होलोनोमिक फलन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Type of functions, in mathematical analysis}} | {{short description|Type of functions, in mathematical analysis}} | ||
{{further|पी-पुनरावर्ती समीकरण}} | {{further|पी-पुनरावर्ती समीकरण}} | ||
गणित में, और विशेष रूप से [[गणितीय विश्लेषण]] में, होलोनोमिक फलन कई चरों का सहज | गणित में, और विशेष रूप से [[गणितीय विश्लेषण]] में, होलोनोमिक फलन कई चरों का सहज फलन है जो बहुपद गुणांक वाले [[रैखिक अंतर समीकरण|रैखिक अंतर समीकरणों]] की प्रणाली का समाधान है और [[डी-मॉड्यूल]] सिद्धांत के संदर्भ में उपयुक्त आयाम स्थिति को संतुष्ट करता है। अधिक त्रुटिहीन रूप से, होलोनोमिक फलन चिकनी कार्यों के [[होलोनोमिक मॉड्यूल]] का तत्व है। होलोनोमिक कार्यों को अलग-अलग परिमित कार्यों के रूप में भी वर्णित किया जा सकता है, जिन्हें डी-परिमित कार्यों के रूप में भी जाना जाता है। जब चरों में शक्ति श्रृंखला होलोनोमिक फलन का टेलर विस्तार होता है, तो या कई सूचकांकों में इसके गुणांकों के अनुक्रम को 'होलोनोमिक' भी कहा जाता है। होलोनोमिक अनुक्रमों को पी-पुनरावर्ती अनुक्रम भी कहा जाता है: वे पुनरावर्ती रूप से बहुभिन्नरूपी पुनरावर्तन द्वारा परिभाषित होते हैं जो पूरे अनुक्रम से संतुष्ट होते हैं और इसके उपयुक्त विशेषज्ञताओं द्वारा एक होलोनोमिक फलन का टेलर विस्तार होता है, इसके गुणांक का क्रम , एक या कई सूचकांकों में, को होलोनोमिक भी कहा जाता है। अविभाज्य स्थिति में स्थिति सरल हो जाती है: कोई भी अविभाज्य अनुक्रम जो बहुपद गुणांकों के साथ रेखीय सजातीय [[पुनरावृत्ति संबंध]] को संतुष्ट करता है, या समकक्ष रूप से बहुपद गुणांकों के साथ रेखीय सजातीय अंतर समीकरण, होलोनोमिक है।<ref>See {{harvnb|Zeilberger|1990}} and {{harvnb|Kauers|Paule|2011}}.</ref> | ||
'''चर में होलोनोमिक फलन और अनुक्रम''' | |||
=== परिभाषाएं === | === परिभाषाएं === | ||
मान ले <math>\mathbb{K}</math> [[विशेषता (बीजगणित)]] 0 का [[क्षेत्र (गणित)]] (उदाहरण के लिए, <math>\mathbb{K} = \mathbb{Q}</math> या <math>\mathbb{K} = \mathbb{C}</math>) होना चाहिये। | |||
फलन <math>f = f(x)</math> बहुपद उपस्थित होने पर डी-परिमित (या होलोनोमिक) कहा जाता है <math>0 \neq a_r(x), a_{r-1}(x), \ldots, a_0(x) \in \mathbb{K}[x]</math> जैसे कि | |||
:<math>a_r(x) f^{(r)}(x) + a_{r-1}(x) f^{(r-1)}(x) + \cdots + a_1(x) f'(x) + a_0(x) f(x) = 0</math> | :<math>a_r(x) f^{(r)}(x) + a_{r-1}(x) f^{(r-1)}(x) + \cdots + a_1(x) f'(x) + a_0(x) f(x) = 0</math> | ||
सभी एक्स के लिए रखती है। इसे इस रूप में भी लिखा जा सकता है <math>A f = 0</math> | सभी एक्स के लिए रखती है। इसे इस रूप में भी लिखा जा सकता है <math>A f = 0</math> जहाँ | ||
:<math>A = \sum_{k=0}^r a_k D_x^k</math> | :<math>A = \sum_{k=0}^r a_k D_x^k</math> | ||
