समाकलन वक्र: Difference between revisions
m (14 revisions imported from alpha:समाकलन_वक्र) |
No edit summary |
||
Line 65: | Line 65: | ||
{{Manifolds}} | {{Manifolds}} | ||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 02/03/2023]] | [[Category:Created On 02/03/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with maths render errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:विभेदक ज्यामिति]] | |||
[[Category:सामान्य अवकल समीकरण]] |
Revision as of 10:50, 11 April 2023
गणित में, अभिन्न वक्र पैरामीट्रिक वक्र है जो साधारण अंतर समीकरण या समीकरणों की प्रणाली के विशिष्ट समाधान का प्रतिनिधित्व करता है।
नाम
अंतर समीकरण या वेक्टर क्षेत्र की प्रकृति और व्याख्या के आधार पर इंटीग्रल कर्व्स को कई अन्य नामों से जाना जाता है। भौतिकी में, विद्युत क्षेत्र या चुंबकीय क्षेत्र के लिए अभिन्न वक्र को क्षेत्र रेखा के रूप में जाना जाता है, और द्रव के वेग क्षेत्र के लिए अभिन्न वक्र को स्ट्रीमलाइन, स्ट्रीकलाइन और पाथलाइन के रूप में जाना जाता है। [गतिशील प्रणाली सिद्धांत] में, गतिशील प्रणाली को नियंत्रित करने वाले अंतर समीकरण के अभिन्न वक्र को प्रक्षेपवक्र या कक्षा (गतिकी) के रूप में संदर्भित किया जाता है।
परिभाषा
मान लीजिए कि F स्थिर सदिश क्षेत्र है, जो कि कार्तीय समन्वय प्रणाली (F) के साथ सदिश-मूल्यवान फलन है (F1,F2,...,Fn), और वह x(t) कार्तीय निर्देशांक (x के साथ पैरामीट्रिक वक्र है (x1(t),x2(t),...,xn(t)) फिर 'x'(t) 'F' का 'इंटीग्रल कर्व' है, अगर यह साधारण डिफरेंशियल समीकरण के ऑटोनॉमस प्रणाली (गणित) का हल है,
ऐसी प्रणाली को एकल सदिश समीकरण के रूप में लिखा जा सकता है,
यह समीकरण कहता है कि वक्र के साथ किसी भी बिंदु x(t) पर वक्र की सदिश स्पर्शरेखा ठीक सदिश F(x(t)) है, और इसलिए वक्र x(t') ') सदिश क्षेत्र F के प्रत्येक बिंदु पर स्पर्शरेखा है।
यदि दिया गया सदिश क्षेत्र लिप्सचिट्ज़ निरंतर है, तो पिकार्ड-लिंडेलोफ़ प्रमेय का तात्पर्य है कि कम समय के लिए अनूठा प्रवाह उपस्थित है।
उदाहरण
यदि अंतर समीकरण को सदिश क्षेत्र या ढलान क्षेत्र के रूप में दर्शाया जाता है, तो संबंधित अभिन्न वक्र प्रत्येक बिंदु पर क्षेत्र के स्पर्शरेखा होते हैं।
अलग-अलग मैनिफोल्ड्स के लिए सामान्यीकरण
परिभाषा
बता दें कि M क्लास Cr का कई गुना है साथ में r ≥ 2. हमेशा की तरह, TM M के स्पर्शरेखा बंडल को उसके प्राकृतिक प्रक्षेपण (गणित) के साथ दर्शाता है πM TM → M द्वारा दिया गया ।
M पर वेक्टर फ़ील्ड फाइबर विस्तार भाग स्पर्शरेखा बंडल TM का क्रॉस-सेक्शन है, यानी उस बिंदु पर M के स्पर्शरेखा वेक्टर के कई गुना M के हर बिंदु के लिए असाइनमेंट X को वर्ग Cr−1 के M पर सदिश क्षेत्र होने दें और मान लीजिए p ∈ M. समय t0 पर p से गुजरने वाले X के लिए 'अभिन्न वक्र'0 वर्ग Cr−1 का वक्र α : J → M हैr−1, t युक्त वास्तविक रेखा 'R' के अंतराल (गणित) J पर परिभाषित, ऐसा है कि
साधारण अवकल समीकरणों से संबंध
सदिश क्षेत्र X के लिए समाकल वक्र α की उपरोक्त परिभाषा, समय t0 पर p से होकर गुजरती है, यह कहने के समान है कि α सामान्य अंतर समीकरण प्रारंभिक मूल्य समस्या का स्थानीय समाधान है।
यह इस अर्थ में स्थानीय है कि यह केवल जे में समय के लिए परिभाषित है, और जरूरी नहीं कि सभी t ≥ t0 के लिए0 (अकेले t ≤ t0). इस प्रकार, समाकल वक्रों के अस्तित्व और अद्वितीयता को सिद्ध करने की समस्या वही है जो सामान्य अवकल समीकरणों प्रारंभिक मान समस्याओं के हल खोजने और यह दर्शाने की है कि वे अद्वितीय हैं।
समय व्युत्पन्न पर टिप्पणी
उपरोक्त में, α'(t) समय t पर α के व्युत्पन्न को दर्शाता है, दिशा α समय t पर इंगित कर रहा है। अधिक सारगर्भित दृष्टिकोण से, यह फ्रेचेट व्युत्पन्न है।
विशेष स्थितियों में कि M ' Rn' का कुछ खुला उपसमुच्चय है, यह परिचित अवकलज है।
जहां α1, ...,an सामान्य निर्देशांक दिशाओं के संबंध में α के निर्देशांक हैं।
प्रेरित होमोमोर्फिज्म के संदर्भ में एक ही बात को और भी सारगर्भित रूप से अभिव्यक्त किया जा सकता है। ध्यान दें कि J का स्पर्शरेखा बंडल TJ फाइबर बंडल या ट्रिवियल बंडल J × 'R' है और इस बंडल का विहित रूप क्रॉस-सेक्शन ι है जैसे कि ι(t) = 1 (या, अधिक Sस्पष्ट रूप से, (t, 1) ∈ ι) सभी t ∈ J के लिए। वक्र α बंडल मानचित्र α को प्रेरित करता है α∗ : TJ → TM जिससे निम्न आरेख कम्यूट हो:
संदर्भ
संदर्भ
- Lang, Serge (1972). Differential manifolds. Reading, Mass.–London–Don Mills, Ont.: Addison-Wesley Publishing Co., Inc.