नियमित एकल बिंदु: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, जटिल तल में साधारण अवकल समीकरणों के सिद्धांत में <math>\Complex</math>, के अंक <math>\Complex</math> को सामान्य बिंदुओं में वर्गीकृत किया जाता है, जिस पर समीकरण के गुणांक [[विश्लेषणात्मक कार्य]] होते हैं, और एकवचन बिंदु, जिस पर कुछ गुणांक में [[विलक्षणता (गणित)]] होती है। पुनः एकवचन बिंदुओं के मध्य, 'नियमित एकवचन बिंदु' के मध्य महत्वपूर्ण अवकलकिया जाता है, जहां बीजगणितीय कार्य द्वारा समाधानों की वृद्धि (किसी भी छोटे क्षेत्र में) और 'अनियमित एकवचन बिंदु' से घिरा होता है, जहां पूर्ण समाधान समुच्चय के लिए उच्च वृद्धि वाले कार्यों की आवश्यकता होती है। उदाहरण के लिए, यह भेद होता है, तीन नियमित एकवचन बिंदुओं के साथ, अतिज्यामितीय समीकरण के मध्य, और [[बेसेल समीकरण]] जो अर्थ में [[सीमित मामला (गणित)|सीमित स्थिति]] है, लेकिन जहां विश्लेषणात्मक गुण अधिक भिन्न होते हैं।
गणित में, जटिल तल में साधारण अवकल समीकरणों के सिद्धांत में <math>\Complex</math>, के अंक <math>\Complex</math> को सामान्य बिंदुओं में वर्गीकृत किया जाता है, जिस पर समीकरण के गुणांक [[विश्लेषणात्मक कार्य]] होते हैं, और एकवचन बिंदु, जिस पर कुछ गुणांक में [[विलक्षणता (गणित)]] होती है। पुनः एकवचन बिंदुओं के मध्य, 'नियमित एकवचन बिंदु' के मध्य महत्वपूर्ण अवकल किया जाता है, जहां बीजगणितीय कार्य द्वारा समाधानों की वृद्धि (किसी भी छोटे क्षेत्र में) और 'अनियमित एकवचन बिंदु' से घिरा होता है, जहां पूर्ण समाधान समुच्चय के लिए उच्च वृद्धि वाले कार्यों की आवश्यकता होती है। उदाहरण के लिए, यह भेद होता है, तीन नियमित एकवचन बिंदुओं के साथ, अतिज्यामितीय समीकरण के मध्य, और [[बेसेल समीकरण]] जो अर्थ में [[सीमित मामला (गणित)|सीमित स्थिति]] है, किन्तु जहां विश्लेषणात्मक गुण अधिक भिन्न होते हैं।


== औपचारिक परिभाषाएँ ==
== औपचारिक परिभाषाएँ ==
अधिक त्रुटिहीन रूप से, {{mvar|n}}-वीं कोटि के साधारण रैखिक अवकल समीकरण पर विचार करें,
अधिक त्रुटिहीन रूप से, {{mvar|n}}-वीं कोटि के साधारण रैखिक अवकल समीकरण पर विचार करें,
<math display="block"> \sum_{i=0}^n p_i(z) f^{(i)} (z) = 0 </math>
<math display="block"> \sum_{i=0}^n p_i(z) f^{(i)} (z) = 0 </math>
{{math|''p''<sub>''i''</sub>(''z'')}} [[मेरोमोर्फिक फ़ंक्शन|मेरोमोर्फिक फलन]] के साथ कोई ऐसा मान सकता है,
{{math|''p''<sub>''i''</sub>(''z'')}} [[मेरोमोर्फिक फ़ंक्शन|मेरोमोर्फिक फलन]] के साथ कोई ऐसा मान हो सकता है,
<math display="block">p_n(z) = 1. </math>
<math display="block">p_n(z) = 1. </math>
यदि ऐसा नहीं है तो उपरोक्त समीकरण को {{math|''p''<sub>''n''</sub>(''z'')}} से विभाजित करना होगा यह विचार करने के लिए विलक्षण बिंदुओं को प्रस्तुत कर सकता है।
यदि ऐसा नहीं है तो उपरोक्त समीकरण को {{math|''p''<sub>''n''</sub>(''z'')}} से विभाजित करना होगा यह विचार करने के लिए विलक्षण बिंदुओं को प्रस्तुत कर सकता है।


