ऑर्थोगोनल फ़ंक्शन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, लंबकोणीय फलन एक [[समारोह स्थान|फलन स्पेस]] से संबंधित होते हैं जो कि द्विरेखीय फॉर्म से लैस एक [[ सदिश स्थल | सदिश स्पेस]] होता है। जब फलन स्पेस में फलन के डोमेन के रूप में एक [[अंतराल (गणित)]] होता है, तो [[द्विरेखीय रूप]] अंतराल पर फलनों के उत्पाद का [[अभिन्न]] अंग हो सकता है:
गणित में, लंबकोणीय फलन, [[समारोह स्थान|फलन स्पेस]] से संबंधित होते हैं जो कि द्विरेखीय फॉर्म से लैस [[ सदिश स्थल | सदिश स्पेस]] होता है। जब फलन स्पेस में फलन के डोमेन के रूप में [[अंतराल (गणित)|अंतराल]] होता है, तो [[द्विरेखीय रूप]] अंतराल पर फलनों के उत्पाद का [[अभिन्न]] अंग हो सकता है:
:<math> \langle f,g\rangle = \int \overline{f(x)}g(x)\,dx  .</math>
:<math> \langle f,g\rangle = \int \overline{f(x)}g(x)\,dx  .</math>
'''फलन  और  द्विरेखीय रूप #Reflexivity और orthogonality हैं''' जब यह अभिन्न शून्य है, तो फलन <math>f</math> और <math>g</math> लंबकोणीय होते हैं, उदाहरण, <math>\langle f, \, g \rangle = 0</math> जब कभी भी <math>f \neq g</math> है। एक परिमित-आयामी अंतरिक्ष में सदिश के [[आधार (रैखिक बीजगणित)]] के साथ, लंबकोणीय फलन फलन स्पेस के लिए एक अनंत आधार बना सकते हैं। संकल्पनात्मक रूप से, उपरोक्त अभिन्न सदिश [[डॉट उत्पाद]] के बराबर है; दो सदिश परस्पर स्वतंत्र (लंबकोणीय) हैं यदि उनका बिंदु-उत्पाद शून्य है।
जब यह अभिन्न शून्य है, तो फलन <math>f</math> और <math>g</math> लंबकोणीय होते हैं, उदाहरण, <math>\langle f, \, g \rangle = 0</math> जब कभी भी <math>f \neq g</math> है। परिमित-आयामी अंतरिक्ष में सदिश के [[आधार (रैखिक बीजगणित)]] के साथ, लंबकोणीय फलन फलन स्पेस के लिए अनंत आधार बना सकते हैं। संकल्पनात्मक रूप से, उपरोक्त अभिन्न सदिश [[डॉट उत्पाद]] के बराबर है; दो सदिश परस्पर स्वतंत्र (लंबकोणीय) हैं यदि उनका बिंदु-उत्पाद शून्य है।


माना <math> \{ f_0, f_1, \ldots\}</math> गैर-शून्य ''L''<sup>2</sup>-मानदंड <math display="inline"> \left\| f_n \right\| _2 = \sqrt{\langle f_n, f_n \rangle} = \left(\int f_n ^2 \ dx \right) ^\frac{1}{2} </math> के लंबकोणीय फलन का एक क्रम है। यह क्रम ''L''<sup>2</sup>-मानदंड के <math>\left\{ f_n / \left\| f_n \right\| _2 \right\}</math> इस क्रम का अनुसरण करके '''एल के फलनों का है2-सामान्य एक,''' एक ओर्थोनॉर्मल अनुक्रम बनाता है। एक परिभाषित ''L''<sup>2</sup>-मानदंड होने के लिए, अभिन्न को बाध्य होना चाहिए, जो फलनों को वर्ग-अभिन्न होने के लिए प्रतिबंधित करता है। '''परिभाषित एल होना2-मानदंड, अभिन्न को बाउंड किया जाना चाहिए, जो फंक्शन को स्क्वायर-इंटीग्रेबल फलन|स्क्वायर-इंटीग्रेबल होने तक सीमित करता है।'''
माना <math> \{ f_0, f_1, \ldots\}</math> गैर-शून्य ''L''<sup>2</sup>-मानदंड <math display="inline"> \left\| f_n \right\| _2 = \sqrt{\langle f_n, f_n \rangle} = \left(\int f_n ^2 \ dx \right) ^\frac{1}{2} </math> के लंबकोणीय फलन का क्रम है। यह क्रम ''L''<sup>2</sup>-मानदंड के <math>\left\{ f_n / \left\| f_n \right\| _2 \right\}</math> इस क्रम का अनुसरण करके ओर्थोनॉर्मल अनुक्रम बनाता है। परिभाषित ''L''<sup>2</sup>-मानदंड होने के लिए, अभिन्न को बाध्य होना चाहिए, जो फलनों को वर्ग-अभिन्न होने के लिए प्रतिबंधित करता है।  


== त्रिकोणमितीय फलन ==
== त्रिकोणमितीय फलन ==
{{Main article|फोरियर श्रेणी|हार्मोनिक विश्लेषण}}
{{Main article|फोरियर श्रेणी|हार्मोनिक विश्लेषण}}


