सेमीमेटल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 20: Line 20:


== वर्गीकरण ==
== वर्गीकरण ==
अर्धचालक और सेमीमेटल्स को वर्गीकृत करने के लिए, उनके भरे हुए और खाली बैंड की ऊर्जा को चालन इलेक्ट्रॉनों के [[क्रिस्टल गति]] के खिलाफ प्लॉट किया जाना चाहिए। [[बलोच प्रमेय]] के अनुसार इलेक्ट्रॉनों का चालन विभिन्न दिशाओं में क्रिस्टल जाली की आवधिकता पर निर्भर करता है।
अर्धचालक और सेमीमेटल्स को वर्गीकृत करने के लिए, उनके भरे हुए और खाली बैंड की ऊर्जा को चालन इलेक्ट्रॉनों के [[क्रिस्टल गति]] के विरुद्ध प्लॉट किया जाना चाहिए। [[बलोच प्रमेय]] के अनुसार इलेक्ट्रॉनों का चालन विभिन्न दिशाओं में क्रिस्टल जाली की आवधिकता पर निर्भर करता है।


एक सेमीमेटल में, चालन बैंड के नीचे आम तौर पर वैलेंस बैंड के शीर्ष की तुलना में संवेग स्थान (एक अलग तरंग वेक्टर | के-वेक्टर पर) के अलग हिस्से में स्थित होता है। कोई कह सकता है कि सेमीमेटल नकारात्मक [[अप्रत्यक्ष बैंडगैप]] वाला अर्धचालक है, हालांकि उन शब्दों में उनका वर्णन शायद ही कभी किया जाता है।
एक सेमीमेटल में, चालन बैंड के नीचे सामान्यतः वैलेंस बैंड के शीर्ष की तुलना में संवेग स्थान (एक अलग तरंग के-वेक्टर पर) के अलग भागो में स्थित होता है। कोई कह सकता है कि सेमीमेटल नकारात्मक [[अप्रत्यक्ष बैंडगैप]] वाला अर्धचालक है, चूँकि उन शब्दों में उनका वर्णन संभवतः ही कभी किया जाता है।


