औद्योगिक प्रक्रिया नियंत्रण: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{more citations needed|date=October 2017}} | {{more citations needed|date=October 2017}} | ||
[[निरंतर उत्पादन]] में एक औद्योगिक प्रक्रिया नियंत्रण या केवल प्रक्रिया नियंत्रण एक अनुशासन है जो [[औद्योगिक नियंत्रण प्रणाली]] और | [[निरंतर उत्पादन]] प्रक्रियाओं में एक औद्योगिक प्रक्रिया नियंत्रण या केवल प्रक्रिया [[नियंत्रण सिद्धांत|नियंत्रण]] एक अनुशासन है जो [[औद्योगिक नियंत्रण प्रणाली]] और नियंत्रण सिद्धांत का उपयोग स्थिरता, अर्थव्यवस्था और सुरक्षा के उत्पादन स्तर को प्राप्त करने के लिए करता है जिसे मानव मैनुअल नियंत्रण द्वारा पूरी तरह से प्राप्त नहीं किया जा सकता है। यह मोटर वाहन, खनन, [[ निकर्षण |ड्रेजिंग]], तेल शोधन, लुगदी और कागज निर्माण, रासायनिक प्रसंस्करण और विद्युत् उत्पादन संयंत्रों जैसे उद्योगों में व्यापक रूप से प्रयुक्त किया गया है।<ref>{{Cite web|date=2019-05-14|title=सांख्यिकीय प्रक्रिया नियंत्रण के लिए एक गाइड|url=https://redmeters.com/a-guide-to-statistical-process-control/|access-date=2021-03-29|website=Red Meters|language=en-US}}</ref> | ||
आकार, प्रकार और जटिलता की एक विस्तृत श्रृंखला है, लेकिन यह संचालकों की एक छोटी संख्या को उच्च स्तर की स्थिरता के लिए जटिल प्रक्रियाओं का प्रबंधन करने में सक्षम बनाती है। बड़ी औद्योगिक प्रक्रिया नियंत्रण प्रणालियों का विकास बड़ी मात्रा में और जटिल प्रक्रियाओं के डिजाइन को सक्षम करने में सहायक | '''में एक औद्योगिक प्रक्रिया नियंत्रण या केवल प्रक्रिया नियंत्रण एक अनुशासन है जो और [[नियंत्रण सिद्धांत|सिद्धांत]] का उपयोग स्थिरता, अर्थव्यवस्था और सुरक्षा के उत्पादन स्तर को प्राप्त करने के लिए करता है जिसे मानव मैनुअल नियंत्रण द्वारा पूरी तरह से प्राप्त नहीं किया जा सकता है। यह ऑटोमोटिव उद्योग, खनन, , तेल शोधन, लुगदी और कागज निर्माण, रासायनिक प्रसंस्करण और विद्युत् उत्पादन संयंत्रों जैसे उद्योगों में व्यापक रूप से प्रयुक्त किया गया है।''' | ||
आकार, प्रकार और जटिलता की एक विस्तृत श्रृंखला है, लेकिन यह संचालकों की एक छोटी संख्या को उच्च स्तर की स्थिरता के लिए जटिल प्रक्रियाओं का प्रबंधन करने में सक्षम बनाती है। बड़ी औद्योगिक प्रक्रिया नियंत्रण प्रणालियों का विकास बड़ी मात्रा में और जटिल प्रक्रियाओं के डिजाइन को सक्षम करने में सहायक थी, जो आर्थिक रूप से या सुरक्षित रूप से संचालित नहीं किया जा सकता था।<ref>Bolton, Bill. ''Control Engineering (2nd Edition)''. Longman Pub Group; 2nd edition,1998.</ref> | |||
आवेदन तापमान और एकल प्रक्रिया पोत के स्तर को नियंत्रित करने से लेकर कई हजार नियंत्रण छोरों के साथ एक पूर्ण रासायनिक प्रसंस्करण संयंत्र तक हो सकते हैं। | आवेदन तापमान और एकल प्रक्रिया पोत के स्तर को नियंत्रित करने से लेकर कई हजार नियंत्रण छोरों के साथ एक पूर्ण रासायनिक प्रसंस्करण संयंत्र तक हो सकते हैं। | ||
== इतिहास == | == इतिहास == | ||
जल नियंत्रण उपकरणों के रूप में प्रारंभिक प्रक्रिया नियंत्रण सफलताएं सबसे अधिक बार | जल नियंत्रण उपकरणों के रूप में प्रारंभिक प्रक्रिया नियंत्रण सफलताएं सबसे अधिक बार आईं हैं। तीसरी शताब्दी ईसा पूर्व में पानी की घड़ियों के जल स्तर को विनियमित करने के लिए फ्लोट वाल्व का आविष्कार करने के लिए [[अलेक्जेंड्रिया का बगुला|अलेक्जेंड्रिया के केटेसिबिओस]] '''के केटेसिबिओस''' को श्रेय दिया जाता है। पहली शताब्दी ईस्वी में, अलेक्जेंड्रिया के हेरॉन ने आधुनिक शौचालयों में उपयोग किए जाने वाले भरण वाल्व के समान पानी के वाल्व का आविष्कार किया था।<ref name="Young etal">{{cite book|last1=Young|first1=William Y|last2=Svrcek|first2=Donald P|last3=Mahoney|first3=Brent R|title=प्रक्रिया नियंत्रण के लिए एक वास्तविक समय दृष्टिकोण|date=2014|publisher=John Wiley & Sons Inc.|location=Chichester, West Sussex, United Kingdom|isbn=978-1119993872|pages=1–2|edition=3|chapter=1: A Brief History of Control and Simulation}}</ref> | ||
बाद की प्रक्रिया ने आविष्कारों को नियंत्रित किया जिसमें मूलभूत भौतिकी सिद्धांत सम्मिलित थे। 1620 में, [[कॉर्नेलिस ड्रेबेल]] ने भट्टी में तापमान को नियंत्रित करने के लिए द्विधातु थर्मोस्टेट का आविष्कार किया। 1681 में, [[डेनिस पापिन]] ने | बाद की प्रक्रिया ने आविष्कारों को नियंत्रित किया जिसमें मूलभूत भौतिकी सिद्धांत सम्मिलित थे। 1620 में, [[कॉर्नेलिस ड्रेबेल]] ने भट्टी में तापमान को नियंत्रित करने के लिए द्विधातु थर्मोस्टेट का आविष्कार किया। 1681 में, [[डेनिस पापिन]] ने पता लगाया कि बर्तन के ढक्कन के ऊपर वजन रखकर बर्तन के अंदर के दबाव को नियंत्रित किया जा सकता है।<ref name="Young etal" /> 1745 में, एडमंड ली ने पवनचक्की की दक्षता में संशोधन के लिए फैनटेल बनाया; '''संशोधन के लिए पवनचक्की फैनटेल बनाया;''' एक फैनटेल एक छोटी पवनचक्की थी जो पवनचक्की के चेहरे को सीधे आने वाली हवा में रखने के लिए बड़े पंखों के 90° पर रखी जाती थी। | ||