संभव एकवचन बिंदु के रूप में [[अनंत पर बिंदु]] को सम्मिलित करने के लिए समीकरण का [[रीमैन क्षेत्र]] पर अध्ययन किया जाना चाहिए। यदि आवश्यक हो तो जटिल विमान के परिमित भाग में ∞ को स्थानांतरित करने के लिए मोबियस परिवर्तन प्रस्तावित किया जा सकता है, नीचे बेसल अवकलसमीकरण पर उदाहरण देखें।
संभव एकवचन बिंदु के रूप में [[अनंत पर बिंदु]] को सम्मिलित करने के लिए समीकरण का [[रीमैन क्षेत्र]] पर अध्ययन किया जाना चाहिए। यदि आवश्यक हो तो जटिल तल के परिमित भाग में ∞ को स्थानांतरित करने के लिए मोबियस परिवर्तन प्रस्तावित किया जा सकता है, नीचे बेसल अवकल समीकरण पर उदाहरण देखें।


तब इंडिकियल समीकरण पर आधारित फ्रोबेनियस विधि को संभावित समाधानों का शोध करने के लिए प्रस्तावित किया जा सकता है जो पावर सीरीज़ गुणा जटिल शक्तियां हैं {{math|(''z'' − ''a'')<sup>''r''</sup>}} किसी दिए गए {{mvar|a}} के निकट जटिल समतल में जहां {{mvar|r}} पूर्णांक होना आवश्यक नहीं है; यह कार्य उपस्थित हो सकता है, इसलिए, केवल शाखा से बाहर निकलने के लिए धन्यवाद या {{mvar|a}}, के निकट कुछ [[पंचर डिस्क|छिद्रित डिस्क]] की [[रीमैन सतह]] पर यह {{mvar|a}} के लिए कोई कठिनाई प्रस्तुत नहीं करता है {{mvar|a}} साधारण बिंदु ([[लाजर फुच्स]] 1866) है। कब {{mvar|a}} नियमित विलक्षण बिंदु है, जिसका परिभाषा के अनुसार तात्पर्य है
तब इंडिकियल समीकरण पर आधारित फ्रोबेनियस विधि को संभावित समाधानों का शोध करने के लिए प्रस्तावित किया जा सकता है जो शक्ति श्रेणी की गुणा जटिल शक्तियां हैं {{math|(''z'' − ''a'')<sup>''r''</sup>}} किसी दिए गए {{mvar|a}} के निकट जटिल समतल में जहां {{mvar|r}} पूर्णांक होना आवश्यक नहीं है; यह कार्य उपस्थित हो सकता है, इसलिए, केवल शाखा से बाहर निकलने के लिए धन्यवाद या {{mvar|a}}, के निकट कुछ [[पंचर डिस्क|छिद्रित डिस्क]] की [[रीमैन सतह]] पर यह {{mvar|a}} के लिए कोई कठिनाई प्रस्तुत नहीं करता है {{mvar|a}} साधारण बिंदु ([[लाजर फुच्स]] 1866) है। जब {{mvar|a}} नियमित विलक्षण बिंदु है, जिसका परिभाषा के अनुसार तात्पर्य है
<math display="block">p_{n-i}(z)</math>
<math display="block">p_{n-i}(z)</math>
अधिक से अधिक {{mvar|i}} पर {{mvar|a}} क्रम का ध्रुव (जटिल विश्लेषण) है, फ्रोबेनियस विधि को कार्य  करने और प्रदान करने के लिए भी बनाया जा सकता है, {{mvar|a}} के निकट {{mvar|n}} स्वतंत्र समाधान प्रदान कर सकता है।
अधिक से अधिक {{mvar|i}} पर {{mvar|a}} क्रम का ध्रुव (जटिल विश्लेषण) है, फ्रोबेनियस विधि को कार्य  करने और प्रदान करने के लिए भी बनाया जा सकता है, {{mvar|a}} के निकट {{mvar|n}} स्वतंत्र समाधान प्रदान कर सकता है।
Line 48: Line 48:
\left[ \frac{1}{w^4} - \frac{\alpha ^2}{w^2} \right ] f= 0
\left[ \frac{1}{w^4} - \frac{\alpha ^2}{w^2} \right ] f= 0
</math>
</math>
अब {{nowrap|<math>w = 0</math>,}}
जब {{nowrap|<math>w = 0</math>,}}
<math display="block">p_1(w) = \frac{1}{w}</math>
<math display="block">p_1(w) = \frac{1}{w}</math>
प्रथम क्रम का ध्रुव है, लेकिन
प्रथम क्रम का ध्रुव है, किन्तु
<math display="block">p_0(w) = \frac {1} {w^4} - \frac {\alpha ^2} {w^2}</math>
<math display="block">p_0(w) = \frac {1} {w^4} - \frac {\alpha ^2} {w^2}</math>
चौथे क्रम का ध्रुव है। इस प्रकार, इस समीकरण में <math>w = 0</math> अनियमित विलक्षणता है, जो ∞ पर x के अनुरूप होती है।
चौथे क्रम का ध्रुव है। इस प्रकार, इस समीकरण में <math>w = 0</math> अनियमित विलक्षणता है, जो ∞ पर x के अनुरूप होती है।

