बिना शर्त अभिसरण: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, विशेष रूप से [[कार्यात्मक विश्लेषण]], श्रृंखला बिना शर्त अभिसारी होती है यदि श्रृंखला के सभी पुनर्क्रम ही मान पर अभिसरण करते हैं। इसके विपरीत, श्रृंखला [[सशर्त अभिसरण]] है यदि यह अभिसरण करती है | गणित में, विशेष रूप से [[कार्यात्मक विश्लेषण]], श्रृंखला बिना शर्त अभिसारी होती है यदि श्रृंखला के सभी पुनर्क्रम ही मान पर अभिसरण करते हैं। इसके विपरीत, श्रृंखला [[सशर्त अभिसरण]] है यदि यह अभिसरण करती है किन्तुअलग-अलग क्रम सभी ही मूल्य पर अभिसरण नहीं करते हैं। बिना शर्त अभिसरण आयाम ([[सदिश स्थल]]) या परिमित-आयामी वेक्टर रिक्त स्थान में [[पूर्ण अभिसरण]] के बराबर है, किन्तुअनंत आयामों में अशक्त संपत्ति है। | ||
== परिभाषा == | == परिभाषा == | ||
होने देना <math>X</math> [[टोपोलॉजिकल वेक्टर स्पेस]] बनें। होने देना <math>I</math> एक [[ सूचकांक सेट |सूचकांक समुच्चय]] हो और <math>x_i \in X</math> सभी के लिए <math>i \in I.</math> | होने देना <math>X</math> [[टोपोलॉजिकल वेक्टर स्पेस]] बनें। होने देना <math>I</math> एक [[ सूचकांक सेट |सूचकांक समुच्चय]] हो और <math>x_i \in X</math> सभी के लिए <math>i \in I.</math> | ||
श्रृंखला <math>\textstyle \sum_{i \in I} x_i</math> बिना शर्त के अभिसरण कहा जाता है <math>x \in X,</math> यदि | श्रृंखला <math>\textstyle \sum_{i \in I} x_i</math> बिना शर्त के अभिसरण कहा जाता है <math>x \in X,</math> यदि | ||
* इंडेक्सिंग समुच्चय <math>I_0 := \left\{i \in I : x_i \neq 0\right\}</math> [[गणनीय]] है, और | * इंडेक्सिंग समुच्चय <math>I_0 := \left\{i \in I : x_i \neq 0\right\}</math> [[गणनीय]] है, और | ||
* प्रत्येक क्रम [[परिवर्तन]] (आपत्ति) के लिए <math>\sigma : I_0 \to I_0</math> का <math>I_0 = \left\{i_k\right\}_{k=1}^\infty</math> निम्नलिखित संबंध रखता है: <math>\sum_{k=1}^\infty x_{\sigma\left(i_k\right)} = x.</math> | * प्रत्येक क्रम [[परिवर्तन]] (आपत्ति) के लिए <math>\sigma : I_0 \to I_0</math> का <math>I_0 = \left\{i_k\right\}_{k=1}^\infty</math> निम्नलिखित संबंध रखता है: <math>\sum_{k=1}^\infty x_{\sigma\left(i_k\right)} = x.</math> | ||
== वैकल्पिक परिभाषा == | == वैकल्पिक परिभाषा == | ||
बिना शर्त अभिसरण को अधिकांशतः समान तरीके से परिभाषित किया जाता है: प्रत्येक क्रम के लिए श्रृंखला बिना शर्त अभिसरण होती है <math>\left(\varepsilon_n\right)_{n=1}^\infty,</math> साथ <math>\varepsilon_n \in \{-1, +1\},</math> श्रृंखला | बिना शर्त अभिसरण को अधिकांशतः समान तरीके से परिभाषित किया जाता है: प्रत्येक क्रम के लिए श्रृंखला बिना शर्त अभिसरण होती है <math>\left(\varepsilon_n\right)_{n=1}^\infty,</math> साथ <math>\varepsilon_n \in \{-1, +1\},</math> श्रृंखला | ||
<math display=block>\sum_{n=1}^\infty \varepsilon_n x_n</math> | <math display=block>\sum_{n=1}^\infty \varepsilon_n x_n</math> | ||