एक सामग्री का अर्धचालक या सेमीमेटल के रूप में वर्गीकरण मुश्किल हो सकता है जब इसमें बहुत छोटा या थोड़ा नकारात्मक बैंड-अंतराल हो। प्रसिद्ध यौगिक Fe<sub>2</sub>उदाहरण के लिए, VAl को ऐतिहासिक रूप से सेमी-मेटल (नकारात्मक अंतर ~ -0.1 eV के साथ) के रूप में दो दशकों से पहले माना जाता था, इससे पहले कि यह वास्तव में छोटा-अंतराल (~ 0.03 eV) अर्धचालक दिखाया गया था<ref>{{cite journal|doi=10.1039/D0TC02659J|title=Thermoelectric transport of semiconductor full-Heusler VFe2Al|journal=Journal of Materials Chemistry C|volume=8|issue=30|page=10174-10184|year=2020|last1=Anand|first1=Shashwat|last2=Gurunathan|first2=Ramya|last3=Soldi|first3=Thomas|last4=Borgsmiller|first4=Leah|last5=Orenstein|first5=Rachel|last6=Snyder|first6=Jeff|s2cid=225448662 }}</ref> परिवहन गुणों, विद्युत प्रतिरोधकता और [[सीबेक गुणांक]] के स्व-सुसंगत विश्लेषण का उपयोग करना। बैंड-गैप की जांच के लिए आमतौर पर इस्तेमाल की जाने वाली प्रायोगिक तकनीकें कई चीजों के प्रति संवेदनशील हो सकती हैं जैसे बैंड-गैप का आकार, इलेक्ट्रॉनिक संरचना सुविधाएँ (प्रत्यक्ष बनाम अप्रत्यक्ष गैप) और फ्री चार्ज कैरियर्स की संख्या (जो अक्सर संश्लेषण की स्थिति पर निर्भर कर सकती हैं) ). ट्रांसपोर्ट प्रॉपर्टी मॉडलिंग से प्राप्त बैंड-गैप अनिवार्य रूप से ऐसे कारकों से स्वतंत्र है। दूसरी ओर इलेक्ट्रॉनिक संरचना की गणना करने के लिए सैद्धांतिक तकनीकें अक्सर बैंड-गैप को कम कर सकती हैं।
एक सामग्री का अर्धचालक या सेमीमेटल के रूप में वर्गीकरण जटिल हो सकता है जब इसमें बहुत छोटा या थोड़ा नकारात्मक बैंड-अंतराल हो। उदाहरण के लिए जाने-माने यौगिक Fe<sub>2</sub>VAl  को ऐतिहासिक रूप से सेमी-मेटल (~-0.1 eV के नकारात्मक अंतराल के साथ) के रूप में दो दशकों से अधिक समय तक माना गया था, इससे पहले कि यह वास्तव में एक छोटे-अंतराल (~ 0.03 eV) अर्धचालक के रूप में दिखाया गया था।<ref name=":1" /> परिवहन गुणों, विद्युत प्रतिरोधकता और [[सीबेक गुणांक]] के आत्मनिर्भर विश्लेषण का उपयोग करना। प्रसिद्ध यौगिक Fe<sub>2</sub>उदाहरण के लिए, VAl को ऐतिहासिक रूप से सेमी-मेटल (नकारात्मक अंतर ~ -0.1 eV के साथ) के रूप में दो दशकों से पहले माना जाता था, इससे पहले कि यह वास्तव में छोटा-अंतराल (~ 0.03 eV) अर्धचालक दिखाया गया था<ref name=":1">{{cite journal|doi=10.1039/D0TC02659J|title=Thermoelectric transport of semiconductor full-Heusler VFe2Al|journal=Journal of Materials Chemistry C|volume=8|issue=30|page=10174-10184|year=2020|last1=Anand|first1=Shashwat|last2=Gurunathan|first2=Ramya|last3=Soldi|first3=Thomas|last4=Borgsmiller|first4=Leah|last5=Orenstein|first5=Rachel|last6=Snyder|first6=Jeff|s2cid=225448662 }}</ref> परिवहन गुणों, विद्युत प्रतिरोधकता और [[सीबेक गुणांक]] के स्व-सुसंगत विश्लेषण का उपयोग करना। बैंड-गैप की जांच के लिए आमतौर पर इस्तेमाल की जाने वाली प्रायोगिक तकनीकें कई चीजों के प्रति संवेदनशील हो सकती हैं जैसे बैंड-गैप का आकार, इलेक्ट्रॉनिक संरचना सुविधाएँ (प्रत्यक्ष बनाम अप्रत्यक्ष गैप) और फ्री चार्ज कैरियर्स की संख्या (जो अक्सर संश्लेषण की स्थिति पर निर्भर कर सकती हैं) ). ट्रांसपोर्ट प्रॉपर्टी मॉडलिंग से प्राप्त बैंड-गैप अनिवार्य रूप से ऐसे कारकों से स्वतंत्र है। दूसरी ओर इलेक्ट्रॉनिक संरचना की गणना करने के लिए सैद्धांतिक तकनीकें अक्सर बैंड-गैप को कम कर सकती हैं।


== योजनाबद्ध ==
== योजनाबद्ध ==
Line 38: Line 38:


== भौतिक गुण ==
== भौतिक गुण ==
चूंकि सेमीमेटल्स में धातुओं की तुलना में कम आवेश वाहक होते हैं, उनमें आमतौर पर कम विद्युत चालकता और तापीय चालकता होती है। उनके पास छिद्रों और इलेक्ट्रॉनों दोनों के लिए छोटे प्रभावी द्रव्यमान भी होते हैं क्योंकि ऊर्जा में अधिव्यापन आमतौर पर इस तथ्य का परिणाम होता है कि दोनों ऊर्जा बैंड व्यापक हैं। इसके अलावा वे आम तौर पर उच्च प्रतिचुंबकीय संवेदनशीलता और उच्च जाली ढांकता हुआ स्थिरांक दिखाते हैं।
चूंकि सेमीमेटल्स में धातुओं की तुलना में कम आवेश वाहक होते हैं, उनमें आमतौर पर कम विद्युत चालकता और तापीय चालकता होती है। उनके पास छिद्रों और इलेक्ट्रॉनों दोनों के लिए छोटे प्रभावी द्रव्यमान भी होते हैं क्योंकि ऊर्जा में अधिव्यापन आमतौर पर इस तथ्य का परिणाम होता है कि दोनों ऊर्जा बैंड व्यापक हैं। इसके अलावा वे सामान्यतः उच्च प्रतिचुंबकीय संवेदनशीलता और उच्च जाली ढांकता हुआ स्थिरांक दिखाते हैं।