और <math>D_x</math> [[ अंतर ऑपरेटर ]] है जो | और <math>D_x</math> [[ अंतर ऑपरेटर ]] है जो <math>f(x)</math> को <math>f'(x)</math> का माप करता है। <math>A</math> f का विलोपन करने वाला संकारक कहलाता है (का विलोपन करने वाला संकारक <math>f</math> वलय में आदर्श (वलय सिद्धांत) बनाएं <math>\mathbb{K}[x][D_x]</math>का संहारक कहा जाता है <math>f</math>). मात्रा r को विलोपन संकारक का क्रम कहा जाता है। विस्तार से, होलोनोमिक फलन f को क्रम r का कहा जाता है, जब इस तरह के क्रम का विलोपन करने वाला ऑपरेटर उपस्थित होता है। | ||
क्रम <math>c = c_0, c_1, \ldots</math> बहुपद | क्रम <math>c = c_0, c_1, \ldots</math> बहुपद उपस्थित होने पर पी-रिकर्सिव (या होलोनोमिक) कहा जाता है <math>a_r(n), a_{r-1}(n), \ldots, a_0(n) \in \mathbb{K}[n]</math> जैसे कि | ||
:<math>a_r(n) c_{n+r} + a_{r-1}(n) c_{n+r-1} + \cdots + a_0(n) c_n = 0</math> | :<math>a_r(n) c_{n+r} + a_{r-1}(n) c_{n+r-1} + \cdots + a_0(n) c_n = 0</math> | ||
सभी n के लिए रखती है। इसे इस रूप में भी लिखा जा सकता है <math>A c = 0</math> | सभी n के लिए रखती है। इसे इस रूप में भी लिखा जा सकता है <math>A c = 0</math> जहाँ | ||
:<math>A = \sum_{k=0}^r a_k S_n</math> | :<math>A = \sum_{k=0}^r a_k S_n</math> | ||
और <math>S_n</math> [[शिफ्ट ऑपरेटर]] जो मैप करता है <math>c_0, c_1, \ldots</math> को <math>c_1, c_2, \ldots</math>. <math>A</math> c का | और <math>S_n</math> [[शिफ्ट ऑपरेटर]] जो मैप करता है <math>c_0, c_1, \ldots</math> को <math>c_1, c_2, \ldots</math>. <math>A</math> c का विलोपन करने वाला संचालक (का विलोपन करने वाला संचालक <math>c</math> वलय में आदर्श बनाएं <math>\mathbb{K}[n][S_n]</math>का संहारक <math>c</math> कहा जाता है) कहा जाता है। मात्रा r को विलोपन संकारक का क्रम कहा जाता है। विस्तार से, होलोनोमिक अनुक्रम सी को क्रम आर के रूप में कहा जाता है जब इस तरह के क्रम का विलोपन करने वाला ऑपरेटर उपस्थित होता है। | ||
होलोनोमिक | होलोनोमिक फलन ठीक होलोनोमिक अनुक्रमों के उत्पन्न करने वाले फलन हैं: यदि <math>f(x)</math> होलोनोमिक है, फिर गुणांक <math>c_n</math> शक्ति श्रृंखला विस्तार में | ||
:<math>f(x) = \sum_{n=0}^{\infty} c_n x^n</math> | :<math>f(x) = \sum_{n=0}^{\infty} c_n x^n</math> | ||
होलोनोमिक अनुक्रम बनाएं। इसके विपरीत, किसी दिए गए होलोनोमिक अनुक्रम के लिए <math>c_n</math>, उपरोक्त योग द्वारा परिभाषित | होलोनोमिक अनुक्रम बनाएं। इसके विपरीत, किसी दिए गए होलोनोमिक अनुक्रम के लिए <math>c_n</math>, उपरोक्त योग द्वारा परिभाषित फलन होलोनोमिक है (यह [[औपचारिक शक्ति श्रृंखला]] के अर्थ में सत्य है, चाहे योग में अभिसरण का शून्य त्रिज्या हो) है। | ||
=== क्लोजर गुण === | === क्लोजर गुण === | ||
होलोनोमिक | होलोनोमिक फलन (या अनुक्रम) कई [[ बंद करने की संपत्ति ]] को संतुष्ट करते हैं। विशेष रूप से, होलोनोमिक फलन (या अनुक्रम) [[अंगूठी (गणित)|वलय (गणित)]] बनाते हैं। हालांकि, वे विभाजन के अनुसार बंद नहीं हैं, और इसलिए क्षेत्र (गणित) नहीं बनाते हैं। | ||
अगर <math>f(x) = \sum_{n=0}^{\infty} f_n x^n</math> और <math>g(x) = \sum_{n=0}^{\infty} g_n x^n</math> होलोनोमिक | अगर <math>f(x) = \sum_{n=0}^{\infty} f_n x^n</math> और <math>g(x) = \sum_{n=0}^{\infty} g_n x^n</math> होलोनोमिक फलन हैं, तो निम्नलिखित फलन भी होलोनोमिक हैं: | ||