अभिसरण। | अभिसरण। | ||
यदि <math>X</math> बानाच स्थान है, प्रत्येक पूर्ण अभिसरण श्रृंखला बिना शर्त अभिसरण है, | यदि <math>X</math> बानाच स्थान है, प्रत्येक पूर्ण अभिसरण श्रृंखला बिना शर्त अभिसरण है, किन्तु[[बातचीत (तर्क)]] निहितार्थ सामान्य रूप से नहीं होता है। दरअसल, यदि <math>X</math> अनंत-आयामी बैनाच स्थान है, तो निरपेक्ष अभिसरण पुनर्व्यवस्था और बिना शर्त अभिसरण या ड्वोरेट्ज़की-रोजर्स प्रमेय द्वारा इस स्थान में सदैव बिना शर्त अभिसरण श्रृंखला उपस्थित होती है जो बिल्कुल अभिसरण नहीं होती है। चूंकि कब <math>X = \R^n,</math> [[रीमैन श्रृंखला प्रमेय]] द्वारा, श्रृंखला <math display=inline>\sum_n x_n</math> बिना शर्त अभिसरण है यदि और केवल यदि यह बिल्कुल अभिसरण है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 23:47, 1 April 2023
गणित में, विशेष रूप से कार्यात्मक विश्लेषण, श्रृंखला बिना शर्त अभिसारी होती है यदि श्रृंखला के सभी पुनर्क्रम ही मान पर अभिसरण करते हैं। इसके विपरीत, श्रृंखला सशर्त अभिसरण है यदि यह अभिसरण करती है किन्तुअलग-अलग क्रम सभी ही मूल्य पर अभिसरण नहीं करते हैं। बिना शर्त अभिसरण आयाम (सदिश स्थल) या परिमित-आयामी वेक्टर रिक्त स्थान में पूर्ण अभिसरण के बराबर है, किन्तुअनंत आयामों में अशक्त संपत्ति है।
परिभाषा
होने देना टोपोलॉजिकल वेक्टर स्पेस बनें। होने देना एक सूचकांक समुच्चय हो और सभी के लिए
श्रृंखला बिना शर्त के अभिसरण कहा जाता है यदि
वैकल्पिक परिभाषा
बिना शर्त अभिसरण को अधिकांशतः समान तरीके से परिभाषित किया जाता है: प्रत्येक क्रम के लिए श्रृंखला बिना शर्त अभिसरण होती है साथ श्रृंखला
यदि बानाच स्थान है, प्रत्येक पूर्ण अभिसरण श्रृंखला बिना शर्त अभिसरण है, किन्तुबातचीत (तर्क) निहितार्थ सामान्य रूप से नहीं होता है। दरअसल, यदि अनंत-आयामी बैनाच स्थान है, तो निरपेक्ष अभिसरण पुनर्व्यवस्था और बिना शर्त अभिसरण या ड्वोरेट्ज़की-रोजर्स प्रमेय द्वारा इस स्थान में सदैव बिना शर्त अभिसरण श्रृंखला उपस्थित होती है जो बिल्कुल अभिसरण नहीं होती है। चूंकि कब रीमैन श्रृंखला प्रमेय द्वारा, श्रृंखला बिना शर्त अभिसरण है यदि और केवल यदि यह बिल्कुल अभिसरण है।
यह भी देखें
- पूर्ण अभिसरण
- अभिसरण के मोड (एनोटेटेड इंडेक्स)
- पुनर्व्यवस्था और बिना शर्त अभिसरण/डवोर्त्स्कीऔरएनडीएसएच;रोजर्स प्रमेय
- रीमैन श्रृंखला प्रमेय – Unconditional series converge absolutely
संदर्भ
- Ch. Heil: A Basis Theory Primer
- Knopp, Konrad (1956). Infinite Sequences and Series. Dover Publications. ISBN 9780486601533.
- Knopp, Konrad (1990). Theory and Application of Infinite Series. Dover Publications. ISBN 9780486661650.
- Wojtaszczyk, P. (1996). Banach spaces for analysts. Cambridge University Press. ISBN 9780521566759.
This article incorporates material from Unconditional convergence on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.