लंबकोणीय फलन के कई समुच्चय अनुमानित फलनों के लिए मानक आधार बन गए हैं। उदाहरण के लिए, साइन फलन {{nowrap|sin ''nx''}} और {{nowrap|sin ''mx''}}, अंतराल <math>x \in (-\pi, \pi)</math> जब <math>m \neq n</math> और n तथा m धनात्मक पूर्णांक पर लंबकोणीय '''है  और  अंतराल पर लंबकोणीय हैं  कब  और n और m धनात्मक पूर्णांक''' हैं। तब के लिए
लंबकोणीय फलन के कई समुच्चय अनुमानित फलनों के लिए मानक आधार बन गए हैं। उदाहरण के लिए, साइन फलन {{nowrap|sin ''nx''}} और {{nowrap|sin ''mx''}}, अंतराल <math>x \in (-\pi, \pi)</math> जब <math>m \neq n</math> और n तथा m धनात्मक पूर्णांक पर लंबकोणीय हैं। तब के लिए:
:<math>2 \sin \left(mx\right) \sin \left(nx\right) = \cos \left(\left(m - n\right)x\right) - \cos\left(\left(m+n\right) x\right), </math>
:<math>2 \sin \left(mx\right) \sin \left(nx\right) = \cos \left(\left(m - n\right)x\right) - \cos\left(\left(m+n\right) x\right), </math>
और दो साइन फलनों के उत्पाद का अभिन्न अंग लुप्त हो जाता है।<ref>[[Antoni Zygmund]] (1935) ''[[Trigonometric Series|Trigonometrical Series]]'', page 6, Mathematical Seminar, University of Warsaw</ref> कोसाइन फलन के साथ, इन लंबकोणीय फलन को एक [[त्रिकोणमितीय बहुपद]] में इकट्ठा किया जा सकता है जिससे इसकी फोरियर श्रेणी के साथ अंतराल पर दिए गए फलन का अनुमान लगाया जा सके।
और दो साइन फलनों के उत्पाद का अभिन्न अंग लुप्त हो जाता है।<ref>[[Antoni Zygmund]] (1935) ''[[Trigonometric Series|Trigonometrical Series]]'', page 6, Mathematical Seminar, University of Warsaw</ref> कोसाइन फलन के साथ, इन लंबकोणीय फलन को [[त्रिकोणमितीय बहुपद]] में इकट्ठा किया जा सकता है जिससे इसकी फोरियर श्रेणी के साथ अंतराल पर दिए गए फलन का अनुमान लगाया जा सके।


== बहुपद ==
== बहुपद ==
Line 30: Line 30:


== तर्कसंगत फलन ==
== तर्कसंगत फलन ==
[[File:ChebychevRational1.png|thumb|x=0.01 और 100 के बीच क्रम n=0,1,2,3 और 4 के चेबीशेव तर्कसंगत फलनों का प्लॉट।]]लीजेंड्रे और चेबीशेव बहुपद {{nowrap|[−1, 1]}} अंतराल के लिए लंबकोणीय परिवार प्रदान करते हैं जबकि कभी-कभी लंबकोणीय परिवारों की {{nowrap|[0, ∞)}} आवश्यकता होती है। इस स्थिति में तर्क को {{nowrap|[−1, 1]}} में लाने के लिए पहले केली रूपांतरण को प्रयुक्त करना सुविधाजनक है। पहले केली ट्रांसफ़ॉर्म#रियल होमोग्राफी को प्रयुक्त करना सुविधाजनक है . इस प्रक्रिया के परिणामस्वरूप तर्कसंगत फलन लंबकोणीय फलन के परिवार होते हैं जिन्हें लीजेंड्रे तर्कसंगत फलन और चेबीशेव तर्कसंगत फलन कहा जाता है।
[[File:ChebychevRational1.png|thumb|x=0.01 और 100 के बीच क्रम n=0,1,2,3 और 4 के चेबीशेव तर्कसंगत फलनों का प्लॉट।]]लीजेंड्रे और चेबीशेव बहुपद {{nowrap|[−1, 1]}} अंतराल के लिए लंबकोणीय परिवार प्रदान करते हैं जबकि कभी-कभी लंबकोणीय परिवारों की {{nowrap|[0, ∞)}} आवश्यकता होती है। इस स्थिति में तर्क को {{nowrap|[−1, 1]}} में लाने के लिए पहले केली रूपांतरण को प्रयुक्त करना सुविधाजनक है। इस प्रक्रिया के परिणामस्वरूप तर्कसंगत फलन लंबकोणीय फलन के परिवार होते हैं जिन्हें लीजेंड्रे तर्कसंगत फलन और चेबीशेव तर्कसंगत फलन कहा जाता है।


== [[अंतर समीकरण]] में ==
== [[अंतर समीकरण]] में ==

Revision as of 10:21, 17 March 2023

गणित में, लंबकोणीय फलन, फलन स्पेस से संबंधित होते हैं जो कि द्विरेखीय फॉर्म से लैस सदिश स्पेस होता है। जब फलन स्पेस में फलन के डोमेन के रूप में अंतराल होता है, तो द्विरेखीय रूप अंतराल पर फलनों के उत्पाद का अभिन्न अंग हो सकता है:

