फेज-शिफ्ट दोलक: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
फेज-शिफ्ट दोलक [[रैखिक सर्किट|रैखिक]] [[इलेक्ट्रॉनिक थरथरानवाला]] सर्किट है जो [[साइन लहर]] आउटपुट उत्पन्न करता है। इसमें [[उलटा एम्पलीफायर]] तत्व होता है जैसे कि एक [[ट्रांजिस्टर]] या ऑप एम्प | फेज-शिफ्ट दोलक [[रैखिक सर्किट|रैखिक]] [[इलेक्ट्रॉनिक थरथरानवाला]] सर्किट है जो [[साइन लहर]] आउटपुट उत्पन्न करता है। इसमें [[उलटा एम्पलीफायर]] तत्व होता है जैसे कि एक [[ट्रांजिस्टर]] या ऑप एम्प जिसका आउटपुट फेज-शिफ्ट नेटवर्क के माध्यम से इसके इनपुट पर वापस आ जाता है जिसमें एक [[सीढ़ी नेटवर्क]] में प्रतिरोधक और[[ संधारित्र | संधारित्र होते हैं]]। फीडबैक नेटवर्क [[सकारात्मक [[प्रतिक्रिया]]]] देने के लिए दोलन आवृत्ति पर 180 डिग्री से एम्पलीफायर आउटपुट के चरण (तरंगों) को 'शिफ्ट' करता है।<ref>[http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/oscphas.html hyperphysics.phy-astr.gsu.edu]</ref> फेज-शिफ्ट दोलक्स का उपयोग अक्सर [[ ऑडियो आवृत्ति ]] पर [[ऑडियो थरथरानवाला]] के रूप में किया जाता है। | ||
फ़िल्टर चरण परिवर्तन उत्पन्न करता है जो [[आवृत्ति]] के साथ बढ़ता है। इसमें उच्च आवृत्तियों पर 180 डिग्री से अधिक की अधिकतम फेज शिफ्ट होनी चाहिए ताकि वांछित दोलन आवृत्ति पर फेज शिफ्ट 180 डिग्री हो सके। सबसे आम चरण-शिफ्ट नेटवर्क तीन समान प्रतिरोधी-संधारित्र चरणों को कैस्केड करता है जो कम आवृत्तियों पर शून्य की चरण बदलाव और उच्च आवृत्तियों पर 270 डिग्री का उत्पादन करता है। | फ़िल्टर चरण परिवर्तन उत्पन्न करता है जो [[आवृत्ति]] के साथ बढ़ता है। इसमें उच्च आवृत्तियों पर 180 डिग्री से अधिक की अधिकतम फेज शिफ्ट होनी चाहिए ताकि वांछित दोलन आवृत्ति पर फेज शिफ्ट 180 डिग्री हो सके। सबसे आम चरण-शिफ्ट नेटवर्क तीन समान प्रतिरोधी-संधारित्र चरणों को कैस्केड करता है जो कम आवृत्तियों पर शून्य की चरण बदलाव और उच्च आवृत्तियों पर 270 डिग्री का उत्पादन करता है। |
Revision as of 00:25, 2 April 2023
फेज-शिफ्ट दोलक रैखिक इलेक्ट्रॉनिक थरथरानवाला सर्किट है जो साइन लहर आउटपुट उत्पन्न करता है। इसमें उलटा एम्पलीफायर तत्व होता है जैसे कि एक ट्रांजिस्टर या ऑप एम्प जिसका आउटपुट फेज-शिफ्ट नेटवर्क के माध्यम से इसके इनपुट पर वापस आ जाता है जिसमें एक सीढ़ी नेटवर्क में प्रतिरोधक और संधारित्र होते हैं। फीडबैक नेटवर्क [[सकारात्मक प्रतिक्रिया]] देने के लिए दोलन आवृत्ति पर 180 डिग्री से एम्पलीफायर आउटपुट के चरण (तरंगों) को 'शिफ्ट' करता है।[1] फेज-शिफ्ट दोलक्स का उपयोग अक्सर ऑडियो आवृत्ति पर ऑडियो थरथरानवाला के रूप में किया जाता है।
फ़िल्टर चरण परिवर्तन उत्पन्न करता है जो आवृत्ति के साथ बढ़ता है। इसमें उच्च आवृत्तियों पर 180 डिग्री से अधिक की अधिकतम फेज शिफ्ट होनी चाहिए ताकि वांछित दोलन आवृत्ति पर फेज शिफ्ट 180 डिग्री हो सके। सबसे आम चरण-शिफ्ट नेटवर्क तीन समान प्रतिरोधी-संधारित्र चरणों को कैस्केड करता है जो कम आवृत्तियों पर शून्य की चरण बदलाव और उच्च आवृत्तियों पर 270 डिग्री का उत्पादन करता है।
पहला इंटीग्रेटेड सर्किट 1958 में जैक किल्बी द्वारा आविष्कृत फेज शिफ्ट दोलक था।[2]
कार्यान्वयन
द्विध्रुवी कार्यान्वयन