== क्लासिक सेमीमेटल्स ==
== क्लासिक सेमीमेटल्स ==

Revision as of 20:36, 19 March 2023

संतुलन पर विभिन्न प्रकार की सामग्रियों में इलेक्ट्रॉनिक अवस्थाओं को भरना। यहां, ऊंचाई ऊर्जा है जबकि चौड़ाई सूचीबद्ध सामग्री में एक निश्चित ऊर्जा के लिए उपलब्ध राज्यों का घनत्व है। Tवह शेड फर्मी-डिराक वितरण (काला: सभी राज्य भर गए, सफेद: कोई राज्य नहीं भरा) का अनुसरण करता है। धातुएस और सेमीमेटलएस में फर्मी स्तर F कम से कम एक बैंड के अंदर स्थित है।
इंसुलेटरएस और सेमीकंडक्टरएस में फर्मी स्तर एक बैंड गैप के अंदर होता है; हालाँकि, अर्धचालकों में बैंड इलेक्ट्रॉनों या होलएस के साथ थर्मली पॉप्युलेट होने के लिए फर्मी स्तर के काफी करीब होते हैं।

एक सेमीमेटल सामग्री है जिसमें विद्युत चालन इलेक्ट्रॉनिक बैंड संरचना के नीचे और संयोजी बंध के शीर्ष के बीच बहुत छोटा अधिव्यापन होता है। बैंड सिद्धांत के अनुसार, ठोस को इन्सुलेटर (बिजली), अर्धचालक, अर्ध-धातु या धातु के रूप में वर्गीकृत किया जा सकता है। इंसुलेटर और अर्धचालक में भरे हुए वैलेंस बैंड को खाली कंडक्शन बैंड से ऊर्जा अंतराल से अलग किया जाता है। इंसुलेटर के लिए, अर्धचालक (जैसे, <4 eV) की तुलना में बैंड गैप का परिमाण बड़ा होता है (जैसे, > 4 इलेक्ट्रॉनवोल्ट)। कंडक्शन और वैलेंस बैंड के बीच साधारण अधिव्यापन के कारण, सेमीमेटल्स में कोई बैंड गैप नहीं है और फर्मी स्तर पर अवस्था का नगण्य घनत्व है। धातु, इसके विपरीत, फर्मी स्तर पर अवस्था का सराहनीय घनत्व है क्योंकि चालन बैंड आंशिक रूप से भरा हुआ है।[1]

धातु, इसके विपरीत, फर्मी स्तर पर अवस्था का सराहनीय घनत्व है क्योंकि चालन बैंड आंशिक रूप से भरा हुआ है।[1]अधिव्यापन के कारण, सेमीमेटल्स में कोई बैंड गैप नहीं है और फर्मी स्तर पर अवस्था का नगण्य घनत्व है। धातु, इसके विपरीत,और फर्मी स्तर पर अवस्था का नगण्य घनत्व है। धातु, इसके विपरीत,

तापमान निर्भरता

विद्युत चालकता के तापमान पर निर्भरता में रोधक / अर्धचालक अवस्था अर्धचालक / धातु अवस्था से भिन्न होते हैं। धातु के साथ, तापमान में वृद्धि के साथ चालकता कम हो जाती है (फोनन (जाली कंपन) के साथ इलेक्ट्रॉनों की बढ़ती वार्तालाप के कारण)। इन्सुलेटर या अर्धचालक के साथ (जिसमें दो प्रकार के आवेश वाहक होते हैं - इलेक्ट्रॉन छेद और इलेक्ट्रॉन), वाहक गतिशीलता और वाहक सांद्रता दोनों ही चालकता में योगदान करेंगे और इनमें अलग-अलग तापमान निर्भरताएँ होती हैं। अंततः, यह देखा गया है कि इंसुलेटर और अर्धचालक की चालकता पूर्ण शून्य से ऊपर के तापमान में प्रारंभिक वृद्धि के साथ बढ़ती है (क्योंकि अधिक इलेक्ट्रॉन चालन बैंड में स्थानांतरित हो जाते हैं), मध्यवर्ती तापमान के साथ घटने से पहले और फिर, एक बार फिर से उच्च तापमान के साथ बढ़ते हैं। अर्धधात्विक अवस्था धात्विक अवस्था के समान होती है किंतु अर्धधातुओं में छिद्र और इलेक्ट्रॉन दोनों विद्युत चालन में योगदान करते हैं। हरताल और सुरमा जैसे कुछ अर्ध-धातुओं के साथ कमरे के तापमान के नीचे तापमान-स्वतंत्र वाहक घनत्व होता है (जैसा कि धातुओं में होता है), जबकि विस्मुट में, यह बहुत कम तापमान पर सही होता है, किंतु उच्च तापमान पर वाहक घनत्व बढ़ता है जिससे सेमीमेटल-अर्धचालक संक्रमण तापमान बढ़ता है। सेमीमेटल भी इंसुलेटर या अर्धचालक से भिन्न होता है जिसमें सेमीमीटर की चालकता सदैव गैर-शून्य होती है, जबकि अर्धचालक में शून्य तापमान पर शून्य चालकता होती है और इंसुलेटर में परिवेश के तापमान पर भी शून्य चालकता होती है (एक व्यापक बैंड गैप के कारण)।

