माध्य गति प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{distinguish|मर्टन का नियम}}
{{distinguish|मर्टन का नियम}}
औसत गति प्रमेय, जिसे समान त्वरण के मर्टन नियम के रूप में भी जाना जाता है, [1] की खोज 14 वीं शताब्दी में मेर्टन कॉलेज के ऑक्सफोर्ड कैलकुलेटर द्वारा की गई थी, और निकोल ओरेसमे द्वारा सिद्ध की गई थी। इसमें कहा गया है कि एक समान रूप से त्वरित शरीर (विराम से शुरू होता है, यानी शून्य प्रारंभिक वेग) एक समान गति के साथ समान दूरी की यात्रा करता है जिसकी गति त्वरित शरीर के अंतिम वेग की आधी होती है। [2]
औसत गति प्रमेय, जिसे समान त्वरण के मर्टन नियम के रूप में भी जाना जाता है, [1] की खोज 14 वीं शताब्दी में मेर्टन कॉलेज के ऑक्सफोर्ड कैलकुलेटर द्वारा की गई थी, और निकोल ओरेसमे द्वारा सिद्ध की गई थी। इसमें कहा गया है कि एक समान रूप से त्वरित पिण्ड (विराम से प्रांरम्भ होता है, यानी शून्य प्रारंभिक वेग) एक समान गति के साथ समान दूरी की यात्रा करता है जिसकी गति त्वरित पिण्ड के अंतिम वेग की आधी होती है। [2]
[[File:MertonRuleOresme.jpg|thumb|ऑक्सफोर्ड कैलकुलेटर्स के मर्टन रूल ऑफ यूनिफॉर्म एक्सेलेरेशन, या मीन स्पीड थ्योरम का ओरेस्मे का ज्यामितीय सत्यापन।]]
[[File:MertonRuleOresme.jpg|thumb|ऑक्सफोर्ड कैलकुलेटर्स के मर्टन रूल ऑफ यूनिफॉर्म एक्सेलेरेशन, या मीन स्पीड थ्योरम का ओरेस्मे का ज्यामितीय सत्यापन।]]
[[File:Galileo-1638-173.jpg|thumb|upright|समान रूप से भिन्न गति के मामले में अंतरिक्ष के नियम का [[गैलीलियो]] का प्रदर्शन। यह वही प्रदर्शन है जो [[Oresme]] ने सदियों पहले किया था।]]औसत गति प्रमेय, जिसे [[समान त्वरण]] के मेर्टन नियम के रूप में भी जाना जाता है,<ref>[[Edward Grant]] ''A Source Book in Medieval Science'' (1974) Vol. 1, p. 252.</ref> 14 वीं शताब्दी में [[मर्टन कॉलेज]] के [[ऑक्सफोर्ड कैलकुलेटर]] द्वारा खोजा गया था, और [[निकोल ओरेसमे]] द्वारा सिद्ध किया गया था। इसमें कहा गया है कि एक समान रूप से त्वरित शरीर (आराम से शुरू होता है, यानी शून्य प्रारंभिक वेग) गति के साथ एक शरीर के समान दूरी की यात्रा करता है जिसकी गति त्वरित शरीर के अंतिम वेग की आधी होती है।<ref>{{cite book|first=Carl B. |last=Boyer |author-link=Carl Benjamin Boyer |title=कलन का इतिहास और इसका वैचारिक विकास|publisher=Dover |year=1959 |isbn=978-0-486-60509-8 |chapter-url=https://books.google.com/books?id=KLQSHUW8FnUC&pg=PA79  |chapter=III. Medieval Contributions |pages=79–89 |url=https://books.google.com/books?id=KLQSHUW8FnUC}}</ref>
[[File:Galileo-1638-173.jpg|thumb|upright|समान रूप से भिन्न गति के मामले में अंतरिक्ष के नियम का [[गैलीलियो]] का प्रदर्शन। यह वही प्रदर्शन है जो [[Oresme]] ने सदियों पहले किया था।]]औसत गति प्रमेय, जिसे [[समान त्वरण]] के मेर्टन नियम के रूप में भी जाना जाता है,<ref>[[Edward Grant]] ''A Source Book in Medieval Science'' (1974) Vol. 1, p. 252.</ref> 14 वीं शताब्दी में [[मर्टन कॉलेज]] के [[ऑक्सफोर्ड कैलकुलेटर]] द्वारा खोजा गया था, और [[निकोल ओरेसमे]] द्वारा सिद्ध किया गया था। इसमें कहा गया है कि एक समान रूप से त्वरित पिण्ड (आराम से प्रांरम्भ होता है, यानी शून्य प्रारंभिक वेग) गति के साथ एक शरीर के समान दूरी की यात्रा करता है जिसकी गति त्वरित पिण्ड के अंतिम वेग की आधी होती है।<ref>{{cite book|first=Carl B. |last=Boyer |author-link=Carl Benjamin Boyer |title=कलन का इतिहास और इसका वैचारिक विकास|publisher=Dover |year=1959 |isbn=978-0-486-60509-8 |chapter-url=https://books.google.com/books?id=KLQSHUW8FnUC&pg=PA79  |chapter=III. Medieval Contributions |pages=79–89 |url=https://books.google.com/books?id=KLQSHUW8FnUC}}</ref>
== विवरण ==
ओरेस्मे ने सामान्यीकृत मर्टन नियम के लिए एक ज्यामितीय सत्यापन प्रदान किया, जिसे हम आज के रूप में व्यक्त करेंगे <math>s = \frac{1}{2}(v_0 + v_{\rm f})t</math> (यानी, तय की गई दूरी प्रारंभिक के योग के आधे के बराबर है <math>v_0</math> और अंतिम <math>v_{\rm f}</math> वेग, बीते हुए समय से गुणा <math>t</math>), एक ट्रैपेज़ॉयड के क्षेत्र को ढूंढकर।<ref>C. H. Edwards, Jr., ''The Historical Development of the Calculus'' (1979) pp. 88-89.</ref> [[बेबीलोनियन खगोल विज्ञान]] (350-50 ईसा पूर्व) में उपयोग की जाने वाली मिट्टी की गोलियां बृहस्पति की स्थिति और [[विस्थापन (वेक्टर)]] की गणना के लिए ट्रैपेज़ॉइड प्रक्रियाएं पेश करती हैं और 14 शताब्दियों तक प्रमेय का अनुमान लगाती हैं।<ref>{{cite journal |last=Ossendrijver |first=Mathieu |date=29 Jan 2016 |title=प्राचीन बेबीलोनियन खगोलविदों ने समय-वेग ग्राफ के तहत क्षेत्र से बृहस्पति की स्थिति की गणना की|journal=Science |volume=351 |issue=6272 |pages=482–484 |doi=10.1126/science.aad8085 |bibcode = 2016Sci...351..482O |pmid=26823423|s2cid=206644971 }}</ref>


