बीजगणितीय समापन: Difference between revisions
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
<math>S = \{ f_{\lambda} | \lambda \in \Lambda\}</math> K[x] में सभी मोनिक इरेड्यूसिबल बहुपदों का समुच्चय है। प्रत्येक के लिए <math>f_{\lambda} \in S</math>, नए चर प्रस्तुत <math>u_{\lambda,1},\ldots,u_{\lambda,d}</math> करें, जहाँ <math>d = {\rm degree}(f_{\lambda})</math> I R द्वारा उत्पन्न K के ऊपर बहुपद वलय <math>u_{\lambda,i}</math> है I सभी के लिए <math>\lambda \in \Lambda</math> और सभी <math>i \leq {\rm degree}(f_{\lambda})</math> है I | <math>S = \{ f_{\lambda} | \lambda \in \Lambda\}</math> K[x] में सभी मोनिक इरेड्यूसिबल बहुपदों का समुच्चय है। प्रत्येक के लिए <math>f_{\lambda} \in S</math>, नए चर प्रस्तुत <math>u_{\lambda,1},\ldots,u_{\lambda,d}</math> करें, जहाँ <math>d = {\rm degree}(f_{\lambda})</math> I R द्वारा उत्पन्न K के ऊपर बहुपद वलय <math>u_{\lambda,i}</math> है I सभी के लिए <math>\lambda \in \Lambda</math> और सभी <math>i \leq {\rm degree}(f_{\lambda})</math> है I | ||
: <math>f_{\lambda} - \prod_{i=1}^d (x-u_{\lambda,i}) = \sum_{j=0}^{d-1} r_{\lambda,j} \cdot x^j \in R[x]</math> | : <math>f_{\lambda} - \prod_{i=1}^d (x-u_{\lambda,i}) = \sum_{j=0}^{d-1} r_{\lambda,j} \cdot x^j \in R[x]</math> | ||
<math>r_{\lambda,j} \in R</math> द्वारा उत्पन्न R में आदर्श <math>r_{\lambda,j}</math> हो, चूँकि I, R से पूर्ण रूप से छोटा है I ज़ोर्न लेम्मा का तात्पर्य है, कि R में अधिकतम आदर्श M उपस्तिथ है, जिसमें I सम्मलित होता है। फील्ड ''K''<sub>1</sub>=''R''/''M'' में वह गुण है जो प्रत्येक बहुपद <math>f_{\lambda}</math> में गुणांक के साथ के उत्पाद के रूप में विभाजित होता है I <math>x-(u_{\lambda,i} + M),</math> और इसलिए ''K''<sub>1</sub>में सभी मूल हैं I ''K''<sub>1</sub> का विस्तार ''K''<sub>2</sub> निर्मित किया जा सकता है। इन सभी विस्तारों का मिलन K का बीजगणितीय समापन है, क्योंकि इस नए क्षेत्र में गुणांक वाले किसी भी बहुपद के गुणांक कुछ ''K''<sub>n</sub> में होते हैं। पर्याप्त रूप से बड़े n के साथ, और इसकी जड़ें K में हैं<sub>n+1</sub>, और इसलिए संघ में ही। | |||
ज़ोर्न लेम्मा का तात्पर्य है कि R में अधिकतम आदर्श M | |||
फील्ड | |||
यह उसी रेखा के साथ दिखाया जा सकता है कि के [एक्स] के किसी भी उपसमुच्चय एस के लिए, के पर एस के [[विभाजन क्षेत्र]] मौजूद हैं। | यह उसी रेखा के साथ दिखाया जा सकता है कि के [एक्स] के किसी भी उपसमुच्चय एस के लिए, के पर एस के [[विभाजन क्षेत्र]] मौजूद हैं। |
Revision as of 21:10, 16 March 2023
गणित में, अमूर्त बीजगणित, क्षेत्र K का बीजगणितीय समापन K का बीजगणितीय विस्तार है, जो बीजगणितीय रूप से बंद क्षेत्र है। यह गणित में कई समापन में से है।
ज़ोर्न के लेम्मा[1][2][3] या अल्ट्राफिल्टर लेम्मा,[4][5] का उपयोग करते हुए, यह दिखाया जा सकता है कि बीजगणितीय समापन और विखंडन क्षेत्रों का अस्तित्व, और क्षेत्र K का बीजगणितीय समापन समरूपता तक अद्वितीय है, जो K के प्रत्येक सदस्य का निश्चित बिंदु होता है। इस आवश्यक विशिष्टता के कारण, हम प्रायः K के बीजगणितीय समापन के अतिरिक्त K के बीजगणितीय समापन की चर्चा करते हैं।
क्षेत्र K के बीजगणितीय समापन को K के सबसे बड़े बीजगणितीय विस्तार के रूप में माना जा सकता है। इसे देखने के लिए, ध्यान दें कि यदि L, K का कोई बीजगणितीय विस्तार है, तो L का बीजगणितीय संवरण भी K का बीजगणितीय संवरण है, और इसलिए L, K के बीजगणितीय संवरण में समाहित होता है। K का बीजगणितीय समापन भी छोटे बीजगणितीय रूप से समापन क्षेत्र है, जिसमें K है, क्योंकि यदि M कोई बीजगणितीय रूप से समापन क्षेत्र है, जिसमें K है, तो M के तत्व जो बीजगणितीय विस्तार K हैं, K का बीजगणितीय समापन बनाते हैं।
क्षेत्र K के बीजगणितीय समापन में K के समान ही कार्डिनल संख्या होती है I यदि K अनंत और परिमित है तो गणनात्मक रूप से अनंत है।[3]
उदाहरण
