8] 32-बिट पूर्णांकों का उपयोग किए जाने की स्थिति में उच्च क्रम की अभिन्न छवियों के लिए पूर्णांक अतिप्रवाह होता है।
यह भी देखें
- उपसर्ग राशि
संदर्भ
- ↑ Lewis, J.P. (1995). तेज़ टेम्पलेट मिलान. Proc. Vision Interface. pp. 120–123.
- ↑ 2.0 2.1 Finkelstein, Amir; neeratsharma (2010). "Double Integrals By Summing Values Of Cumulative Distribution Function". Wolfram Demonstration Project.
- ↑ Crow, Franklin (1984). "Summed-area tables for texture mapping". SIGGRAPH '84: Proceedings of the 11th annual conference on Computer graphics and interactive techniques. pp. 207–212.
- ↑ Viola, Paul; Jones, Michael (2002). "Robust Real-time Object Detection" (PDF). International Journal of Computer Vision.
- ↑ BADGERATI (2010-09-03). "Computer Vision – The Integral Image". computersciencesource.wordpress.com. Retrieved 2017-02-13.
- ↑ Tapia, Ernesto (January 2011). "उच्च-आयामी अभिन्न छवियों की गणना पर एक नोट". Pattern Recognition Letters. 32 (2): 197–201. doi:10.1016/j.patrec.2010.10.007.
- ↑ 7.0 7.1 Phan, Thien; Sohoni, Sohum; Larson, Eric C.; Chandler, Damon M. (22 April 2012). छवि गुणवत्ता मूल्यांकन का प्रदर्शन-विश्लेषण-आधारित त्वरण (PDF). pp. 81–84. CiteSeerX 10.1.1.666.4791. doi:10.1109/SSIAI.2012.6202458. ISBN 978-1-4673-1830-3.
{{cite book}}
:|journal=
ignored (help) - ↑ Shafait, Faisal; Keysers, Daniel; M. Breuel, Thomas (January 2008). "अभिन्न छवियों का उपयोग करके स्थानीय अनुकूली थ्रेशोल्डिंग तकनीकों का कुशल कार्यान्वयन" (PDF). Electronic Imaging. Document Recognition and Retrieval XV. 6815: 681510–681510–6. CiteSeerX 10.1.1.109.2748. doi:10.1117/12.767755.
बाहरी संबंध
व्याख्यान वीडियो
- अभिन्न छवि एल्गोरिदम के पीछे के सिद्धांत का परिचय
- वोल्फ्राम डिमॉन्स्ट्रेशन प्रोजेक्ट से अभिन्न छवि एल्गोरिद्म के निरंतर संस्करण का एक प्रदर्शन
श्रेणी:डिजिटल ज्यामिति
श्रेणी:कंप्यूटर ग्राफ़िक्स डेटा संरचनाएँ