यह योजनाबद्ध आरेख प्रवर्धक के रूप में सामान्य-उत्सर्जक जुड़े द्विध्रुवी ट्रांजिस्टर का उपयोग करके थरथरानवाला दिखाता है। दो प्रतिरोधक आर और तीन कैपेसिटर सी इलेक्ट्रॉनिक फिल्टर | आरसी फेज-शिफ्ट नेटवर्क बनाते हैं जो कलेक्टर से ट्रांजिस्टर के आधार तक प्रतिक्रिया प्रदान करता है। रोकनेवाला आरb बेस बायस करंट प्रदान करता है। रोकनेवाला आरc कलेक्टर करंट के लिए कलेक्टर लोड रेसिस्टर है। रोकनेवाला आरs सर्किट को बाहरी भार से अलग करता है।[3]
एफईटी कार्यान्वयन
यह सर्किट दोलक को फील्ड इफ़ेक्ट ट्रांजिस्टर के साथ लागू करता है। आर1, आर2, आरs, और सीs ट्रांजिस्टर के लिए पूर्वाग्रह (इलेक्ट्रिकल इंजीनियरिंग) प्रदान करें। ध्यान दें कि सकारात्मक प्रतिक्रिया के लिए प्रयुक्त टोपोलॉजी वोल्टेज श्रृंखला प्रतिक्रिया है।
ऑप-एम्प कार्यान्वयन
आरेख में दिखाए गए चरण-शिफ्ट दोलक का कार्यान्वयन परिचालन प्रवर्धक (op-amp), तीन कैपेसिटर और चार प्रतिरोधों का उपयोग करता है।
दोलन आवृत्ति और दोलन मानदंड के लिए सर्किट के मॉडलिंग समीकरण जटिल हैं क्योंकि प्रत्येक आरसी चरण पिछले वाले को लोड करता है। ऑपरेशनल एंप्लीफायर मानते हुए, बहुत कम आउटपुट प्रतिबाधा और बहुत उच्च इनपुट प्रतिबाधा के साथ, दोलन आवृत्ति है:
दोलन को बनाए रखने के लिए आवश्यक प्रतिक्रिया अवरोधक है:
समीकरण तब सरल होते हैं जब सभी प्रतिरोधों (नकारात्मक प्रतिक्रिया रोकनेवाला को छोड़कर) का मान समान होता है और सभी कैपेसिटर का मान समान होता है। आरेख में, यदि R1=R2=R3=R और C1=C2=C3=C, तब:
और दोलन मानदंड है:
अन्य फीडबैक दोलक्स की तरह, जब पावर को सर्किट पर लागू किया जाता है, तो सर्किट में थर्मल विद्युत शोर या टर्न-ऑन क्षणिक (दोलन) दोलन शुरू करने के लिए प्रारंभिक संकेत प्रदान करता है। व्यवहार में, प्रतिक्रिया रोकनेवाला थोड़ा बड़ा होना चाहिए ताकि दोलन समान (छोटा) आयाम बने रहने के बजाय आयाम में बढ़ेगा। यदि प्रवर्धक आदर्श थे, तो आयाम बिना सीमा के बढ़ जाएगा, लेकिन व्यवहार में प्रवर्धक अरैखिक होते हैं और उनका तात्कालिक लाभ भिन्न होता है। जैसे ही आयाम बढ़ता है, एम्पलीफायर संतृप्ति एम्पलीफायर के औसत लाभ को कम कर देगी। नतीजतन, दोलन आयाम तब तक बढ़ता रहेगा जब तक कि सर्किट का औसत लूप लाभ ता तक नहीं गिर जाता; उस बिंदु पर, आयाम स्थिर हो जाएगा।
जब दोलन आवृत्ति एम्पलीफायर की कटऑफ आवृत्ति के पास होने के लिए पर्याप्त उच्च होती है, तो एम्पलीफायर स्वयं महत्वपूर्ण चरण बदलाव में योगदान देगा, जो प्रतिक्रिया नेटवर्क के चरण बदलाव में जोड़ देगा। इसलिए, सर्किट आवृत्ति पर दोलन करेगा जिस पर फीडबैक फिल्टर का फेज शिफ्ट 180 डिग्री से कम है।
आरसी सेक्शन दूसरे को लोड करने के कारण दोलन बनाए रखने के लिए सिंगल ऑप-एम्पी सर्किट को अपेक्षाकृत उच्च लाभ (लगभग 30) की आवश्यकता होती है।[4] यदि प्रत्येक आरसी खंड दूसरों को प्रभावित नहीं करता है, तो लगभग 8 से 10 का लाभ दोलन के लिए पर्याप्त होगा। प्रत्येक आरसी चरण के बीच ऑप-एम्प बफर डालकर दोलक का पृथक संस्करण बनाया जा सकता है (यह मॉडलिंग समीकरणों को भी सरल करता है)।
संदर्भ
- ↑ hyperphysics.phy-astr.gsu.edu
- ↑ "Book: Electronic devices and circuit theory by robert boylestad_page 2" (PDF).
- ↑ K.W.(Widelski?) (1984). प्रौद्योगिकी का बहुरूपदर्शक. Warsaw, Poland: NOT Sigma.
- ↑ Mancini, Ron (2002). सभी के लिए ओप एम्प्स (PDF). Dallas, Texas: Texas Instruments. pp. 15–15, 15–16. SLOD006B.
बाहरी संबंध
- Media related to Phase-shift oscillators at Wikimedia Commons