Revision as of 12:30, 17 March 2023

गणित में, जटिल तल में साधारण अवकल समीकरणों के सिद्धांत में , के अंक को सामान्य बिंदुओं में वर्गीकृत किया जाता है, जिस पर समीकरण के गुणांक विश्लेषणात्मक कार्य होते हैं, और एकवचन बिंदु, जिस पर कुछ गुणांक में विलक्षणता (गणित) होती है। पुनः एकवचन बिंदुओं के मध्य, 'नियमित एकवचन बिंदु' के मध्य महत्वपूर्ण अवकल किया जाता है, जहां बीजगणितीय कार्य द्वारा समाधानों की वृद्धि (किसी भी छोटे क्षेत्र में) और 'अनियमित एकवचन बिंदु' से घिरा होता है, जहां पूर्ण समाधान समुच्चय के लिए उच्च वृद्धि वाले कार्यों की आवश्यकता होती है। उदाहरण के लिए, यह भेद होता है, तीन नियमित एकवचन बिंदुओं के साथ, अतिज्यामितीय समीकरण के मध्य, और बेसेल समीकरण जो अर्थ में सीमित स्थिति है, किन्तु जहां विश्लेषणात्मक गुण अधिक भिन्न होते हैं।

औपचारिक परिभाषाएँ

अधिक त्रुटिहीन रूप से, n-वीं कोटि के साधारण रैखिक अवकल समीकरण पर विचार करें,

pi(z) मेरोमोर्फिक फलन के साथ कोई ऐसा मान हो सकता है,
यदि ऐसा नहीं है तो उपरोक्त समीकरण को pn(z) से विभाजित करना होगा यह विचार करने के लिए विलक्षण बिंदुओं को प्रस्तुत कर सकता है।

संभव एकवचन बिंदु के रूप में अनंत पर बिंदु को सम्मिलित करने के लिए समीकरण का रीमैन क्षेत्र पर अध्ययन किया जाना चाहिए। यदि आवश्यक हो तो जटिल तल के परिमित भाग में ∞ को स्थानांतरित करने के लिए मोबियस परिवर्तन प्रस्तावित किया जा सकता है, नीचे बेसल अवकल समीकरण पर उदाहरण देखें।

तब इंडिकियल समीकरण पर आधारित फ्रोबेनियस विधि को संभावित समाधानों का शोध करने के लिए प्रस्तावित किया जा सकता है जो शक्ति श्रेणी की गुणा जटिल शक्तियां हैं (za)r किसी दिए गए a के निकट जटिल समतल में जहां r पूर्णांक होना आवश्यक नहीं है; यह कार्य उपस्थित हो सकता है, इसलिए, केवल शाखा से बाहर निकलने के लिए धन्यवाद या a, के निकट कुछ छिद्रित डिस्क की रीमैन सतह पर यह a के लिए कोई कठिनाई प्रस्तुत नहीं करता है a साधारण बिंदु (लाजर फुच्स 1866) है। जब a नियमित विलक्षण बिंदु है, जिसका परिभाषा के अनुसार तात्पर्य है

अधिक से अधिक i पर a क्रम का ध्रुव (जटिल विश्लेषण) है, फ्रोबेनियस विधि को कार्य करने और प्रदान करने के लिए भी बनाया जा सकता है, a के निकट n स्वतंत्र समाधान प्रदान कर सकता है।

अन्यथा बिंदु a अनियमित विलक्षणता है। उस स्थिति में विश्लेषणात्मक निरंतरता द्वारा समाधानों से संबंधित मोनोड्रोमी समूह के निकट सामान्य रूप से कहने के लिए अल्प है, और उनके स्पर्शोन्मुख विस्तार के संदर्भ में समाधानों का अध्ययन करना कठिन है। अनियमित विलक्षणता की अनियमितता को पोंकारे रैंक (अर्सकोट (1995)) द्वारा मापा जाता है।

नियमितता की स्थिति न्यूटन बहुभुज स्थिति है, इस अर्थ में कि अनुमत ध्रुव क्षेत्र में हैं, जब i के विरुद्ध प्लॉट किया जाता है, जो अक्षों से 45° पर रेखा से घिरा हुआ है।