1760 के दशक में औद्योगिक क्रांति के प्रारंभ के साथ, प्रक्रिया नियंत्रण आविष्कारों का उद्देश्य मानव संचालकों को मशीनीकृत प्रक्रियाओं से बदलना था। 1784 में, [[ओलिवर इवांस]] ने एक पानी से चलने वाली आटा चक्की बनाई जो बाल्टियों और स्क्रू कन्वेयर का उपयोग करके संचालित होती थी। [[ हेनरी फ़ोर्ड | हेनरी फ़ोर्ड]] ने 1910 में उसी सिद्धांत को प्रयुक्त किया जब ऑटोमोबाइल उत्पादन प्रक्रिया में मानवीय हस्तक्षेप को कम करने के लिए असेंबली लाइन बनाई गई थी।<ref name="Young etal" /> | 1760 के दशक में औद्योगिक क्रांति के प्रारंभ के साथ, प्रक्रिया नियंत्रण आविष्कारों का उद्देश्य मानव संचालकों को मशीनीकृत प्रक्रियाओं से बदलना था। 1784 में, [[ओलिवर इवांस]] ने एक पानी से चलने वाली आटा चक्की बनाई जो बाल्टियों और स्क्रू कन्वेयर का उपयोग करके संचालित होती थी। [[ हेनरी फ़ोर्ड | हेनरी फ़ोर्ड]] ने 1910 में उसी सिद्धांत को प्रयुक्त किया जब ऑटोमोबाइल उत्पादन प्रक्रिया में मानवीय हस्तक्षेप को कम करने के लिए असेंबली लाइन बनाई गई थी।<ref name="Young etal" /> | ||
निरंतर परिवर्तनीय प्रक्रिया नियंत्रण के लिए यह 1922 तक नहीं था कि जिसे अब हम पीआईडी नियंत्रण या तीन-अवधि नियंत्रण कहते हैं, उसके लिए एक औपचारिक नियंत्रण कानून पहली बार [[रूसी अमेरिकी]] इंजीनियर [[निकोलस मिनोर्स्की]] द्वारा सैद्धांतिक विश्लेषण का उपयोग करके विकसित किया गया था।<ref>{{cite journal |last=Minorsky |first=Nicolas |author-link=Nicolas Minorsky |title=स्वचालित रूप से स्टीयरिंग निकायों की दिशात्मक स्थिरता|journal=Journal of the American Society for Naval Engineers |year=1922 |volume=34 |pages=280–309 |issue=2 |doi=10.1111/j.1559-3584.1922.tb04958.x}}</ref> मिनोर्स्की अमेरिकी नौसेना के लिए स्वचालित जहाज संचालन पर शोध और डिजाइन कर रहे थे और एक [[कर्णधार]] की टिप्पणियों पर उनका विश्लेषण आधारित था। उन्होंने कहा कि हेल्समैन | निरंतर परिवर्तनीय प्रक्रिया नियंत्रण के लिए यह 1922 तक नहीं था कि जिसे अब हम पीआईडी नियंत्रण या तीन-अवधि नियंत्रण कहते हैं, उसके लिए एक औपचारिक नियंत्रण कानून पहली बार [[रूसी अमेरिकी]] इंजीनियर [[निकोलस मिनोर्स्की]] द्वारा सैद्धांतिक विश्लेषण का उपयोग करके विकसित किया गया था।<ref>{{cite journal |last=Minorsky |first=Nicolas |author-link=Nicolas Minorsky |title=स्वचालित रूप से स्टीयरिंग निकायों की दिशात्मक स्थिरता|journal=Journal of the American Society for Naval Engineers |year=1922 |volume=34 |pages=280–309 |issue=2 |doi=10.1111/j.1559-3584.1922.tb04958.x}}</ref> मिनोर्स्की अमेरिकी नौसेना के लिए स्वचालित जहाज संचालन पर शोध और डिजाइन कर रहे थे और एक [[कर्णधार|हेल्समैन]] की टिप्पणियों पर उनका विश्लेषण आधारित था। उन्होंने कहा कि हेल्समैन जहाज को न केवल वर्तमान पाठ्यक्रम त्रुटि के आधार पर, किन्तु पिछली त्रुटि के साथ-साथ परिवर्तन की वर्तमान दर पर भी आधारित करता है;<ref>{{cite book|title=A History of Control Engineering 1930-1955 |last=Bennett |first= Stuart |year=1993 |publisher =Peter Peregrinus Ltd. On behalf of the Institution of Electrical Engineers |location= London |isbn= 978-0-86341-280-6 |url=https://books.google.com/books?id=VD_b81J3yFoC&pg=PA67 |page= 67}}</ref> इसके बाद मिनॉर्स्की द्वारा इसे एक गणितीय उपचार दिया गया।<ref name="ben96">{{cite journal | ||
| journal = IEEE Control Systems Magazine | | journal = IEEE Control Systems Magazine | ||
| volume = 16 | | volume = 16 | ||
Line 32: | Line 34: | ||
}}</ref> | }}</ref> | ||
उनका लक्ष्य स्थिरता था, सामान्य नियंत्रण नहीं, जिसने समस्या को महत्वपूर्ण रूप से सरल बना दिया। जबकि आनुपातिक नियंत्रण छोटी गड़बड़ी के | उनका लक्ष्य स्थिरता था, सामान्य नियंत्रण नहीं, जिसने समस्या को महत्वपूर्ण रूप से सरल बना दिया। जबकि आनुपातिक नियंत्रण छोटी गड़बड़ी के खिलाफ स्थिरता प्रदान करता है, यह एक स्थिर गड़बड़ी से निपटने के लिए अपर्याप्त था, विशेष रूप से एक कठोर [[आंधी]] (स्थिर-अवस्था त्रुटि के कारण), जिसे अभिन्न शब्द जोड़ना आवश्यक था। '''(#स्थिर-अवस्था त्रुटि | स्थिर-अवस्था त्रुटि के कारण), जिसके लिए अभिन्न शब्द जोड़ना आवश्यक था।''' अंत में, स्थिरता और नियंत्रण में संशोधन के लिए व्युत्पन्न शब्द जोड़ा गया। | ||
== आधुनिक प्रक्रिया नियंत्रण संचालन का विकास == | == आधुनिक प्रक्रिया नियंत्रण संचालन का विकास == | ||
[[File:Leitstand 2.jpg|alt=|thumb|एक आधुनिक नियंत्रण कक्ष जहां कंप्यूटर ग्राफिक्स स्क्रीन पर पौधों की जानकारी और नियंत्रण प्रदर्शित किए जाते हैं। संचालकों को बैठाया जाता है क्योंकि वे प्लांट ओवरव्यू को बनाए रखते हुए प्रक्रिया के किसी भी हिस्से को अपनी स्क्रीन से देख और नियंत्रित कर सकते हैं।]]बड़े औद्योगिक संयंत्रों का प्रक्रिया नियंत्रण कई चरणों में विकसित हुआ है। प्रारंभ में, नियंत्रण पैनल स्थानीय से प्रक्रिया संयंत्र तक होगा। चूँकि इन बिखरे हुए पैनलों में भाग लेने के लिए एक बड़े जनशक्ति संसाधन की आवश्यकता थी, और इस प्रक्रिया का कोई समग्र दृष्टिकोण नहीं था। अगला तार्किक विकास स्थायी रूप से कार्यरत केंद्रीय नियंत्रण कक्ष को सभी संयंत्र मापों का प्रसारण था। प्रभावी रूप से यह सभी स्थानीय पैनलों का केंद्रीकरण था, जिसमें कम मैनिंग स्तर और प्रक्रिया के | [[File:Leitstand 2.jpg|alt=|thumb|एक आधुनिक नियंत्रण कक्ष जहां कंप्यूटर ग्राफिक्स स्क्रीन पर पौधों की जानकारी और नियंत्रण प्रदर्शित किए जाते हैं। संचालकों को बैठाया जाता है क्योंकि वे प्लांट ओवरव्यू को बनाए रखते हुए प्रक्रिया के किसी भी हिस्से को अपनी स्क्रीन से देख और नियंत्रित कर सकते हैं।]]बड़े औद्योगिक संयंत्रों का प्रक्रिया नियंत्रण कई चरणों में विकसित हुआ है। प्रारंभ में, नियंत्रण पैनल स्थानीय से प्रक्रिया संयंत्र तक होगा। चूँकि इन बिखरे हुए पैनलों में भाग लेने के लिए एक बड़े जनशक्ति संसाधन की आवश्यकता थी, और इस प्रक्रिया का कोई समग्र दृष्टिकोण नहीं था। अगला तार्किक विकास स्थायी रूप से कार्यरत केंद्रीय नियंत्रण कक्ष को सभी संयंत्र मापों का प्रसारण था। प्रभावी रूप से यह सभी स्थानीय पैनलों का केंद्रीकरण था, जिसमें कम मैनिंग स्तर और प्रक्रिया के सरल अवलोकन के लाभ थे। अधिकांशतः नियंत्रक नियंत्रण कक्ष पैनल के पीछे होते थे, और सभी स्वचालित और मैन्युअल नियंत्रण आउटपुट वापस संयंत्र में प्रेषित किए जाते थे। चूँकि, एक केंद्रीय नियंत्रण फोकस प्रदान करते हुए, यह व्यवस्था अनम्य थी क्योंकि प्रत्येक नियंत्रण पाश का अपना नियंत्रक हार्डवेयर था, और नियंत्रण कक्ष के अंदर निरंतर संचालक आंदोलन को प्रक्रिया के विभिन्न भागों को देखने की आवश्यकता थी। | ||