 
मध्ययुगीन वैज्ञानिकों ने इस प्रमेय का प्रदर्शन किया - गिरने वाले पिंडों के कानून की नींव - गैलीलियो से बहुत पहले, जिन्हें सामान्यतः इसका श्रेय दिया जाता है। ओरेस्मे का प्रमाण एक ग्राफिकल प्रतिनिधित्व के साथ एक गणितीय कार्य के रूप में एक भौतिक समस्या के मॉडलीकरण का पहला ज्ञात उदाहरण है, साथ ही साथ[[ अभिन्न | अभिन्न]] का एक प्रारंभिक रूप है, इस प्रकार कलन की नींव रखता है। गणितीय भौतिक विज्ञानी और विज्ञान के इतिहासकार [[क्लिफर्ड ट्रूसडेल]] ने लिखा:<ref>Clifford Truesdell, ''Essays in The History of Mechanics'', (Springer-Verlag, New York, 1968), p. 30</ref>
== विवरण ==
ओरेस्मे ने सामान्यीकृत मर्टन नियम के लिए एक ज्यामितीय सत्यापन प्रदान किया, जिसे हम आज के रूप में व्यक्त करेंगे <math>s = \frac{1}{2}(v_0 + v_{\rm f})t</math> (यानी, तय की गई दूरी प्रारंभिक के योग के आधे के बराबर है <math>v_0</math> और अंतिम <math>v_{\rm f}</math> वेग, बीते हुए समय से गुणा <math>t</math>), एक ट्रैपेज़ॉयड के क्षेत्र को ढूंढकर।<ref>C. H. Edwards, Jr., ''The Historical Development of the Calculus'' (1979) pp. 88-89.</ref> [[बेबीलोनियन खगोल विज्ञान]] (350-50 ईसा पूर्व) में इस्तेमाल की जाने वाली मिट्टी की गोलियां बृहस्पति की स्थिति और [[विस्थापन (वेक्टर)]] की गणना के लिए ट्रैपेज़ॉइड प्रक्रियाएं पेश करती हैं और 14 शताब्दियों तक प्रमेय का अनुमान लगाती हैं।<ref>{{cite journal |last=Ossendrijver |first=Mathieu |date=29 Jan 2016 |title=प्राचीन बेबीलोनियन खगोलविदों ने समय-वेग ग्राफ के तहत क्षेत्र से बृहस्पति की स्थिति की गणना की|journal=Science |volume=351 |issue=6272 |pages=482–484 |doi=10.1126/science.aad8085 |bibcode = 2016Sci...351..482O |pmid=26823423|s2cid=206644971 }}</ref>
मध्ययुगीन वैज्ञानिकों ने इस प्रमेय का प्रदर्शन किया - गिरने वाले पिंडों के कानून की नींव - गैलीलियो से बहुत पहले, जिन्हें आमतौर पर इसका श्रेय दिया जाता है। ओरेस्मे का प्रमाण एक ग्राफिकल प्रतिनिधित्व के साथ एक गणितीय कार्य के रूप में एक भौतिक समस्या के मॉडलीकरण का पहला ज्ञात उदाहरण है, साथ ही साथ [[ अभिन्न ]] का एक प्रारंभिक रूप है, इस प्रकार कलन की नींव रखता है। गणितीय भौतिक विज्ञानी और विज्ञान के इतिहासकार [[क्लिफर्ड ट्रूसडेल]] ने लिखा:<ref>Clifford Truesdell, ''Essays in The History of Mechanics'', (Springer-Verlag, New York, 1968), p. 30</ref>