* <math>h(x) = \alpha f(x) + \beta g(x)</math>, | * <math>h(x) = \alpha f(x) + \beta g(x)</math>, जहाँ <math>\alpha</math> और <math>\beta</math> स्थिरांक हैं | ||
* <math>h(x) = f(x) g(x)</math> (अनुक्रमों का [[कॉची उत्पाद]]) | * <math>h(x) = f(x) g(x)</math> (अनुक्रमों का [[कॉची उत्पाद]]) | ||
* <math>h(x) = \sum_{n=0}^{\infty} f_n g_n x^n</math> (अनुक्रमों का हैडमार्ड उत्पाद) | * <math>h(x) = \sum_{n=0}^{\infty} f_n g_n x^n</math> (अनुक्रमों का हैडमार्ड उत्पाद) | ||
* <math>h(x) = \int_0^x f(t) dt</math> | * <math>h(x) = \int_0^x f(t) dt</math> | ||
* <math>h(x) = \sum_{n=0}^{\infty} (\sum_{k=0}^n f_k) x^n</math> | * <math>h(x) = \sum_{n=0}^{\infty} (\sum_{k=0}^n f_k) x^n</math> | ||
* <math>h(x) = f(a(x))</math>, | * <math>h(x) = f(a(x))</math>, जहाँ <math>a(x)</math> कोई [[बीजगणितीय कार्य|बीजगणितीय फलन]] है। चूँकि, <math>a(f(x))</math> सामान्यतः होलोनोमिक नहीं है। | ||
होलोनोमिक कार्यों की महत्वपूर्ण संपत्ति यह है कि बंद करने वाले गुण प्रभावी होते हैं: | होलोनोमिक कार्यों की महत्वपूर्ण संपत्ति यह है कि बंद करने वाले गुण प्रभावी होते हैं: <math>f</math> और <math>g</math> के लिए विनाशकारी ऑपरेटरों को दिया जाता है, के लिए विनाशक ऑपरेटर <math>h</math> उपरोक्त किसी भी ऑपरेशन का उपयोग करके परिभाषित के रूप में स्पष्ट रूप से गणना की जा सकती है। | ||
=== होलोनोमिक कार्यों और अनुक्रमों के उदाहरण === | === होलोनोमिक कार्यों और अनुक्रमों के उदाहरण === | ||
Line 51: | Line 49: | ||
* [[बहुपद]] और परिमेय फलन सहित सभी बीजगणितीय फलन | * [[बहुपद]] और परिमेय फलन सहित सभी बीजगणितीय फलन | ||
* [[त्रिकोणमितीय कार्य]] | * [[त्रिकोणमितीय कार्य|त्रिकोणमितीय फलन]] फलन करता है (लेकिन स्पर्शरेखा, कोटिस्पर्श, छेदक, या व्युत्क्रमज्या नहीं) | ||
*[[अतिशयोक्तिपूर्ण कार्य]] फलन (लेकिन हाइपरबोलिक स्पर्शरेखा, कोटैंजेंट, सिकेंट, या कोसेकेंट नहीं) | *[[अतिशयोक्तिपूर्ण कार्य|अतिशयोक्तिपूर्ण फलन]] फलन (लेकिन हाइपरबोलिक स्पर्शरेखा, कोटैंजेंट, सिकेंट, या कोसेकेंट नहीं) | ||
* घातीय | * घातीय फलन और लघुगणक (किसी भी आधार पर) | ||
* सामान्यीकृत हाइपरज्यामितीय फलन <math>{}_pF_q(a_1,\ldots,a_p, b_1, \ldots, b_q, x)</math>, के | * सामान्यीकृत हाइपरज्यामितीय फलन <math>{}_pF_q(a_1,\ldots,a_p, b_1, \ldots, b_q, x)</math>, के फलन के रूप में माना जाता है <math>x</math> सभी मापदंडों के साथ <math>a_i</math>, <math>b_i</math> स्थिर रखा | ||
* [[त्रुटि समारोह]] <math>\operatorname{erf}(x)</math> | * [[त्रुटि समारोह|त्रुटि फलन]] <math>\operatorname{erf}(x)</math> | ||
* बेसेल | * बेसेल फलन करता है <math>J_n(x)</math>, <math>Y_n(x)</math>, <math>I_n(x)</math>, <math>K_n(x)</math> | ||
* हवादार | * हवादार फलन करता है <math>\operatorname{Ai}(x)</math>, <math>\operatorname{Bi}(x)</math> | ||
होलोनोमिक कार्यों का वर्ग हाइपरज्यामितीय कार्यों के वर्ग का सख्त सुपरसेट है। विशेष कार्यों के उदाहरण जो होलोनोमिक हैं लेकिन हाइपरजियोमेट्रिक नहीं हैं उनमें [[अरे समारोह]] शामिल हैं। | होलोनोमिक कार्यों का वर्ग हाइपरज्यामितीय कार्यों के वर्ग का सख्त सुपरसेट है। विशेष कार्यों के उदाहरण जो होलोनोमिक हैं लेकिन हाइपरजियोमेट्रिक नहीं हैं उनमें [[अरे समारोह|अरे फलन]] शामिल हैं। | ||