- बीजगणित का मौलिक प्रमेय बताता है कि वास्तविक संख्याओं के क्षेत्र का बीजगणितीय समापन जटिल संख्याओं का क्षेत्र है।
- परिमेय संख्याओं के क्षेत्र का बीजगणितीय समापन बीजगणितीय संख्याओं का क्षेत्र है।
- संमिश्र संख्याओं के अंदर कई गणनीय बीजगणितीय रूप से समापन क्षेत्र हैं, और बीजगणितीय संख्याओं के क्षेत्र को कठोरता से समाहित करते हैं; ये परिमेय संख्याओं के अनुवांशिक विस्तार के बीजगणितीय समापन हैं, उदा:- Q(π) का बीजगणितीय समापन हैं I
- अभाज्य संख्या शक्ति क्रम q के परिमित क्षेत्र के लिए, बीजगणितीय समापन गणनीय रूप से अनंत क्षेत्र है, जिसमें क्रम qn के क्षेत्र की प्रति होती है I प्रत्येक सकारात्मक पूर्णांक n के लिए इन प्रतियों का मिलन है।[6]
बीजगणितीय समापन और विभाजन क्षेत्रों का अस्तित्व
K[x] में सभी मोनिक इरेड्यूसिबल बहुपदों का समुच्चय है। प्रत्येक के लिए , नए चर प्रस्तुत करें, जहाँ I R द्वारा उत्पन्न K के ऊपर बहुपद वलय है I सभी के लिए और सभी है I
द्वारा उत्पन्न R में आदर्श हो, चूँकि I, R से पूर्ण रूप से छोटा है I ज़ोर्न लेम्मा का तात्पर्य है, कि R में अधिकतम आदर्श M उपस्तिथ है, जिसमें I सम्मलित होता है। फील्ड K1=R/M में वह गुण है जो प्रत्येक बहुपद में गुणांक के साथ के उत्पाद के रूप में विभाजित होता है I और इसलिए K1में सभी मूल हैं I K1 का विस्तार K2 निर्मित किया जा सकता है। इन सभी विस्तारों का मिलन K का बीजगणितीय समापन है, क्योंकि इस नए क्षेत्र में गुणांक वाले किसी भी बहुपद के गुणांक कुछ Kn में होते हैं। पर्याप्त रूप से बड़े n के साथ, और इसकी जड़ें K में हैंn+1, और इसलिए संघ में ही।
यह उसी रेखा के साथ दिखाया जा सकता है कि के [एक्स] के किसी भी उपसमुच्चय एस के लिए, के पर एस के विभाजन क्षेत्र मौजूद हैं।
वियोज्य क्लोजर
एक बीजगणितीय समापन के alg में अद्वितीय वियोज्य एक्सटेंशन K होता हैK का sep जिसमें K के भीतर K के सभी (बीजीय) वियोज्य विस्तार शामिल हैंअलग. इस उप-विस्तार को K का 'वियोज्य समापन' कहा जाता है। चूंकि एक वियोज्य विस्तार का वियोज्य विस्तार फिर से वियोज्य है, K का कोई परिमित वियोज्य विस्तार नहीं हैsep, of Degree > 1. इसे दूसरे तरीके से कहते हुए, K अलग-अलग बंद बीजगणितीय विस्तार क्षेत्र में समाहित है। यह अद्वितीय है (समरूपता तक)।[7] वियोज्य क्लोजर पूर्ण बीजगणितीय क्लोजर है यदि और केवल यदि K एक पूर्ण क्षेत्र है। उदाहरण के लिए, यदि K अभिलाक्षणिक p का क्षेत्र है और यदि X, K पर पारलौकिक है, एक गैर-वियोज्य बीजगणितीय क्षेत्र विस्तार है।
सामान्य तौर पर, K का पूर्ण Galois समूह K का Galois समूह हैसितम्बर ओवर के.[8]
यह भी देखें
- बीजगणितीय रूप से समापन क्षेत्र
- बीजगणितीय विस्तार
- प्यूसेक्स विस्तार
- पूर्ण क्षेत्र
संदर्भ
- ↑ McCarthy (1991) p.21
- ↑ M. F. Atiyah and I. G. Macdonald (1969). Introduction to commutative algebra. Addison-Wesley publishing Company. pp. 11–12.
- ↑ 3.0 3.1 Kaplansky (1972) pp.74-76
- ↑ Banaschewski, Bernhard (1992), "Algebraic closure without choice.", Z. Math. Logik Grundlagen Math., 38 (4): 383–385, doi:10.1002/malq.19920380136, Zbl 0739.03027
- ↑ Mathoverflow discussion
- ↑ Brawley, Joel V.; Schnibben, George E. (1989), "2.2 The Algebraic Closure of a Finite Field", Infinite Algebraic Extensions of Finite Fields, Contemporary Mathematics, vol. 95, American Mathematical Society, pp. 22–23, ISBN 978-0-8218-5428-0, Zbl 0674.12009.
- ↑ McCarthy (1991) p.22
- ↑ Fried, Michael D.; Jarden, Moshe (2008). फील्ड अंकगणित. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 11 (3rd ed.). Springer-Verlag. p. 12. ISBN 978-3-540-77269-9. Zbl 1145.12001.
- Kaplansky, Irving (1972). Fields and rings. Chicago lectures in mathematics (Second ed.). University of Chicago Press. ISBN 0-226-42451-0. Zbl 1001.16500.
- McCarthy, Paul J. (1991). Algebraic extensions of fields (Corrected reprint of the 2nd ed.). New York: Dover Publications. Zbl 0768.12001.