{{blockquote|अब प्रकाशित स्रोत हमें विवाद से परे साबित करते हैं, कि [[समान रूप से त्वरित गति]] के मुख्य [[कीनेमेटिकल]] गुण, अभी भी भौतिकी ग्रंथों द्वारा गैलीलियो को जिम्मेदार ठहराया गया था, मर्टन कॉलेज के विद्वानों द्वारा खोजा और सिद्ध किया गया था। .. सिद्धांत रूप में, यूनानी भौतिकी के गुणों को, कम से कम गतियों के लिए, उन संख्यात्मक मात्राओं द्वारा प्रतिस्थापित किया गया था, जिन्होंने तब से पश्चिमी विज्ञान पर शासन किया है। काम जल्दी से [[फ्रांस]], [[इटली]], और [[यूरोप]] के अन्य भागों में फैल गया। लगभग तुरंत ही, [[जियोवन्नी डी कैसली|जियोवन्नी डी कैसले]] और [[निकोल ओरेस्मे]] ने पाया कि ज्यामितीय [[फ़ंक्शन का ग्राफ़|ग्राफ़]] द्वारा परिणामों का प्रतिनिधित्व कैसे किया जाता है, [[ज्यामिति]] और के बीच संबंध का परिचय देते हुए भौतिक दुनिया जो पश्चिमी विचार की दूसरी विशिष्ट आदत बन गई ...}}
{{blockquote|अब प्रकाशित स्रोत हमें विवाद से परे साबित करते हैं, कि [[समान रूप से त्वरित गति]] के मुख्य [[कीनेमेटिकल]] गुण, अभी भी भौतिकी ग्रंथों द्वारा गैलीलियो को जिम्मेदार ठहराया गया था, मर्टन कॉलेज के विद्वानों द्वारा खोजा और सिद्ध किया गया था। .. सिद्धांत रूप में, यूनानी भौतिकी के गुणों को, कम से कम गतियों के लिए, उन संख्यात्मक मात्राओं द्वारा प्रतिस्थापित किया गया था, जिन्होंने तब से पश्चिमी विज्ञान पर शासन किया है। काम जल्दी से [[फ्रांस]], [[इटली]], और [[यूरोप]] के अन्य भागों में फैल गया। लगभग तुरंत ही, [[जियोवन्नी डी कैसली|जियोवन्नी डी कैसले]] और [[निकोल ओरेस्मे]] ने पाया कि ज्यामितीय [[फ़ंक्शन का ग्राफ़|ग्राफ़]] द्वारा परिणामों का प्रतिनिधित्व कैसे किया जाता है, [[ज्यामिति]] और के बीच संबंध का परिचय देते हुए भौतिक दुनिया जो पश्चिमी विचार की दूसरी विशिष्ट आदत बन गई ...}}
Line 19: Line 18:
==टिप्पणियाँ==
==टिप्पणियाँ==
{{Reflist}}
{{Reflist}}
== अग्रिम पठन ==
== अग्रिम पठन ==
* Sylla, Edith (1982) "The Oxford Calculators", in Kretzmann, Kenny & Pinborg (edd.), ''The Cambridge History of Later Medieval Philosophy''.
* Sylla, Edith (1982) "The Oxford Calculators", in Kretzmann, Kenny & Pinborg (edd.), ''The Cambridge History of Later Medieval Philosophy''.