होलोनोमिक अनुक्रमों के उदाहरणों में शामिल हैं: | होलोनोमिक अनुक्रमों के उदाहरणों में शामिल हैं: | ||
* [[फाइबोनैचि संख्या]]ओं का क्रम <math>F_n</math>, और अधिक | * [[फाइबोनैचि संख्या]]ओं का क्रम <math>F_n</math>, और अधिक सामान्यतः, सभी स्थिर-पुनरावर्ती क्रम | ||
* [[ कारख़ाने का ]] का क्रम <math>n!</math> | * [[ कारख़ाने का ]] का क्रम <math>n!</math> | ||
* [[द्विपद गुणांक]]ों का क्रम <math>{n \choose k}</math> (एन या के कार्यों के रूप में) | * [[द्विपद गुणांक]]ों का क्रम <math>{n \choose k}</math> (एन या के कार्यों के रूप में) | ||
* [[हार्मोनिक संख्या]]ओं का क्रम <math>H_n = \sum_{k=1}^n \frac{1}{k}</math>, और अधिक | * [[हार्मोनिक संख्या]]ओं का क्रम <math>H_n = \sum_{k=1}^n \frac{1}{k}</math>, और अधिक सामान्यतः <math>H_{n,m} = \sum_{k=1}^n \frac{1}{k^m}</math> किसी भी पूर्णांक एम के लिए | ||
* [[कैटलन संख्या]]ओं का क्रम | * [[कैटलन संख्या]]ओं का क्रम | ||
* Motzkin संख्याओं का क्रम। | * Motzkin संख्याओं का क्रम। | ||
* विक्षोभों का क्रम। | * विक्षोभों का क्रम। | ||
हाइपरज्यामितीय | हाइपरज्यामितीय फलन, बेसेल फलन, और शास्त्रीय [[ऑर्थोगोनल बहुपद]], उनके चर के होलोनोमिक फलन होने के अलावा, उनके मापदंडों के संबंध में होलोनोमिक अनुक्रम भी हैं। उदाहरण के लिए, बेसेल फलन करता है <math>J_n</math> और <math>Y_n</math> दूसरे क्रम के रैखिक पुनरावृत्ति को संतुष्ट करें <math>x (f_{n+1} + f_{n-1}) = 2 n f_n</math>. | ||
=== गैर-होलोनोमिक कार्यों और अनुक्रमों के उदाहरण === | === गैर-होलोनोमिक कार्यों और अनुक्रमों के उदाहरण === | ||
Line 77: | Line 75: | ||
* कार्यक्रम <math>\frac{x}{e^x-1}</math><ref>This follows from the fact that the function <math>\frac{x}{e^x-1}</math> has infinitely many ([[complex number|complex]]) singularities, whereas functions that satisfy a linear differential equation with polynomial coefficients necessarily have only finitely many singular points.</ref> | * कार्यक्रम <math>\frac{x}{e^x-1}</math><ref>This follows from the fact that the function <math>\frac{x}{e^x-1}</math> has infinitely many ([[complex number|complex]]) singularities, whereas functions that satisfy a linear differential equation with polynomial coefficients necessarily have only finitely many singular points.</ref> | ||
* | * फलन तन(एक्स) + सेकंड(एक्स)<ref name="flajolet">See {{harvnb|Flajolet|Gerhold|Salvy|2005}}.</ref> | ||
* दो होलोनोमिक कार्यों का भागफल | * दो होलोनोमिक कार्यों का भागफल सामान्यतः होलोनोमिक नहीं होता है। | ||
गैर-होलोनोमिक अनुक्रमों के उदाहरणों में शामिल हैं: | गैर-होलोनोमिक अनुक्रमों के उदाहरणों में शामिल हैं: | ||
Line 84: | Line 82: | ||
* [[ बरनौली संख्या ]] | * [[ बरनौली संख्या ]] | ||