साधारण अवकल समीकरण जिसके केवल एकवचन बिंदु, जिसमें अनंत पर बिंदु भी सम्मिलित है, नियमित एकवचन बिंदु होते हैं, फ्यूचियन साधारण अवकल समीकरण कहलाते हैं।

दूसरे क्रम के अवकल समीकरणों के उदाहरण

इस स्थिति में उपरोक्त समीकरण को अल्प कर दिया गया है:

निम्नलिखित स्थितियों को भिन्न करता है:

  • बिंदु a सामान्य बिंदु है p1(x) और p0(x) x = a पर विश्लेषणात्मक हैं।
  • बिंदु a नियमित विलक्षण बिंदु है यदि p1(x) में x = a पर क्रम 1 तक ध्रुव है और p0 में x = a पर क्रम 2 तक का ध्रुव है।
  • अन्यथा बिंदु a अनियमित विलक्षण बिंदु है।

हम परिक्षण कर सकते हैं कि प्रतिस्थापन का उपयोग करके अनंत पर अनियमित एकवचन बिंदु है या नहीं और संबंध:

हम इस प्रकार समीकरण को w में समीकरण में परिवर्तित सकते हैं, और परिक्षण कर सकते हैं कि w = 0 पर क्या होता है। यदि और बहुपद के भागफल हैं, तो अनंत x पर अनियमित एकवचन बिंदु होगा जब तक कि बहुपद के भाजक में न हो बहुपद की घात उसके अंश और हर के घात से अल्प से अल्प अधिक होती है इसके अंश की डिग्री से अल्प से अल्प दो डिग्री अधिक है।

नीचे सूचीबद्ध गणितीय भौतिकी के सामान्य अवकल समीकरणों से अनेक उदाहरण हैं जिनमें एकवचन बिंदु और ज्ञात समाधान हैं।

बेसेल अवकल समीकरण

यह द्वितीय कोटि का साधारण अवकल समीकरण है। यह बेलनाकार निर्देशांक में लैपलेस के समीकरण के समाधान में पाया जाता है:

इच्छानुसार वास्तविक या जटिल संख्या α (बेसेल समारोह का क्रम) के लिए है। सबसे सामान्य और महत्वपूर्ण विशेष स्थिति है जहां α पूर्णांक n है।

इस समीकरण को x2 से विभाजित करने पर प्राप्त होता है:

इस स्थिति में p1(x) = 1/x में का x = 0 पर प्रथम क्रम का ध्रुव है। जब α ≠ 0, p0(x) = (1 − α2/x2) का x = 0 पर दूसरे क्रम का ध्रुव है। इस प्रकार इस समीकरण की 0 पर नियमित विलक्षणता है।

यह देखने के लिए कि क्या होता है जब x → ∞ उदाहरण के लिए, मोबियस रूपांतरण का उपयोग करना पड़ता है, बीजगणित करने के पश्चात:

जब ,
प्रथम क्रम का ध्रुव है, किन्तु
चौथे क्रम का ध्रुव है। इस प्रकार, इस समीकरण में अनियमित विलक्षणता है, जो ∞ पर x के अनुरूप होती है।

लीजेंड्रे अवकल समीकरण

यह द्वितीय कोटि का साधारण अवकल समीकरण है। यह गोलीय निर्देशांकों में लाप्लास के समीकरण के समाधान में पाया जाता है:

वर्ग कोष्ठक खोलने से मिलता है:
और (1 − x2) से विभाजित करने पर:
इस अवकल समीकरण के ±1 और ∞ नियमित एकवचन बिंदु हैं।

हर्मिट अवकल समीकरण

आयामी समय स्वतंत्र श्रोडिंगर समीकरण का समाधान करने में इस साधारण दूसरे क्रम के अवकल समीकरण का सामना करना पड़ता है

क्वांटम हार्मोनिक ऑसिलेटर के लिए, इस स्थिति में स्थितिज ऊर्जा V(x) है:
यह निम्न सामान्य द्वितीय क्रम अवकल समीकरण की ओर जाता है:
इस अवकल समीकरण में ∞ पर अनियमित विलक्षणता है। इसके समाधान हर्मिट बहुपद हैं।

अतिज्यामितीय समीकरण

समीकरण के रूप में परिभाषित किया जा सकता है

दोनों पक्षों को z(1 − z) से विभाजित करने पर प्राप्त होता है:
इस अवकल समीकरण के 0, 1 और ∞ नियमित एकवचन बिंदु हैं। समाधान अतिज्यामितीय फलन है।

संदर्भ