इलेक्ट्रॉनिक प्रोसेसर और ग्राफिक डिस्प्ले के आने से इन असतत नियंत्रकों को कंप्यूटर-आधारित एल्गोरिदम के साथ बदलना संभव हो गया, जो अपने स्वयं के नियंत्रण प्रोसेसर के साथ इनपुट/आउटपुट रैक के नेटवर्क पर होस्ट किए गए थे। इन्हें प्लांट के चारों ओर वितरित किया जा सकता है, और कंट्रोल रूम या कमरों में ग्राफिक डिस्प्ले के साथ संचार किया जा सकता है। वितरित नियंत्रण प्रणाली ( | इलेक्ट्रॉनिक प्रोसेसर और ग्राफिक डिस्प्ले के आने से इन असतत नियंत्रकों को कंप्यूटर-आधारित एल्गोरिदम के साथ बदलना संभव हो गया, जो अपने स्वयं के नियंत्रण प्रोसेसर के साथ इनपुट/आउटपुट रैक के नेटवर्क पर होस्ट किए गए थे। इन्हें प्लांट के चारों ओर वितरित किया जा सकता है, और कंट्रोल रूम या कमरों में ग्राफिक डिस्प्ले के साथ संचार किया जा सकता है। वितरित नियंत्रण प्रणाली (डीसीएस) का जन्म हुआ। | ||
डीसीएस के प्रारंभ ने संयंत्र नियंत्रणों जैसे कैस्केड लूप और इंटरलॉक, और अन्य उत्पादन कंप्यूटर प्रणाली के साथ | डीसीएस के प्रारंभ ने संयंत्र नियंत्रणों जैसे कैस्केड लूप और इंटरलॉक, और अन्य उत्पादन कंप्यूटर प्रणाली के साथ सरल इंटरफेसिंग के सरल इंटरकनेक्शन और पुन: कॉन्फ़िगरेशन की अनुमति दी। इसने परिष्कृत अलार्म हैंडलिंग को सक्षम किया, स्वचालित ईवेंट लॉगिंग के प्रारंभ की, चार्ट रिकॉर्डर जैसे भौतिक रिकॉर्ड की आवश्यकता को समाप्त कर दिया, नियंत्रण रैक को नेटवर्क करने की अनुमति दी और इस तरह केबलिंग रन को कम करने के लिए स्थानीय स्तर पर संयंत्र स्थापित किया, और संयंत्र की स्थिति और उत्पादन का उच्च स्तर का अवलोकन प्रदान किया। | ||
== पदानुक्रम == | == पदानुक्रम == | ||
[[File:Functional levels of a Distributed Control System.svg|thumb|एक विनिर्माण नियंत्रण ऑपरेशन के कार्यात्मक स्तर।]]संलग्न आरेख एक सामान्य मॉडल है जो प्रोसेसर और कंप्यूटर-आधारित नियंत्रण का उपयोग करके एक बड़ी प्रक्रिया में कार्यात्मक निर्माण स्तर दिखाता है। | [[File:Functional levels of a Distributed Control System.svg|thumb|एक विनिर्माण नियंत्रण ऑपरेशन के कार्यात्मक स्तर।]]संलग्न आरेख एक सामान्य मॉडल है जो प्रोसेसर और कंप्यूटर-आधारित नियंत्रण का उपयोग करके एक बड़ी प्रक्रिया में कार्यात्मक निर्माण स्तर दिखाता है। | ||
आरेख की चर्चा करते हुए: स्तर 0 में फ़ील्ड | आरेख की चर्चा करते हुए: स्तर 0 में फ़ील्ड उपकरण जैसे प्रवाह और तापमान सेंसर (प्रक्रिया मान रीडिंग - पीवी), और अंतिम नियंत्रण तत्व (एफसीई), जैसे नियंत्रण वाल्व सम्मिलित हैं; स्तर 1 में औद्योगिक इनपुट/आउटपुट (आई/ओ) मॉड्यूल और उनके संबंधित वितरित इलेक्ट्रॉनिक प्रोसेसर सम्मिलित हैं; स्तर 2 में पर्यवेक्षी कंप्यूटर होते हैं, जो प्रणाली पर प्रोसेसर नोड्स से सूचना एकत्र करते हैं, और संचालक नियंत्रण स्क्रीन प्रदान करते हैं; स्तर 3 में उत्पादन नियंत्रण स्तर है, जो सीधे प्रक्रिया को नियंत्रित नहीं करता है, लेकिन उत्पादन और देखरेख लक्ष्यों की देखरेख से संबंधित है; स्तर 4 में उत्पादन समयबद्धन स्तर है। | ||
== नियंत्रण मॉडल == | == नियंत्रण मॉडल == | ||
किसी भी प्रक्रिया के लिए मौलिक मॉडल निर्धारित करने के लिए, प्रणाली के इनपुट और आउटपुट को अन्य रासायनिक प्रक्रियाओं की तुलना में अलग तरह से परिभाषित किया जाता है।<ref name="Bequette">{{cite book|last1=Bequette|first1=B. Wayne|title=Process control: Modeling, Design, and Simulation|date=2003|publisher=Prentice Hall PTR|location=Upper Saddle River, N.J.|isbn=978-0133536409|pages=57–58|edition=Prentice-Hall International series in the physical and chemical engineering science.}}</ref> संतुलन समीकरण सामग्री इनपुट के | किसी भी प्रक्रिया के लिए मौलिक मॉडल निर्धारित करने के लिए, प्रणाली के इनपुट और आउटपुट को अन्य रासायनिक प्रक्रियाओं की तुलना में अलग तरह से परिभाषित किया जाता है।<ref name="Bequette">{{cite book|last1=Bequette|first1=B. Wayne|title=Process control: Modeling, Design, and Simulation|date=2003|publisher=Prentice Hall PTR|location=Upper Saddle River, N.J.|isbn=978-0133536409|pages=57–58|edition=Prentice-Hall International series in the physical and chemical engineering science.}}</ref> संतुलन समीकरण सामग्री इनपुट के अतिरिक्त नियंत्रण इनपुट और आउटपुट द्वारा परिभाषित किए जाते हैं। नियंत्रण मॉडल एक प्रणाली के व्यवहार की भविष्यवाणी करने के लिए उपयोग किए जाने वाले समीकरणों का एक समुच्चय है और यह निर्धारित करने में सहायता कर सकता है कि परिवर्तन की प्रतिक्रिया क्या होगी। अवस्था चर (x) एक औसत दर्जे का चर है जो प्रणाली की स्थिति का एक अच्छा संकेतक है, जैसे तापमान (ऊर्जा संतुलन), आयतन (द्रव्यमान संतुलन) या एकाग्रता (घटक संतुलन)। इनपुट चर (u) एक निर्दिष्ट चर है जिसमें सामान्यतः प्रवाह दर सम्मिलित होती है। | ||