* [[वैकल्पिक क्रमपरिवर्तन]] की संख्या<ref>This follows from the fact that the function tan(''x'') + sec(''x'') is a nonholonomic function. See {{harvnb|Flajolet|Gerhold|Salvy|2005}}.</ref> | * [[वैकल्पिक क्रमपरिवर्तन]] की संख्या<ref>This follows from the fact that the function tan(''x'') + sec(''x'') is a nonholonomic function. See {{harvnb|Flajolet|Gerhold|Salvy|2005}}.</ref> | ||
* विभाजन की संख्या (संख्या सिद्धांत)<ref name=flajolet />* संख्या <math>\log(n)</math><ref name=flajolet />* संख्या <math>n^{\alpha}</math> | * विभाजन की संख्या (संख्या सिद्धांत)<ref name=flajolet />* संख्या <math>\log(n)</math><ref name=flajolet />* संख्या <math>n^{\alpha}</math> जहाँ <math>\alpha \not\in \mathbb{Z}</math><ref name=flajolet />* [[अभाज्य संख्या]]एँ<ref name=flajolet />* अलघुकरणीय और जुड़े क्रमपरिवर्तन की गणना।<ref>See {{harvnb|Klazar|2003}}.</ref> | ||
==कई चरों में होलोनोमिक | ==कई चरों में होलोनोमिक फलन == | ||
{{Empty section|date=June 2013}} | {{Empty section|date=June 2013}} | ||
Line 93: | Line 91: | ||
== एल्गोरिदम और सॉफ्टवेयर == | == एल्गोरिदम और सॉफ्टवेयर == | ||
[[कंप्यूटर बीजगणित]] में होलोनोमिक | [[कंप्यूटर बीजगणित]] में होलोनोमिक फलन शक्तिशाली उपकरण है। होलोनोमिक फलन या अनुक्रम को डेटा की परिमित मात्रा द्वारा दर्शाया जा सकता है, अर्थात् विनाशकारी ऑपरेटर और प्रारंभिक मूल्यों का परिमित सेट, और क्लोजर गुण एल्गोरिथम फैशन में समानता परीक्षण, योग और एकीकरण जैसे संचालन को पूरा करने की अनुमति देते हैं। हाल के वर्षों में, इन तकनीकों ने बड़ी संख्या में विशेष फलन और संयुक्त पहचान के स्वचालित प्रमाण देने की अनुमति दी है। | ||
इसके अलावा, जटिल विमान में किसी भी बिंदु पर मनमाने ढंग से परिशुद्धता के लिए होलोनोमिक कार्यों का मूल्यांकन करने के लिए और होलोनोमिक अनुक्रम में किसी भी प्रविष्टि की संख्यात्मक रूप से गणना करने के लिए तेज़ एल्गोरिदम | इसके अलावा, जटिल विमान में किसी भी बिंदु पर मनमाने ढंग से परिशुद्धता के लिए होलोनोमिक कार्यों का मूल्यांकन करने के लिए और होलोनोमिक अनुक्रम में किसी भी प्रविष्टि की संख्यात्मक रूप से गणना करने के लिए तेज़ एल्गोरिदम उपस्थित हैं। | ||
होलोनोमिक कार्यों के साथ काम करने के लिए सॉफ्टवेयर में शामिल हैं: | होलोनोमिक कार्यों के साथ काम करने के लिए सॉफ्टवेयर में शामिल हैं: | ||
* द होलोनोमिकफंक्शन्स [http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/] [[मेथेमेटिका]] के लिए पैकेज, क्रिस्टोफ कौश्चन द्वारा विकसित, जो कम्प्यूटिंग क्लोजर प्रॉपर्टीज का समर्थन करता है और यूनीवेरिएट और मल्टीवेरिएट होलोनोमिक | * द होलोनोमिकफंक्शन्स [http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/] [[मेथेमेटिका]] के लिए पैकेज, क्रिस्टोफ कौश्चन द्वारा विकसित, जो कम्प्यूटिंग क्लोजर प्रॉपर्टीज का समर्थन करता है और यूनीवेरिएट और मल्टीवेरिएट होलोनोमिक फलन के लिए पहचान साबित करता है। | ||
* [[मेपल (सॉफ्टवेयर)]] के लिए एल्गोलिब [http://algo.inria.fr/libraries/] लाइब्रेरी, जिसमें निम्नलिखित पैकेज शामिल हैं: | * [[मेपल (सॉफ्टवेयर)]] के लिए एल्गोलिब [http://algo.inria.fr/libraries/] लाइब्रेरी, जिसमें निम्नलिखित पैकेज शामिल हैं: | ||