वर्गीकरण

अर्धचालक और सेमीमेटल्स को वर्गीकृत करने के लिए, उनके भरे हुए और खाली बैंड की ऊर्जा को चालन इलेक्ट्रॉनों के क्रिस्टल गति के विरुद्ध प्लॉट किया जाना चाहिए। बलोच प्रमेय के अनुसार इलेक्ट्रॉनों का चालन विभिन्न दिशाओं में क्रिस्टल जाली की आवधिकता पर निर्भर करता है।

एक सेमीमेटल में, चालन बैंड के नीचे सामान्यतः वैलेंस बैंड के शीर्ष की तुलना में संवेग स्थान (एक अलग तरंग के-वेक्टर पर) के अलग भागो में स्थित होता है। कोई कह सकता है कि सेमीमेटल नकारात्मक अप्रत्यक्ष बैंडगैप वाला अर्धचालक है, चूँकि उन शब्दों में उनका वर्णन संभवतः ही कभी किया जाता है।

एक सामग्री का अर्धचालक या सेमीमेटल के रूप में वर्गीकरण जटिल हो सकता है जब इसमें बहुत छोटा या थोड़ा नकारात्मक बैंड-अंतराल हो। उदाहरण के लिए जाने-माने यौगिक Fe2VAl को ऐतिहासिक रूप से सेमी-मेटल (~-0.1 eV के नकारात्मक अंतराल के साथ) के रूप में दो दशकों से अधिक समय तक माना गया था, इससे पहले कि यह वास्तव में एक छोटे-अंतराल (~ 0.03 eV) अर्धचालक के रूप में दिखाया गया था।[2] परिवहन गुणों, विद्युत प्रतिरोधकता और सीबेक गुणांक के आत्मनिर्भर विश्लेषण का उपयोग करना। प्रसिद्ध यौगिक Fe2उदाहरण के लिए, VAl को ऐतिहासिक रूप से सेमी-मेटल (नकारात्मक अंतर ~ -0.1 eV के साथ) के रूप में दो दशकों से पहले माना जाता था, इससे पहले कि यह वास्तव में छोटा-अंतराल (~ 0.03 eV) अर्धचालक दिखाया गया था[2] परिवहन गुणों, विद्युत प्रतिरोधकता और सीबेक गुणांक के स्व-सुसंगत विश्लेषण का उपयोग करना। बैंड-गैप की जांच के लिए आमतौर पर इस्तेमाल की जाने वाली प्रायोगिक तकनीकें कई चीजों के प्रति संवेदनशील हो सकती हैं जैसे बैंड-गैप का आकार, इलेक्ट्रॉनिक संरचना सुविधाएँ (प्रत्यक्ष बनाम अप्रत्यक्ष गैप) और फ्री चार्ज कैरियर्स की संख्या (जो अक्सर संश्लेषण की स्थिति पर निर्भर कर सकती हैं) ). ट्रांसपोर्ट प्रॉपर्टी मॉडलिंग से प्राप्त बैंड-गैप अनिवार्य रूप से ऐसे कारकों से स्वतंत्र है। दूसरी ओर इलेक्ट्रॉनिक संरचना की गणना करने के लिए सैद्धांतिक तकनीकें अक्सर बैंड-गैप को कम कर सकती हैं।

योजनाबद्ध

यह आरेख प्रत्यक्ष अर्धचालक (ए), अप्रत्यक्ष अर्धचालक (बी), और सेमीमेटल (सी) दिखाता है।

योजनाबद्ध रूप से, आंकड़ा दिखाता है

  1. a semiconductor with a direct gap (e.g. copper indium selenide (CuInSe2))
  2. a semiconductor with an indirect gap (like silicon (Si))
  3. a semimetal (like tin (Sn) or graphite and the alkaline earth metals).