यह ध्यान रखना महत्वपूर्ण है कि प्रवेश और निकास प्रवाह दोनों को नियंत्रण इनपुट माना जाता है। नियंत्रण इनपुट को हेरफेर, गड़बड़ी या गैर-देखरेख चर के रूप में वर्गीकृत किया जा सकता है। पैरामीटर्स ( | यह ध्यान रखना महत्वपूर्ण है कि प्रवेश और निकास प्रवाह दोनों को नियंत्रण इनपुट माना जाता है। नियंत्रण इनपुट को हेरफेर, गड़बड़ी या गैर-देखरेख चर के रूप में वर्गीकृत किया जा सकता है। पैरामीटर्स (p) सामान्यतः एक भौतिक सीमा होती है और कुछ ऐसा होता है, जो प्रणाली के लिए तय होता है, जैसे पोत की मात्रा या सामग्री की चिपचिपाहट। आउटपुट (y) वह आव्यूह है, जिसका उपयोग प्रणाली के व्यवहार को निर्धारित करने के लिए किया जाता है। नियंत्रण आउटपुट को मापित, अमापित, या देखरेख रहित के रूप में वर्गीकृत किया जा सकता है। | ||
== प्रकार == | == प्रकार == | ||
प्रक्रियाओं को बैच, निरंतर या हाइब्रिड के रूप में | प्रक्रियाओं को बैच, निरंतर या हाइब्रिड के रूप में वर्णित किया जा सकता है।<ref>{{Cite web|url=https://www.mindsmapped.com/difference-between-continuous-and-batch-process/|title = Difference between Continuous and Batch Process | Continuous vs Batch Process | MindsMapped}}</ref> बैच अनुप्रयोगों के लिए आवश्यक है कि मध्यवर्ती या अंतिम परिणाम उत्पन्न करने के लिए विशेष अवधि के लिए विशिष्ट मात्रा में कच्चे माल को विशिष्ट विधियों से जोड़ा जाए। एक उदाहरण चिपकने वाले गोंद का उत्पादन होता है, जिसके लिए सामान्यतः अंतिम उत्पाद की मात्रा बनाने के लिए एक गर्म बर्तन में कच्चे माल के मिश्रण की आवश्यकता होती है। अन्य महत्वपूर्ण उदाहरण भोजन, पेय पदार्थ और दवा का उत्पादन हैं। बैच प्रक्रियाओं का उपयोग सामान्यतः प्रति वर्ष उत्पाद की अपेक्षाकृत कम से मध्यवर्ती मात्रा (कुछ पाउंड से लाखों पाउंड) का उत्पादन करने के लिए किया जाता है। | ||
एक निरंतर भौतिक प्रणाली को चर के माध्यम से दर्शाया जाता है जो समय में सुचारू और निर्बाध होते हैं। जैकेट वाले बर्तन में पानी के तापमान का नियंत्रण, उदाहरण के लिए, निरंतर प्रक्रिया नियंत्रण का एक उदाहरण है। कुछ महत्वपूर्ण निरंतर प्रक्रियाएँ ईंधन, रसायन और प्लास्टिक का उत्पादन हैं। निर्माण में निरंतर प्रक्रियाओं का उपयोग प्रति वर्ष बहुत बड़ी मात्रा में उत्पाद (लाखों से अरबों पाउंड) का उत्पादन करने के लिए किया जाता है। इस तरह के नियंत्रण [[प्रतिक्रिया नियंत्रण]] का उपयोग करते | एक निरंतर भौतिक प्रणाली को चर के माध्यम से दर्शाया जाता है, जो समय में सुचारू और निर्बाध होते हैं। जैकेट वाले बर्तन में पानी के तापमान का नियंत्रण, उदाहरण के लिए, निरंतर प्रक्रिया नियंत्रण का एक उदाहरण है। कुछ महत्वपूर्ण निरंतर प्रक्रियाएँ ईंधन, रसायन और प्लास्टिक का उत्पादन हैं। निर्माण में निरंतर प्रक्रियाओं का उपयोग प्रति वर्ष बहुत बड़ी मात्रा में उत्पाद (लाखों से अरबों पाउंड) का उत्पादन करने के लिए किया जाता है। इस तरह के नियंत्रण [[प्रतिक्रिया नियंत्रण]] का उपयोग करते हैंː जैसे कि [[पीआईडी नियंत्रक]] में एक पीआईडी नियंत्रक में आनुपातिक, एकीकृत और व्युत्पन्न नियंत्रक कार्य सम्मिलित होते हैं। | ||
बैच और सतत प्रक्रिया नियंत्रण के तत्वों वाले अनुप्रयोगों को अधिकांशतः हाइब्रिड अनुप्रयोग कहा जाता है। | बैच और सतत प्रक्रिया नियंत्रण के तत्वों वाले अनुप्रयोगों को अधिकांशतः हाइब्रिड अनुप्रयोग कहा जाता है। | ||
Line 61: | Line 63: | ||
[[File:Smart current loop positioner.png|thumb|एक सतत प्रवाह नियंत्रण पाश का उदाहरण। सिग्नलिंग उद्योग मानक 4-20 एमए वर्तमान लूप द्वारा है, और एक स्मार्ट नियंत्रण वाल्व सुनिश्चित करता है कि नियंत्रण वाल्व सही ढंग से संचालित हो।]]किसी भी औद्योगिक नियंत्रण प्रणाली का मूलभूत निर्माण खंड नियंत्रण पाश है, जो केवल एक प्रक्रिया चर को नियंत्रित करता है। संलग्न आरेख में एक उदाहरण दिखाया गया है, जहां एक पाइप में प्रवाह दर को पीआईडी नियंत्रक द्वारा नियंत्रित किया जाता है, जो सही वाल्व स्थिति सुनिश्चित करने के लिए वाल्व सर्वो-नियंत्रक के रूप में प्रभावी रूप से एक कैस्केड लूप द्वारा सहायता प्रदान करता है। | [[File:Smart current loop positioner.png|thumb|एक सतत प्रवाह नियंत्रण पाश का उदाहरण। सिग्नलिंग उद्योग मानक 4-20 एमए वर्तमान लूप द्वारा है, और एक स्मार्ट नियंत्रण वाल्व सुनिश्चित करता है कि नियंत्रण वाल्व सही ढंग से संचालित हो।]]किसी भी औद्योगिक नियंत्रण प्रणाली का मूलभूत निर्माण खंड नियंत्रण पाश है, जो केवल एक प्रक्रिया चर को नियंत्रित करता है। संलग्न आरेख में एक उदाहरण दिखाया गया है, जहां एक पाइप में प्रवाह दर को पीआईडी नियंत्रक द्वारा नियंत्रित किया जाता है, जो सही वाल्व स्थिति सुनिश्चित करने के लिए वाल्व सर्वो-नियंत्रक के रूप में प्रभावी रूप से एक कैस्केड लूप द्वारा सहायता प्रदान करता है। | ||
कुछ बड़ी प्रणालियों में सैकड़ों या हजारों नियंत्रण लूप हो सकते हैं। जटिल प्रक्रियाओं में लूप इंटरएक्टिव होते हैं, | कुछ बड़ी प्रणालियों में सैकड़ों या हजारों नियंत्रण लूप हो सकते हैं। जटिल प्रक्रियाओं में लूप इंटरएक्टिव होते हैं, जिससे एक लूप का संचालन दूसरे के संचालन को प्रभावित कर सके। नियंत्रण लूपों का प्रतिनिधित्व करने के लिए प्रणाली आरेख एक [[गरमा और इंस्ट्रूमेंटेशन आरेख|पाइपिंग और इंस्ट्रूमेंटेशन आरेख]] है। | ||