** gfun, ब्रूनो साल्वी, पॉल ज़िम्मरमैन और एथने मुरे द्वारा विकसित, अविभाजित क्लोजर गुणों और साबित करने के लिए [http://perso.ens-lyon.fr/bruno.salvy/?page_id=48] | ** gfun, ब्रूनो साल्वी, पॉल ज़िम्मरमैन और एथने मुरे द्वारा विकसित, अविभाजित क्लोजर गुणों और साबित करने के लिए [http://perso.ens-lyon.fr/bruno.salvy/?page_id=48] | ||
Line 105: | Line 103: | ||
== यह भी देखें == | == यह भी देखें == | ||
[http://ddmf.msr-inria.inria.fr डायनेमिक डिक्शनरी ऑफ़ मैथमैटिकल | [http://ddmf.msr-inria.inria.fr डायनेमिक डिक्शनरी ऑफ़ मैथमैटिकल फलन], ऑनलाइन सॉफ़्टवेयर, जो स्वचालित रूप से कई शास्त्रीय और विशेष कार्यों (बिंदु पर मूल्यांकन, टेलर श्रृंखला और किसी भी के लिए स्पर्शोन्मुख विस्तार) का अध्ययन करने के लिए होलोनोमिक फलन पर आधारित है। उपयोगकर्ता द्वारा दी गई त्रुटिहीन, अंतर समीकरण, टेलर श्रृंखला के गुणांक के लिए पुनरावृत्ति, व्युत्पन्न, अनिश्चितकालीन अभिन्न, प्लॉटिंग, ...) | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== |
Revision as of 12:49, 16 March 2023
गणित में, और विशेष रूप से गणितीय विश्लेषण में, होलोनोमिक फलन कई चरों का सहज फलन है जो बहुपद गुणांक वाले रैखिक अंतर समीकरणों की प्रणाली का समाधान है और डी-मॉड्यूल सिद्धांत के संदर्भ में उपयुक्त आयाम स्थिति को संतुष्ट करता है। अधिक त्रुटिहीन रूप से, होलोनोमिक फलन चिकनी कार्यों के होलोनोमिक मॉड्यूल का तत्व है। होलोनोमिक कार्यों को अलग-अलग परिमित कार्यों के रूप में भी वर्णित किया जा सकता है, जिन्हें डी-परिमित कार्यों के रूप में भी जाना जाता है। जब चरों में शक्ति श्रृंखला होलोनोमिक फलन का टेलर विस्तार होता है, तो या कई सूचकांकों में इसके गुणांकों के अनुक्रम को 'होलोनोमिक' भी कहा जाता है। होलोनोमिक अनुक्रमों को पी-पुनरावर्ती अनुक्रम भी कहा जाता है: वे पुनरावर्ती रूप से बहुभिन्नरूपी पुनरावर्तन द्वारा परिभाषित होते हैं जो पूरे अनुक्रम से संतुष्ट होते हैं और इसके उपयुक्त विशेषज्ञताओं द्वारा एक होलोनोमिक फलन का टेलर विस्तार होता है, इसके गुणांक का क्रम , एक या कई सूचकांकों में, को होलोनोमिक भी कहा जाता है। अविभाज्य स्थिति में स्थिति सरल हो जाती है: कोई भी अविभाज्य अनुक्रम जो बहुपद गुणांकों के साथ रेखीय सजातीय पुनरावृत्ति संबंध को संतुष्ट करता है, या समकक्ष रूप से बहुपद गुणांकों के साथ रेखीय सजातीय अंतर समीकरण, होलोनोमिक है।[1]
चर में होलोनोमिक फलन और अनुक्रम
परिभाषाएं
मान ले विशेषता (बीजगणित) 0 का क्षेत्र (गणित) (उदाहरण के लिए, या ) होना चाहिये।
फलन बहुपद उपस्थित होने पर डी-परिमित (या होलोनोमिक) कहा जाता है जैसे कि
सभी एक्स के लिए रखती है। इसे इस रूप में भी लिखा जा सकता है जहाँ
और अंतर ऑपरेटर है जो को का माप करता है। f का विलोपन करने वाला संकारक कहलाता है (का विलोपन करने वाला संकारक वलय में आदर्श (वलय सिद्धांत) बनाएं का संहारक कहा जाता है ). मात्रा r को विलोपन संकारक का क्रम कहा जाता है। विस्तार से, होलोनोमिक फलन f को क्रम r का कहा जाता है, जब इस तरह के क्रम का विलोपन करने वाला ऑपरेटर उपस्थित होता है।