यह आंकड़ा आरेखीय है, जो संवेग स्थान (या k-स्थान) के एक आयाम में केवल सबसे कम-ऊर्जा चालन बैंड और उच्चतम-ऊर्जा वैलेंस बैंड दिखा रहा है। ठेठ ठोस पदार्थों में, के-स्पेस त्रि-आयामी होता है, और इसमें असीमित संख्या में बैंड होते हैं।

एक नियमित धातु के विपरीत, सेमीिमेटल्स में दोनों प्रकार (छेद और इलेक्ट्रॉन) के चार्ज वाहक होते हैं, ताकि कोई यह भी तर्क दे सके कि उन्हें सेमीिमेटल्स के बजाय 'डबल-मेटल्स' कहा जाना चाहिए। हालाँकि, चार्ज वाहक आमतौर पर वास्तविक धातु की तुलना में बहुत कम संख्या में होते हैं। इस संबंध में वे पतित अर्धचालकों से अधिक निकटता से मिलते जुलते हैं। यह बताता है कि अर्ध-धातुओं के विद्युत गुण धातुओं और अर्धचालकों के बीच क्यों होते हैं।

भौतिक गुण

चूंकि सेमीमेटल्स में धातुओं की तुलना में कम आवेश वाहक होते हैं, उनमें आमतौर पर कम विद्युत चालकता और तापीय चालकता होती है। उनके पास छिद्रों और इलेक्ट्रॉनों दोनों के लिए छोटे प्रभावी द्रव्यमान भी होते हैं क्योंकि ऊर्जा में अधिव्यापन आमतौर पर इस तथ्य का परिणाम होता है कि दोनों ऊर्जा बैंड व्यापक हैं। इसके अलावा वे सामान्यतः उच्च प्रतिचुंबकीय संवेदनशीलता और उच्च जाली ढांकता हुआ स्थिरांक दिखाते हैं।

क्लासिक सेमीमेटल्स

क्लासिक सेमीमेटेलिक तत्व आर्सेनिक, सुरमा, बिस्मथ, α-tin (ग्रे विश्वास करना ) और ग्रेफाइट, कार्बन का एक आबंटन हैं। पहले दो (As, Sb) को भी Metalloids माना जाता है किंतु सेमीमेटल और मेटलॉइड शब्द पर्यायवाची नहीं हैं। उपधातुओं के विपरीत अर्धधातु, रासायनिक यौगिक भी हो सकते हैं, जैसे पारा टेलराइड (HgTe),[3] और टिन, बिस्मथ और ग्रेफाइट को आमतौर पर उपधातु नहीं माना जाता है।[4] चरम स्थितियों में क्षणिक सेमीमेटल अवस्था की सूचना दी गई है।[5] यह हाल ही में दिखाया गया है कि कुछ प्रवाहकीय बहुलक अर्ध-धातुओं के रूप में व्यवहार कर सकते हैं।[6]

यह भी देखें

संदर्भ

  1. 1.0 1.1 Burns, Gerald (1985). Solid State Physics. Academic Press, Inc. pp. 339–40. ISBN 978-0-12-146070-9.
  2. 2.0 2.1 Anand, Shashwat; Gurunathan, Ramya; Soldi, Thomas; Borgsmiller, Leah; Orenstein, Rachel; Snyder, Jeff (2020). "Thermoelectric transport of semiconductor full-Heusler VFe2Al". Journal of Materials Chemistry C. 8 (30): 10174-10184. doi:10.1039/D0TC02659J. S2CID 225448662.
  3. Wang, Yang; N. Mansour; A. Salem; K.F. Brennan & P.P. Ruden (1992). "Theoretical study of a potential low-noise semimetal-based avalanche photodetector". IEEE Journal of Quantum Electronics. 28 (2): 507–513. Bibcode:1992IJQE...28..507W. doi:10.1109/3.123280.
  4. Wallace, P.R. (1947). "The Band Theory of Graphite". Physical Review. 71 (9): 622–634. Bibcode:1947PhRv...71..622W. doi:10.1103/PhysRev.71.622. S2CID 53633968.
  5. Reed, Evan J.; Manaa, M. Riad; Fried, Laurence E.; Glaesemann, Kurt R.; Joannopoulos, J. D. (2007). "नाइट्रोमेथेन के विस्फोट में एक क्षणिक सेमीमेटैलिक परत". Nature Physics. 4 (1): 72–76. Bibcode:2008NatPh...4...72R. doi:10.1038/nphys806.
  6. Bubnova, Olga; Zia, Ullah Khan; Wang, Hui (2014). "Semi-Metallic Polymers". Nature Materials. 13 (2): 190–4. Bibcode:2014NatMa..13..190B. doi:10.1038/nmat3824. PMID 24317188.