सामान्यतः उपयोग की जाने वाली नियंत्रण प्रणालियों में [[ निर्देशयोग्य तर्क नियंत्रक ]] ( | सामान्यतः उपयोग की जाने वाली नियंत्रण प्रणालियों में [[ निर्देशयोग्य तर्क नियंत्रक ]] (पीएलसी), [[वितरित नियंत्रण प्रणाली]] (डीसीएस) या [[SCADA|स्काडा]] सम्मिलित हैं। | ||
[[File:Auxostat schematic.svg|thumb|एक [[निरंतर उभारा-टैंक रिएक्टर]] के स्तर नियंत्रण प्रणाली का उदाहरण। टैंक में प्रवाह नियंत्रण स्तर नियंत्रण से कैस्केड किया जाएगा।]]एक और उदाहरण दिखाया गया | [[File:Auxostat schematic.svg|thumb|एक [[निरंतर उभारा-टैंक रिएक्टर]] के स्तर नियंत्रण प्रणाली का उदाहरण। टैंक में प्रवाह नियंत्रण स्तर नियंत्रण से कैस्केड किया जाएगा।]]एक और उदाहरण दिखाया गया है, यदि एक टैंक में स्तर को बनाए रखने के लिए एक नियंत्रण वाल्व का उपयोग किया जाता है, तो स्तर नियंत्रक एक स्तर सेंसर के समतुल्य रीडिंग की तुलना स्तर सेटपॉइंट से करेगा और यह निर्धारित करेगा कि स्तर को स्थिर रखने के लिए अधिक या कम वाल्व खोलना आवश्यक था या आवश्यक नहीं था। एक कैस्केड प्रवाह नियंत्रक तब वाल्व स्थिति में परिवर्तन की गणना कर सकता है। | ||
== आर्थिक लाभ == | == आर्थिक लाभ == | ||
बैच और निरंतर प्रक्रियाओं में निर्मित कई उत्पादों की आर्थिक प्रकृति को कम मार्जिन के कारण अत्यधिक कुशल संचालन की आवश्यकता होती है। प्रक्रिया नियंत्रण में प्रतिस्पर्धी कारक यह है कि संतोषजनक होने के लिए उत्पादों को कुछ विशिष्टताओं को पूरा करना चाहिए। ये विनिर्देश दो रूपों में आ सकते हैं: सामग्री या उत्पाद की संपत्ति के लिए न्यूनतम और अधिकतम, या एक सीमा जिसके अंदर संपत्ति होनी चाहिए।<ref name="smith">{{cite journal|last1=Smith|first1=C L|title=Process Control for the Process Industries - Part 2: Steady State Characteristics|journal=Chemical Engineering Progress|date=March 2017|pages=67–73}}</ref> सभी लूप गड़बड़ी के लिए अतिसंवेदनशील होते हैं और इसलिए गड़बड़ी सुनिश्चित करने के लिए प्रक्रिया | बैच और निरंतर प्रक्रियाओं में निर्मित कई उत्पादों की आर्थिक प्रकृति को कम मार्जिन के कारण अत्यधिक कुशल संचालन की आवश्यकता होती है। प्रक्रिया नियंत्रण में प्रतिस्पर्धी कारक यह है कि संतोषजनक होने के लिए उत्पादों को कुछ विशिष्टताओं को पूरा करना चाहिए। ये विनिर्देश दो रूपों में आ सकते हैं: सामग्री या उत्पाद की संपत्ति के लिए न्यूनतम और अधिकतम, या एक सीमा जिसके अंदर संपत्ति होनी चाहिए।<ref name="smith">{{cite journal|last1=Smith|first1=C L|title=Process Control for the Process Industries - Part 2: Steady State Characteristics|journal=Chemical Engineering Progress|date=March 2017|pages=67–73}}</ref> सभी लूप गड़बड़ी के लिए अतिसंवेदनशील होते हैं और इसलिए गड़बड़ी सुनिश्चित करने के लिए प्रक्रिया समुच्चय बिंदुओं पर एक बफर का उपयोग किया जाना चाहिए जिससे सामग्री या उत्पाद विनिर्देशों से बाहर न हो जाएं। यह बफर एक आर्थिक व्यय पर आता है (अर्थात अतिरिक्त प्रसंस्करण, उन्नत या अवसादग्रस्त प्रक्रिया स्थितियों को बनाए रखना, आदि)। | ||
उत्पाद विनिर्देशों को पूरा करने के लिए आवश्यक मार्जिन को कम करके प्रक्रिया दक्षता को बढ़ाया जा सकता है।<ref name =smith/> यह प्रक्रिया पर गड़बड़ी के प्रभाव को कम करने के लिए प्रक्रिया के नियंत्रण में संशोधन करके किया जा सकता है। भिन्नता को कम करने और लक्ष्य को स्थानांतरित करने की दो चरण विधि में दक्षता में संशोधन हुआ है।<ref name =smith/> विभिन्न प्रक्रिया उन्नयन (अर्थात् उपकरण उन्नयन, उन्नत नियंत्रण विधियों, आदि) के माध्यम से मार्जिन को कम किया जा सकता है। एक बार मार्जिन कम हो जाने के बाद, निर्धारित बिंदु लक्ष्य को कैसे स्थानांतरित किया जाना है, यह निर्धारित करने के लिए प्रक्रिया पर एक आर्थिक विश्लेषण किया जा सकता है। कम रूढ़िवादी प्रक्रिया | उत्पाद विनिर्देशों को पूरा करने के लिए आवश्यक मार्जिन को कम करके प्रक्रिया दक्षता को बढ़ाया जा सकता है।<ref name =smith/> यह प्रक्रिया पर गड़बड़ी के प्रभाव को कम करने के लिए प्रक्रिया के नियंत्रण में संशोधन करके किया जा सकता है। भिन्नता को कम करने और लक्ष्य को स्थानांतरित करने की दो चरण विधि में दक्षता में संशोधन हुआ है।<ref name =smith/> विभिन्न प्रक्रिया उन्नयन (अर्थात् उपकरण उन्नयन, उन्नत नियंत्रण विधियों, आदि) के माध्यम से मार्जिन को कम किया जा सकता है। एक बार मार्जिन कम हो जाने के बाद, निर्धारित बिंदु लक्ष्य को कैसे स्थानांतरित किया जाना है, यह निर्धारित करने के लिए प्रक्रिया पर एक आर्थिक विश्लेषण किया जा सकता है। कम रूढ़िवादी प्रक्रिया समुच्चय बिन्दुओं से आर्थिक दक्षता में वृद्धि होती है।<ref name = smith/> प्रभावी प्रक्रिया नियंत्रण रणनीतियाँ उन निर्माताओं के प्रतिस्पर्धात्मक लाभ को बढ़ाती हैं, जो उन्हें नियोजित करते हैं। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 02:02, 24 March 2023
This article needs additional citations for verification. (October 2017) (Learn how and when to remove this template message) |
निरंतर उत्पादन प्रक्रियाओं में एक औद्योगिक प्रक्रिया नियंत्रण या केवल प्रक्रिया नियंत्रण एक अनुशासन है जो औद्योगिक नियंत्रण प्रणाली और नियंत्रण सिद्धांत का उपयोग स्थिरता, अर्थव्यवस्था और सुरक्षा के उत्पादन स्तर को प्राप्त करने के लिए करता है जिसे मानव मैनुअल नियंत्रण द्वारा पूरी तरह से प्राप्त नहीं किया जा सकता है। यह मोटर वाहन, खनन, ड्रेजिंग, तेल शोधन, लुगदी और कागज निर्माण, रासायनिक प्रसंस्करण और विद्युत् उत्पादन संयंत्रों जैसे उद्योगों में व्यापक रूप से प्रयुक्त किया गया है।[1]