क्रम बहुपद उपस्थित होने पर पी-रिकर्सिव (या होलोनोमिक) कहा जाता है जैसे कि
सभी n के लिए रखती है। इसे इस रूप में भी लिखा जा सकता है जहाँ
और शिफ्ट ऑपरेटर जो मैप करता है को . c का विलोपन करने वाला संचालक (का विलोपन करने वाला संचालक वलय में आदर्श बनाएं का संहारक कहा जाता है) कहा जाता है। मात्रा r को विलोपन संकारक का क्रम कहा जाता है। विस्तार से, होलोनोमिक अनुक्रम सी को क्रम आर के रूप में कहा जाता है जब इस तरह के क्रम का विलोपन करने वाला ऑपरेटर उपस्थित होता है।
होलोनोमिक फलन ठीक होलोनोमिक अनुक्रमों के उत्पन्न करने वाले फलन हैं: यदि होलोनोमिक है, फिर गुणांक शक्ति श्रृंखला विस्तार में
होलोनोमिक अनुक्रम बनाएं। इसके विपरीत, किसी दिए गए होलोनोमिक अनुक्रम के लिए , उपरोक्त योग द्वारा परिभाषित फलन होलोनोमिक है (यह औपचारिक शक्ति श्रृंखला के अर्थ में सत्य है, चाहे योग में अभिसरण का शून्य त्रिज्या हो) है।
क्लोजर गुण
होलोनोमिक फलन (या अनुक्रम) कई बंद करने की संपत्ति को संतुष्ट करते हैं। विशेष रूप से, होलोनोमिक फलन (या अनुक्रम) वलय (गणित) बनाते हैं। हालांकि, वे विभाजन के अनुसार बंद नहीं हैं, और इसलिए क्षेत्र (गणित) नहीं बनाते हैं।
अगर और होलोनोमिक फलन हैं, तो निम्नलिखित फलन भी होलोनोमिक हैं:
- , जहाँ और स्थिरांक हैं
- (अनुक्रमों का कॉची उत्पाद)
- (अनुक्रमों का हैडमार्ड उत्पाद)
- , जहाँ कोई बीजगणितीय फलन है। चूँकि, सामान्यतः होलोनोमिक नहीं है।
होलोनोमिक कार्यों की महत्वपूर्ण संपत्ति यह है कि बंद करने वाले गुण प्रभावी होते हैं: और के लिए विनाशकारी ऑपरेटरों को दिया जाता है, के लिए विनाशक ऑपरेटर उपरोक्त किसी भी ऑपरेशन का उपयोग करके परिभाषित के रूप में स्पष्ट रूप से गणना की जा सकती है।
होलोनोमिक कार्यों और अनुक्रमों के उदाहरण
होलोनोमिक कार्यों के उदाहरणों में शामिल हैं:
- बहुपद और परिमेय फलन सहित सभी बीजगणितीय फलन
- त्रिकोणमितीय फलन फलन करता है (लेकिन स्पर्शरेखा, कोटिस्पर्श, छेदक, या व्युत्क्रमज्या नहीं)
- अतिशयोक्तिपूर्ण फलन फलन (लेकिन हाइपरबोलिक स्पर्शरेखा, कोटैंजेंट, सिकेंट, या कोसेकेंट नहीं)
- घातीय फलन और लघुगणक (किसी भी आधार पर)
- सामान्यीकृत हाइपरज्यामितीय फलन , के फलन के रूप में माना जाता है सभी मापदंडों के साथ , स्थिर रखा
- त्रुटि फलन
- बेसेल फलन करता है , , ,
- हवादार फलन करता है ,
होलोनोमिक कार्यों का वर्ग हाइपरज्यामितीय कार्यों के वर्ग का सख्त सुपरसेट है। विशेष कार्यों के उदाहरण जो होलोनोमिक हैं लेकिन हाइपरजियोमेट्रिक नहीं हैं उनमें अरे फलन शामिल हैं।
होलोनोमिक अनुक्रमों के उदाहरणों में शामिल हैं:
- फाइबोनैचि संख्याओं का क्रम , और अधिक सामान्यतः, सभी स्थिर-पुनरावर्ती क्रम
- कारख़ाने का का क्रम
- द्विपद गुणांकों का क्रम (एन या के कार्यों के रूप में)
- हार्मोनिक संख्याओं का क्रम , और अधिक सामान्यतः किसी भी पूर्णांक एम के लिए
- कैटलन संख्याओं का क्रम
- Motzkin संख्याओं का क्रम।
- विक्षोभों का क्रम।
हाइपरज्यामितीय फलन, बेसेल फलन, और शास्त्रीय ऑर्थोगोनल बहुपद, उनके चर के होलोनोमिक फलन होने के अलावा, उनके मापदंडों के संबंध में होलोनोमिक अनुक्रम भी हैं। उदाहरण के लिए, बेसेल फलन करता है और दूसरे क्रम के रैखिक पुनरावृत्ति को संतुष्ट करें .