Revision as of 18:59, 18 March 2023

औसत गति प्रमेय, जिसे समान त्वरण के मर्टन नियम के रूप में भी जाना जाता है, [1] की खोज 14 वीं शताब्दी में मेर्टन कॉलेज के ऑक्सफोर्ड कैलकुलेटर द्वारा की गई थी, और निकोल ओरेसमे द्वारा सिद्ध की गई थी। इसमें कहा गया है कि एक समान रूप से त्वरित पिण्ड (विराम से प्रांरम्भ होता है, यानी शून्य प्रारंभिक वेग) एक समान गति के साथ समान दूरी की यात्रा करता है जिसकी गति त्वरित पिण्ड के अंतिम वेग की आधी होती है। [2]

ऑक्सफोर्ड कैलकुलेटर्स के मर्टन रूल ऑफ यूनिफॉर्म एक्सेलेरेशन, या मीन स्पीड थ्योरम का ओरेस्मे का ज्यामितीय सत्यापन।
समान रूप से भिन्न गति के मामले में अंतरिक्ष के नियम का गैलीलियो का प्रदर्शन। यह वही प्रदर्शन है जो Oresme ने सदियों पहले किया था।

औसत गति प्रमेय, जिसे समान त्वरण के मेर्टन नियम के रूप में भी जाना जाता है,[1] 14 वीं शताब्दी में मर्टन कॉलेज के ऑक्सफोर्ड कैलकुलेटर द्वारा खोजा गया था, और निकोल ओरेसमे द्वारा सिद्ध किया गया था। इसमें कहा गया है कि एक समान रूप से त्वरित पिण्ड (आराम से प्रांरम्भ होता है, यानी शून्य प्रारंभिक वेग) गति के साथ एक शरीर के समान दूरी की यात्रा करता है जिसकी गति त्वरित पिण्ड के अंतिम वेग की आधी होती है।[2]