में एक औद्योगिक प्रक्रिया नियंत्रण या केवल प्रक्रिया नियंत्रण एक अनुशासन है जो और सिद्धांत का उपयोग स्थिरता, अर्थव्यवस्था और सुरक्षा के उत्पादन स्तर को प्राप्त करने के लिए करता है जिसे मानव मैनुअल नियंत्रण द्वारा पूरी तरह से प्राप्त नहीं किया जा सकता है। यह ऑटोमोटिव उद्योग, खनन, , तेल शोधन, लुगदी और कागज निर्माण, रासायनिक प्रसंस्करण और विद्युत् उत्पादन संयंत्रों जैसे उद्योगों में व्यापक रूप से प्रयुक्त किया गया है।
आकार, प्रकार और जटिलता की एक विस्तृत श्रृंखला है, लेकिन यह संचालकों की एक छोटी संख्या को उच्च स्तर की स्थिरता के लिए जटिल प्रक्रियाओं का प्रबंधन करने में सक्षम बनाती है। बड़ी औद्योगिक प्रक्रिया नियंत्रण प्रणालियों का विकास बड़ी मात्रा में और जटिल प्रक्रियाओं के डिजाइन को सक्षम करने में सहायक थी, जो आर्थिक रूप से या सुरक्षित रूप से संचालित नहीं किया जा सकता था।[2]
आवेदन तापमान और एकल प्रक्रिया पोत के स्तर को नियंत्रित करने से लेकर कई हजार नियंत्रण छोरों के साथ एक पूर्ण रासायनिक प्रसंस्करण संयंत्र तक हो सकते हैं।
इतिहास
जल नियंत्रण उपकरणों के रूप में प्रारंभिक प्रक्रिया नियंत्रण सफलताएं सबसे अधिक बार आईं हैं। तीसरी शताब्दी ईसा पूर्व में पानी की घड़ियों के जल स्तर को विनियमित करने के लिए फ्लोट वाल्व का आविष्कार करने के लिए अलेक्जेंड्रिया के केटेसिबिओस के केटेसिबिओस को श्रेय दिया जाता है। पहली शताब्दी ईस्वी में, अलेक्जेंड्रिया के हेरॉन ने आधुनिक शौचालयों में उपयोग किए जाने वाले भरण वाल्व के समान पानी के वाल्व का आविष्कार किया था।[3]
बाद की प्रक्रिया ने आविष्कारों को नियंत्रित किया जिसमें मूलभूत भौतिकी सिद्धांत सम्मिलित थे। 1620 में, कॉर्नेलिस ड्रेबेल ने भट्टी में तापमान को नियंत्रित करने के लिए द्विधातु थर्मोस्टेट का आविष्कार किया। 1681 में, डेनिस पापिन ने पता लगाया कि बर्तन के ढक्कन के ऊपर वजन रखकर बर्तन के अंदर के दबाव को नियंत्रित किया जा सकता है।[3] 1745 में, एडमंड ली ने पवनचक्की की दक्षता में संशोधन के लिए फैनटेल बनाया; संशोधन के लिए पवनचक्की फैनटेल बनाया; एक फैनटेल एक छोटी पवनचक्की थी जो पवनचक्की के चेहरे को सीधे आने वाली हवा में रखने के लिए बड़े पंखों के 90° पर रखी जाती थी।
1760 के दशक में औद्योगिक क्रांति के प्रारंभ के साथ, प्रक्रिया नियंत्रण आविष्कारों का उद्देश्य मानव संचालकों को मशीनीकृत प्रक्रियाओं से बदलना था। 1784 में, ओलिवर इवांस ने एक पानी से चलने वाली आटा चक्की बनाई जो बाल्टियों और स्क्रू कन्वेयर का उपयोग करके संचालित होती थी। हेनरी फ़ोर्ड ने 1910 में उसी सिद्धांत को प्रयुक्त किया जब ऑटोमोबाइल उत्पादन प्रक्रिया में मानवीय हस्तक्षेप को कम करने के लिए असेंबली लाइन बनाई गई थी।[3]
निरंतर परिवर्तनीय प्रक्रिया नियंत्रण के लिए यह 1922 तक नहीं था कि जिसे अब हम पीआईडी नियंत्रण या तीन-अवधि नियंत्रण कहते हैं, उसके लिए एक औपचारिक नियंत्रण कानून पहली बार रूसी अमेरिकी इंजीनियर निकोलस मिनोर्स्की द्वारा सैद्धांतिक विश्लेषण का उपयोग करके विकसित किया गया था।[4] मिनोर्स्की अमेरिकी नौसेना के लिए स्वचालित जहाज संचालन पर शोध और डिजाइन कर रहे थे और एक हेल्समैन की टिप्पणियों पर उनका विश्लेषण आधारित था। उन्होंने कहा कि हेल्समैन जहाज को न केवल वर्तमान पाठ्यक्रम त्रुटि के आधार पर, किन्तु पिछली त्रुटि के साथ-साथ परिवर्तन की वर्तमान दर पर भी आधारित करता है;[5] इसके बाद मिनॉर्स्की द्वारा इसे एक गणितीय उपचार दिया गया।[6]
उनका लक्ष्य स्थिरता था, सामान्य नियंत्रण नहीं, जिसने समस्या को महत्वपूर्ण रूप से सरल बना दिया। जबकि आनुपातिक नियंत्रण छोटी गड़बड़ी के खिलाफ स्थिरता प्रदान करता है, यह एक स्थिर गड़बड़ी से निपटने के लिए अपर्याप्त था, विशेष रूप से एक कठोर आंधी (स्थिर-अवस्था त्रुटि के कारण), जिसे अभिन्न शब्द जोड़ना आवश्यक था। (#स्थिर-अवस्था त्रुटि | स्थिर-अवस्था त्रुटि के कारण), जिसके लिए अभिन्न शब्द जोड़ना आवश्यक था। अंत में, स्थिरता और नियंत्रण में संशोधन के लिए व्युत्पन्न शब्द जोड़ा गया।
आधुनिक प्रक्रिया नियंत्रण संचालन का विकास
बड़े औद्योगिक संयंत्रों का प्रक्रिया नियंत्रण कई चरणों में विकसित हुआ है। प्रारंभ में, नियंत्रण पैनल स्थानीय से प्रक्रिया संयंत्र तक होगा। चूँकि इन बिखरे हुए पैनलों में भाग लेने के लिए एक बड़े जनशक्ति संसाधन की आवश्यकता थी, और इस प्रक्रिया का कोई समग्र दृष्टिकोण नहीं था। अगला तार्किक विकास स्थायी रूप से कार्यरत केंद्रीय नियंत्रण कक्ष को सभी संयंत्र मापों का प्रसारण था। प्रभावी रूप से यह सभी स्थानीय पैनलों का केंद्रीकरण था, जिसमें कम मैनिंग स्तर और प्रक्रिया के सरल अवलोकन के लाभ थे। अधिकांशतः नियंत्रक नियंत्रण कक्ष पैनल के पीछे होते थे, और सभी स्वचालित और मैन्युअल नियंत्रण आउटपुट वापस संयंत्र में प्रेषित किए जाते थे। चूँकि, एक केंद्रीय नियंत्रण फोकस प्रदान करते हुए, यह व्यवस्था अनम्य थी क्योंकि प्रत्येक नियंत्रण पाश का अपना नियंत्रक हार्डवेयर था, और नियंत्रण कक्ष के अंदर निरंतर संचालक आंदोलन को प्रक्रिया के विभिन्न भागों को देखने की आवश्यकता थी।
इलेक्ट्रॉनिक प्रोसेसर और ग्राफिक डिस्प्ले के आने से इन असतत नियंत्रकों को कंप्यूटर-आधारित एल्गोरिदम के साथ बदलना संभव हो गया, जो अपने स्वयं के नियंत्रण प्रोसेसर के साथ इनपुट/आउटपुट रैक के नेटवर्क पर होस्ट किए गए थे। इन्हें प्लांट के चारों ओर वितरित किया जा सकता है, और कंट्रोल रूम या कमरों में ग्राफिक डिस्प्ले के साथ संचार किया जा सकता है। वितरित नियंत्रण प्रणाली (डीसीएस) का जन्म हुआ।