गैर-होलोनोमिक कार्यों और अनुक्रमों के उदाहरण
गैर-होलोनोमिक कार्यों के उदाहरणों में शामिल हैं:
- कार्यक्रम [2]
- फलन तन(एक्स) + सेकंड(एक्स)[3]
- दो होलोनोमिक कार्यों का भागफल सामान्यतः होलोनोमिक नहीं होता है।
गैर-होलोनोमिक अनुक्रमों के उदाहरणों में शामिल हैं:
- बरनौली संख्या
- वैकल्पिक क्रमपरिवर्तन की संख्या[4]
- विभाजन की संख्या (संख्या सिद्धांत)[3]* संख्या [3]* संख्या जहाँ [3]* अभाज्य संख्याएँ[3]* अलघुकरणीय और जुड़े क्रमपरिवर्तन की गणना।[5]
कई चरों में होलोनोमिक फलन
This section is empty. You can help by adding to it. (June 2013) |
एल्गोरिदम और सॉफ्टवेयर
कंप्यूटर बीजगणित में होलोनोमिक फलन शक्तिशाली उपकरण है। होलोनोमिक फलन या अनुक्रम को डेटा की परिमित मात्रा द्वारा दर्शाया जा सकता है, अर्थात् विनाशकारी ऑपरेटर और प्रारंभिक मूल्यों का परिमित सेट, और क्लोजर गुण एल्गोरिथम फैशन में समानता परीक्षण, योग और एकीकरण जैसे संचालन को पूरा करने की अनुमति देते हैं। हाल के वर्षों में, इन तकनीकों ने बड़ी संख्या में विशेष फलन और संयुक्त पहचान के स्वचालित प्रमाण देने की अनुमति दी है।
इसके अलावा, जटिल विमान में किसी भी बिंदु पर मनमाने ढंग से परिशुद्धता के लिए होलोनोमिक कार्यों का मूल्यांकन करने के लिए और होलोनोमिक अनुक्रम में किसी भी प्रविष्टि की संख्यात्मक रूप से गणना करने के लिए तेज़ एल्गोरिदम उपस्थित हैं।
होलोनोमिक कार्यों के साथ काम करने के लिए सॉफ्टवेयर में शामिल हैं:
- द होलोनोमिकफंक्शन्स [1] मेथेमेटिका के लिए पैकेज, क्रिस्टोफ कौश्चन द्वारा विकसित, जो कम्प्यूटिंग क्लोजर प्रॉपर्टीज का समर्थन करता है और यूनीवेरिएट और मल्टीवेरिएट होलोनोमिक फलन के लिए पहचान साबित करता है।
- मेपल (सॉफ्टवेयर) के लिए एल्गोलिब [2] लाइब्रेरी, जिसमें निम्नलिखित पैकेज शामिल हैं:
यह भी देखें
डायनेमिक डिक्शनरी ऑफ़ मैथमैटिकल फलन, ऑनलाइन सॉफ़्टवेयर, जो स्वचालित रूप से कई शास्त्रीय और विशेष कार्यों (बिंदु पर मूल्यांकन, टेलर श्रृंखला और किसी भी के लिए स्पर्शोन्मुख विस्तार) का अध्ययन करने के लिए होलोनोमिक फलन पर आधारित है। उपयोगकर्ता द्वारा दी गई त्रुटिहीन, अंतर समीकरण, टेलर श्रृंखला के गुणांक के लिए पुनरावृत्ति, व्युत्पन्न, अनिश्चितकालीन अभिन्न, प्लॉटिंग, ...)
टिप्पणियाँ
- ↑ See Zeilberger 1990 and Kauers & Paule 2011.
- ↑ This follows from the fact that the function has infinitely many (complex) singularities, whereas functions that satisfy a linear differential equation with polynomial coefficients necessarily have only finitely many singular points.
- ↑ 3.0 3.1 3.2 3.3 3.4 See Flajolet, Gerhold & Salvy 2005.
- ↑ This follows from the fact that the function tan(x) + sec(x) is a nonholonomic function. See Flajolet, Gerhold & Salvy 2005.
- ↑ See Klazar 2003.
संदर्भ
- Flajolet, Philippe; Gerhold, Stefan; Salvy, Bruno (2005), "On the non-holonomic character of logarithms, powers, and the n-th prime function", Electronic Journal of Combinatorics, 11 (2), doi:10.37236/1894, S2CID 184136.
- Flajolet, Philippe; Sedgewick, Robert (2009). Analytic Combinatorics. Cambridge University Press. ISBN 978-0521898065.
- Kauers, Manuel; Paule, Peter (2011). The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates. Text and Monographs in Symbolic Computation. Springer. ISBN 978-3-7091-0444-6.
- Klazar, Martin (2003). "Irreducible and connected permutations" (PDF) (122).
{{cite journal}}
: Cite journal requires|journal=
(help) (ITI Series preprint)
- Mallinger, Christian (1996). Algorithmic Manipulations and Transformations of Univariate Holonomic Functions and Sequences (PDF) (Thesis). Retrieved 4 June 2013.
- Stanley, Richard P. (1999). Enumerative Combinatorics. Vol. 2. Cambridge University Press. ISBN 978-0-521-56069-6.
- Zeilberger, Doron (1990). "A holonomic systems approach to special functions identities". Journal of Computational and Applied Mathematics. 32 (3): 321–368. doi:10.1016/0377-0427(90)90042-X. ISSN 0377-0427. MR 1090884.