विवरण

ओरेस्मे ने सामान्यीकृत मर्टन नियम के लिए एक ज्यामितीय सत्यापन प्रदान किया, जिसे हम आज के रूप में व्यक्त करेंगे (यानी, तय की गई दूरी प्रारंभिक के योग के आधे के बराबर है और अंतिम वेग, बीते हुए समय से गुणा ), एक ट्रैपेज़ॉयड के क्षेत्र को ढूंढकर।[3] बेबीलोनियन खगोल विज्ञान (350-50 ईसा पूर्व) में उपयोग की जाने वाली मिट्टी की गोलियां बृहस्पति की स्थिति और विस्थापन (वेक्टर) की गणना के लिए ट्रैपेज़ॉइड प्रक्रियाएं पेश करती हैं और 14 शताब्दियों तक प्रमेय का अनुमान लगाती हैं।[4]

मध्ययुगीन वैज्ञानिकों ने इस प्रमेय का प्रदर्शन किया - गिरने वाले पिंडों के कानून की नींव - गैलीलियो से बहुत पहले, जिन्हें सामान्यतः इसका श्रेय दिया जाता है। ओरेस्मे का प्रमाण एक ग्राफिकल प्रतिनिधित्व के साथ एक गणितीय कार्य के रूप में एक भौतिक समस्या के मॉडलीकरण का पहला ज्ञात उदाहरण है, साथ ही साथ अभिन्न का एक प्रारंभिक रूप है, इस प्रकार कलन की नींव रखता है। गणितीय भौतिक विज्ञानी और विज्ञान के इतिहासकार क्लिफर्ड ट्रूसडेल ने लिखा:[5]

अब प्रकाशित स्रोत हमें विवाद से परे साबित करते हैं, कि समान रूप से त्वरित गति के मुख्य कीनेमेटिकल गुण, अभी भी भौतिकी ग्रंथों द्वारा गैलीलियो को जिम्मेदार ठहराया गया था, मर्टन कॉलेज के विद्वानों द्वारा खोजा और सिद्ध किया गया था। .. सिद्धांत रूप में, यूनानी भौतिकी के गुणों को, कम से कम गतियों के लिए, उन संख्यात्मक मात्राओं द्वारा प्रतिस्थापित किया गया था, जिन्होंने तब से पश्चिमी विज्ञान पर शासन किया है। काम जल्दी से फ्रांस, इटली, और यूरोप के अन्य भागों में फैल गया। लगभग तुरंत ही, जियोवन्नी डी कैसले और निकोल ओरेस्मे ने पाया कि ज्यामितीय ग्राफ़ द्वारा परिणामों का प्रतिनिधित्व कैसे किया जाता है, ज्यामिति और के बीच संबंध का परिचय देते हुए भौतिक दुनिया जो पश्चिमी विचार की दूसरी विशिष्ट आदत बन गई ...

प्रमेय समान त्वरण के लिए अधिक सामान्य कीनेमेटीक्स समीकरणों का एक विशेष मामला है।

यह भी देखें

टिप्पणियाँ

  1. Edward Grant A Source Book in Medieval Science (1974) Vol. 1, p. 252.
  2. Boyer, Carl B. (1959). "III. Medieval Contributions". कलन का इतिहास और इसका वैचारिक विकास. Dover. pp. 79–89. ISBN 978-0-486-60509-8.
  3. C. H. Edwards, Jr., The Historical Development of the Calculus (1979) pp. 88-89.
  4. Ossendrijver, Mathieu (29 Jan 2016). "प्राचीन बेबीलोनियन खगोलविदों ने समय-वेग ग्राफ के तहत क्षेत्र से बृहस्पति की स्थिति की गणना की". Science. 351 (6272): 482–484. Bibcode:2016Sci...351..482O. doi:10.1126/science.aad8085. PMID 26823423. S2CID 206644971.
  5. Clifford Truesdell, Essays in The History of Mechanics, (Springer-Verlag, New York, 1968), p. 30

अग्रिम पठन

  • Sylla, Edith (1982) "The Oxford Calculators", in Kretzmann, Kenny & Pinborg (edd.), The Cambridge History of Later Medieval Philosophy.
  • Longeway, John (2003) "William Heytesbury", in The Stanford Encyclopedia of Philosophy.