डीसीएस के प्रारंभ ने संयंत्र नियंत्रणों जैसे कैस्केड लूप और इंटरलॉक, और अन्य उत्पादन कंप्यूटर प्रणाली के साथ सरल इंटरफेसिंग के सरल इंटरकनेक्शन और पुन: कॉन्फ़िगरेशन की अनुमति दी। इसने परिष्कृत अलार्म हैंडलिंग को सक्षम किया, स्वचालित ईवेंट लॉगिंग के प्रारंभ की, चार्ट रिकॉर्डर जैसे भौतिक रिकॉर्ड की आवश्यकता को समाप्त कर दिया, नियंत्रण रैक को नेटवर्क करने की अनुमति दी और इस तरह केबलिंग रन को कम करने के लिए स्थानीय स्तर पर संयंत्र स्थापित किया, और संयंत्र की स्थिति और उत्पादन का उच्च स्तर का अवलोकन प्रदान किया।
पदानुक्रम
संलग्न आरेख एक सामान्य मॉडल है जो प्रोसेसर और कंप्यूटर-आधारित नियंत्रण का उपयोग करके एक बड़ी प्रक्रिया में कार्यात्मक निर्माण स्तर दिखाता है।
आरेख की चर्चा करते हुए: स्तर 0 में फ़ील्ड उपकरण जैसे प्रवाह और तापमान सेंसर (प्रक्रिया मान रीडिंग - पीवी), और अंतिम नियंत्रण तत्व (एफसीई), जैसे नियंत्रण वाल्व सम्मिलित हैं; स्तर 1 में औद्योगिक इनपुट/आउटपुट (आई/ओ) मॉड्यूल और उनके संबंधित वितरित इलेक्ट्रॉनिक प्रोसेसर सम्मिलित हैं; स्तर 2 में पर्यवेक्षी कंप्यूटर होते हैं, जो प्रणाली पर प्रोसेसर नोड्स से सूचना एकत्र करते हैं, और संचालक नियंत्रण स्क्रीन प्रदान करते हैं; स्तर 3 में उत्पादन नियंत्रण स्तर है, जो सीधे प्रक्रिया को नियंत्रित नहीं करता है, लेकिन उत्पादन और देखरेख लक्ष्यों की देखरेख से संबंधित है; स्तर 4 में उत्पादन समयबद्धन स्तर है।
नियंत्रण मॉडल
किसी भी प्रक्रिया के लिए मौलिक मॉडल निर्धारित करने के लिए, प्रणाली के इनपुट और आउटपुट को अन्य रासायनिक प्रक्रियाओं की तुलना में अलग तरह से परिभाषित किया जाता है।[7] संतुलन समीकरण सामग्री इनपुट के अतिरिक्त नियंत्रण इनपुट और आउटपुट द्वारा परिभाषित किए जाते हैं। नियंत्रण मॉडल एक प्रणाली के व्यवहार की भविष्यवाणी करने के लिए उपयोग किए जाने वाले समीकरणों का एक समुच्चय है और यह निर्धारित करने में सहायता कर सकता है कि परिवर्तन की प्रतिक्रिया क्या होगी। अवस्था चर (x) एक औसत दर्जे का चर है जो प्रणाली की स्थिति का एक अच्छा संकेतक है, जैसे तापमान (ऊर्जा संतुलन), आयतन (द्रव्यमान संतुलन) या एकाग्रता (घटक संतुलन)। इनपुट चर (u) एक निर्दिष्ट चर है जिसमें सामान्यतः प्रवाह दर सम्मिलित होती है।
यह ध्यान रखना महत्वपूर्ण है कि प्रवेश और निकास प्रवाह दोनों को नियंत्रण इनपुट माना जाता है। नियंत्रण इनपुट को हेरफेर, गड़बड़ी या गैर-देखरेख चर के रूप में वर्गीकृत किया जा सकता है। पैरामीटर्स (p) सामान्यतः एक भौतिक सीमा होती है और कुछ ऐसा होता है, जो प्रणाली के लिए तय होता है, जैसे पोत की मात्रा या सामग्री की चिपचिपाहट। आउटपुट (y) वह आव्यूह है, जिसका उपयोग प्रणाली के व्यवहार को निर्धारित करने के लिए किया जाता है। नियंत्रण आउटपुट को मापित, अमापित, या देखरेख रहित के रूप में वर्गीकृत किया जा सकता है।
प्रकार
प्रक्रियाओं को बैच, निरंतर या हाइब्रिड के रूप में वर्णित किया जा सकता है।[8] बैच अनुप्रयोगों के लिए आवश्यक है कि मध्यवर्ती या अंतिम परिणाम उत्पन्न करने के लिए विशेष अवधि के लिए विशिष्ट मात्रा में कच्चे माल को विशिष्ट विधियों से जोड़ा जाए। एक उदाहरण चिपकने वाले गोंद का उत्पादन होता है, जिसके लिए सामान्यतः अंतिम उत्पाद की मात्रा बनाने के लिए एक गर्म बर्तन में कच्चे माल के मिश्रण की आवश्यकता होती है। अन्य महत्वपूर्ण उदाहरण भोजन, पेय पदार्थ और दवा का उत्पादन हैं। बैच प्रक्रियाओं का उपयोग सामान्यतः प्रति वर्ष उत्पाद की अपेक्षाकृत कम से मध्यवर्ती मात्रा (कुछ पाउंड से लाखों पाउंड) का उत्पादन करने के लिए किया जाता है।
एक निरंतर भौतिक प्रणाली को चर के माध्यम से दर्शाया जाता है, जो समय में सुचारू और निर्बाध होते हैं। जैकेट वाले बर्तन में पानी के तापमान का नियंत्रण, उदाहरण के लिए, निरंतर प्रक्रिया नियंत्रण का एक उदाहरण है। कुछ महत्वपूर्ण निरंतर प्रक्रियाएँ ईंधन, रसायन और प्लास्टिक का उत्पादन हैं। निर्माण में निरंतर प्रक्रियाओं का उपयोग प्रति वर्ष बहुत बड़ी मात्रा में उत्पाद (लाखों से अरबों पाउंड) का उत्पादन करने के लिए किया जाता है। इस तरह के नियंत्रण प्रतिक्रिया नियंत्रण का उपयोग करते हैंː जैसे कि पीआईडी नियंत्रक में एक पीआईडी नियंत्रक में आनुपातिक, एकीकृत और व्युत्पन्न नियंत्रक कार्य सम्मिलित होते हैं।
बैच और सतत प्रक्रिया नियंत्रण के तत्वों वाले अनुप्रयोगों को अधिकांशतः हाइब्रिड अनुप्रयोग कहा जाता है।
नियंत्रण छोरों
किसी भी औद्योगिक नियंत्रण प्रणाली का मूलभूत निर्माण खंड नियंत्रण पाश है, जो केवल एक प्रक्रिया चर को नियंत्रित करता है। संलग्न आरेख में एक उदाहरण दिखाया गया है, जहां एक पाइप में प्रवाह दर को पीआईडी नियंत्रक द्वारा नियंत्रित किया जाता है, जो सही वाल्व स्थिति सुनिश्चित करने के लिए वाल्व सर्वो-नियंत्रक के रूप में प्रभावी रूप से एक कैस्केड लूप द्वारा सहायता प्रदान करता है।
कुछ बड़ी प्रणालियों में सैकड़ों या हजारों नियंत्रण लूप हो सकते हैं। जटिल प्रक्रियाओं में लूप इंटरएक्टिव होते हैं, जिससे एक लूप का संचालन दूसरे के संचालन को प्रभावित कर सके। नियंत्रण लूपों का प्रतिनिधित्व करने के लिए प्रणाली आरेख एक पाइपिंग और इंस्ट्रूमेंटेशन आरेख है।
सामान्यतः उपयोग की जाने वाली नियंत्रण प्रणालियों में निर्देशयोग्य तर्क नियंत्रक (पीएलसी), वितरित नियंत्रण प्रणाली (डीसीएस) या स्काडा सम्मिलित हैं।