जब यह अभिन्न शून्य है, तो फलन और लंबकोणीय होते हैं, उदाहरण, जब कभी भी है। परिमित-आयामी अंतरिक्ष में सदिश के आधार (रैखिक बीजगणित) के साथ, लंबकोणीय फलन फलन स्पेस के लिए अनंत आधार बना सकते हैं। संकल्पनात्मक रूप से, उपरोक्त अभिन्न सदिश डॉट उत्पाद के बराबर है; दो सदिश परस्पर स्वतंत्र (लंबकोणीय) हैं यदि उनका बिंदु-उत्पाद शून्य है।

माना गैर-शून्य L2-मानदंड के लंबकोणीय फलन का क्रम है। यह क्रम L2-मानदंड के इस क्रम का अनुसरण करके ओर्थोनॉर्मल अनुक्रम बनाता है। परिभाषित L2-मानदंड होने के लिए, अभिन्न को बाध्य होना चाहिए, जो फलनों को वर्ग-अभिन्न होने के लिए प्रतिबंधित करता है।

त्रिकोणमितीय फलन

लंबकोणीय फलन के कई समुच्चय अनुमानित फलनों के लिए मानक आधार बन गए हैं। उदाहरण के लिए, साइन फलन sin nx और sin mx, अंतराल जब और n तथा m धनात्मक पूर्णांक पर लंबकोणीय हैं। तब के लिए:

और दो साइन फलनों के उत्पाद का अभिन्न अंग लुप्त हो जाता है।[1] कोसाइन फलन के साथ, इन लंबकोणीय फलन को त्रिकोणमितीय बहुपद में इकट्ठा किया जा सकता है जिससे इसकी फोरियर श्रेणी के साथ अंतराल पर दिए गए फलन का अनुमान लगाया जा सके।

बहुपद

यदि कोई मोनोमियल अनुक्रम , अंतराल पर प्रारंभ होता है और ग्राम-श्मिट प्रक्रिया को प्रयुक्त करता है, फिर लेजेंड्रे बहुपद प्राप्त करता है। लंबकोणीय बहुपदों का एक और संग्रह संबंधित लीजेंड्रे बहुपद हैं।

लंबकोणीय बहुपदों के अध्ययन में भार फलन सम्मिलित हैं, जो द्विरेखीय फॉर्म में डाले गए हैं:

लैगुएरे बहुपदों के लिए भार फलन है।

पर भौतिक विज्ञानी और संभाव्यता सिद्धांतकार दोनों ही हर्मिट बहुपदों का उपयोग करते हैं, जहां भार फलन या है।

पर, चेबीशेव बहुपदों को परिभाषित किया गया है, और भार या का प्रयोग करें।

ज़र्निके बहुपदों को इकाई डिस्क पर परिभाषित किया गया है और इसमें रेडियल और कोणीय दोनों भागों की लंबकोणीयता है।

बाइनरी-वैल्यूड फलन

वाल्श फलन और हार तरंगिकाएँ असतत श्रेणियों के साथ लंबकोणीय फलन के उदाहरण हैं।

तर्कसंगत फलन

x=0.01 और 100 के बीच क्रम n=0,1,2,3 और 4 के चेबीशेव तर्कसंगत फलनों का प्लॉट।

लीजेंड्रे और चेबीशेव बहुपद [−1, 1] अंतराल के लिए लंबकोणीय परिवार प्रदान करते हैं जबकि कभी-कभी लंबकोणीय परिवारों की [0, ∞) आवश्यकता होती है। इस स्थिति में तर्क को [−1, 1] में लाने के लिए पहले केली रूपांतरण को प्रयुक्त करना सुविधाजनक है। इस प्रक्रिया के परिणामस्वरूप तर्कसंगत फलन लंबकोणीय फलन के परिवार होते हैं जिन्हें लीजेंड्रे तर्कसंगत फलन और चेबीशेव तर्कसंगत फलन कहा जाता है।

अंतर समीकरण में

सीमा स्थितियों के साथ रैखिक अंतर समीकरणों के समाधान को अधिकांशतः लंबकोणीय समाधान फलनों (उपनाम आइजनफलन) के भारित योग के रूप में लिखा जा सकता है, जिससे सामान्यीकृत फोरियर श्रृंखला हो सकती है।

यह भी देखें

संदर्भ

  1. Antoni Zygmund (1935) Trigonometrical Series, page 6, Mathematical Seminar, University of Warsaw
  • George B. Arfken & Hans J. Weber (2005) Mathematical Methods for Physicists, 6th edition, chapter 10: Sturm-Liouville Theory — Orthogonal Functions, Academic Press.
  • Price, Justin J. (1975). "Topics in orthogonal functions". American Mathematical Monthly. 82: 594–609. doi:10.2307/2319690.
  • Giovanni Sansone (translated by Ainsley H. Diamond) (1959) Orthogonal Functions, Interscience Publishers.


बाहरी संबंध