एक और उदाहरण दिखाया गया है, यदि एक टैंक में स्तर को बनाए रखने के लिए एक नियंत्रण वाल्व का उपयोग किया जाता है, तो स्तर नियंत्रक एक स्तर सेंसर के समतुल्य रीडिंग की तुलना स्तर सेटपॉइंट से करेगा और यह निर्धारित करेगा कि स्तर को स्थिर रखने के लिए अधिक या कम वाल्व खोलना आवश्यक था या आवश्यक नहीं था। एक कैस्केड प्रवाह नियंत्रक तब वाल्व स्थिति में परिवर्तन की गणना कर सकता है।
आर्थिक लाभ
बैच और निरंतर प्रक्रियाओं में निर्मित कई उत्पादों की आर्थिक प्रकृति को कम मार्जिन के कारण अत्यधिक कुशल संचालन की आवश्यकता होती है। प्रक्रिया नियंत्रण में प्रतिस्पर्धी कारक यह है कि संतोषजनक होने के लिए उत्पादों को कुछ विशिष्टताओं को पूरा करना चाहिए। ये विनिर्देश दो रूपों में आ सकते हैं: सामग्री या उत्पाद की संपत्ति के लिए न्यूनतम और अधिकतम, या एक सीमा जिसके अंदर संपत्ति होनी चाहिए।[9] सभी लूप गड़बड़ी के लिए अतिसंवेदनशील होते हैं और इसलिए गड़बड़ी सुनिश्चित करने के लिए प्रक्रिया समुच्चय बिंदुओं पर एक बफर का उपयोग किया जाना चाहिए जिससे सामग्री या उत्पाद विनिर्देशों से बाहर न हो जाएं। यह बफर एक आर्थिक व्यय पर आता है (अर्थात अतिरिक्त प्रसंस्करण, उन्नत या अवसादग्रस्त प्रक्रिया स्थितियों को बनाए रखना, आदि)।
उत्पाद विनिर्देशों को पूरा करने के लिए आवश्यक मार्जिन को कम करके प्रक्रिया दक्षता को बढ़ाया जा सकता है।[9] यह प्रक्रिया पर गड़बड़ी के प्रभाव को कम करने के लिए प्रक्रिया के नियंत्रण में संशोधन करके किया जा सकता है। भिन्नता को कम करने और लक्ष्य को स्थानांतरित करने की दो चरण विधि में दक्षता में संशोधन हुआ है।[9] विभिन्न प्रक्रिया उन्नयन (अर्थात् उपकरण उन्नयन, उन्नत नियंत्रण विधियों, आदि) के माध्यम से मार्जिन को कम किया जा सकता है। एक बार मार्जिन कम हो जाने के बाद, निर्धारित बिंदु लक्ष्य को कैसे स्थानांतरित किया जाना है, यह निर्धारित करने के लिए प्रक्रिया पर एक आर्थिक विश्लेषण किया जा सकता है। कम रूढ़िवादी प्रक्रिया समुच्चय बिन्दुओं से आर्थिक दक्षता में वृद्धि होती है।[9] प्रभावी प्रक्रिया नियंत्रण रणनीतियाँ उन निर्माताओं के प्रतिस्पर्धात्मक लाभ को बढ़ाती हैं, जो उन्हें नियोजित करते हैं।
यह भी देखें
- Actuator
- Automation
- Automatic control
- Check weigher
- Closed-loop controller
- Control engineering
- Control loop
- Control panel
- Control system
- Control theory
- Controllability
- Controller (control theory)
- Cruise control
- Current loop
- Digital control
- Distributed control system
- Feedback
- Feed-forward
- Fieldbus
- Flow control valve
- Fuzzy control system
- Gain scheduling
- Intelligent control
- Laplace transform
- Linear parameter-varying control
- Measurement instruments
- Model predictive control
- Negative feedback
- Nonlinear control
- Open-loop controller
- Operational historian
- Proportional control
- PID controller
- Piping and instrumentation diagram
- Positive feedback
- Process capability
- Programmable logic controller
- Regulator (automatic control)
- SCADA
- Servomechanism
- Setpoint
- Signal-flow graph
- Simatic S5 PLC
- Sliding mode control
- Temperature control
- Transducer
- Valve
- Watt governor
- Process control monitoring
संदर्भ
- ↑ "सांख्यिकीय प्रक्रिया नियंत्रण के लिए एक गाइड". Red Meters (in English). 2019-05-14. Retrieved 2021-03-29.
- ↑ Bolton, Bill. Control Engineering (2nd Edition). Longman Pub Group; 2nd edition,1998.
- ↑ 3.0 3.1 3.2 Young, William Y; Svrcek, Donald P; Mahoney, Brent R (2014). "1: A Brief History of Control and Simulation". प्रक्रिया नियंत्रण के लिए एक वास्तविक समय दृष्टिकोण (3 ed.). Chichester, West Sussex, United Kingdom: John Wiley & Sons Inc. pp. 1–2. ISBN 978-1119993872.
- ↑ Minorsky, Nicolas (1922). "स्वचालित रूप से स्टीयरिंग निकायों की दिशात्मक स्थिरता". Journal of the American Society for Naval Engineers. 34 (2): 280–309. doi:10.1111/j.1559-3584.1922.tb04958.x.
- ↑ Bennett, Stuart (1993). A History of Control Engineering 1930-1955. London: Peter Peregrinus Ltd. On behalf of the Institution of Electrical Engineers. p. 67. ISBN 978-0-86341-280-6.
- ↑ Bennett, Stuart (1996). "A brief history of automatic control" (PDF). IEEE Control Systems Magazine. 16 (3): 17–25. doi:10.1109/37.506394. Archived from the original (PDF) on 2016-08-09. Retrieved 2018-03-25.
- ↑ Bequette, B. Wayne (2003). Process control: Modeling, Design, and Simulation (Prentice-Hall International series in the physical and chemical engineering science. ed.). Upper Saddle River, N.J.: Prentice Hall PTR. pp. 57–58. ISBN 978-0133536409.
- ↑ "Difference between Continuous and Batch Process | Continuous vs Batch Process | MindsMapped".
- ↑ 9.0 9.1 9.2 9.3 Smith, C L (March 2017). "Process Control for the Process Industries - Part 2: Steady State Characteristics". Chemical Engineering Progress: 67–73.
अग्रिम पठन
- Walker, Mark John (2012-09-08). The Programmable Logic Controller: its prehistory, emergence and application (PDF) (PhD thesis). Department of Communication and Systems Faculty of Mathematics, Computing and Technology: The Open University. Archived (PDF) from the original on 2018-06-20. Retrieved 2018-06-20.