गुणांक आव्यूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 26: Line 26:
== इसके गुणों का समीकरण प्रणाली के गुणों से संबंध ==
== इसके गुणों का समीकरण प्रणाली के गुणों से संबंध ==


रोचे-कैपेली प्रमेय  के माध्यम से, समीकरणों की प्रणाली [[असंगत समीकरण]] है, जिसका अर्थ है कि इसका कोई समाधान नहीं है, यदि [[संवर्धित मैट्रिक्स]] की [[रैंक (रैखिक बीजगणित)]] (वेक्टर {{math|'''b'''}} से मिलकर एक अतिरिक्त कॉलम के साथ संवर्धित गुणांक मैट्रिक्स ) गुणांक मैट्रिक्स के रैंक से अधिक है। यदि, दूसरी ओर, इन दो आव्यूहों की कोटि समान हैं, तो तंत्र में कम से कम एक समाधान होना चाहिए। समाधान अद्वितीय है यदि और एकमात्र यदि रैंक r चरों की संख्या {{mvar|n}} के समान है। अन्यथा सामान्य समाधान है {{mvar|n – r}} मुक्त पैरामीटर हैं; इसलिए ऐसे स्थितियों में समाधानों की एक अनंतता होती है, जिन पर इच्छानुसार मूल्य लगाकर पाया जा सकता है {{mvar|n – r}} चर और इसके अद्वितीय समाधान के लिए परिणामी प्रणाली को समाधान करना ; किस चर को ठीक करना है, इसके विभिन्न विकल्प, और उनके विभिन्न निश्चित मान, अलग-अलग प्रणाली समाधान देते हैं।
रोचे-कैपेली प्रमेय  के माध्यम से, समीकरणों की प्रणाली [[असंगत समीकरण]] है, जिसका अर्थ है कि इसका कोई समाधान नहीं है, यदि [[संवर्धित मैट्रिक्स]] की [[रैंक (रैखिक बीजगणित)]] (वेक्टर {{math|'''b'''}} से मिलकर एक अतिरिक्त कॉलम के साथ संवर्धित गुणांक मैट्रिक्स ) गुणांक मैट्रिक्स के रैंक से अधिक है। यदि, दूसरी ओर, इन दो आव्यूहों की कोटि समान हैं, तो तंत्र में कम से कम एक समाधान होना चाहिए। समाधान अद्वितीय है यदि और एकमात्र यदि रैंक r चरों की संख्या {{mvar|n}} के समान है। अन्यथा सामान्य समाधान है {{mvar|n – r}} नि: शुल्क पैरामीटर होते हैं; इसलिए ऐसे स्थितियों में {{mvar|n – r}} वेक्तरों में अनिश्चित मान लगाकर उन्हें बंधन देकर एक समीकरण के लिए उसके अद्वितीय समाधान को हल करने से असंख्य समाधान होते हैं; बंधन करने के वेक्तरों को बदलने और उनमें अलग-अलग मान लगाने से अलग-अलग समाधान होते हैं।


== गतिशील समीकरण ==
== गतिशील समीकरण ==

Revision as of 10:30, 18 March 2023

रैखिक बीजगणित में, एक गुणांक मैट्रिक्स, एक मैट्रिक्स (गणित) होता है जिसमें रैखिक समीकरणों के एक सेट में चर के गुणांक होते हैं। मैट्रिक्स का उपयोग रैखिक समीकरणों की प्रणालियों को समाधान करने में किया जाता है।

गुणांक मैट्रिक्स

सामान्यतः, एक प्रणाली के साथ m रैखिक समीकरण और n अज्ञात के रूप में लिखा जा सकता है।

जहाँ अज्ञात और संख्याएं हैं प्रणाली के गुणांक हैं। गुणांक मैट्रिक्स m × n गुणांक के साथ मैट्रिक्स aij के रूप में (i, j)है। [1]

तब समीकरणों के उपरोक्त सेट को अधिक संक्षेप में व्यक्त किया जा सकता है।

जहाँ A गुणांक मैट्रिक्स है और b स्थिर पदों का स्तंभ सदिश है।

इसके गुणों का समीकरण प्रणाली के गुणों से संबंध

रोचे-कैपेली प्रमेय के माध्यम से, समीकरणों की प्रणाली असंगत समीकरण है, जिसका अर्थ है कि इसका कोई समाधान नहीं है, यदि संवर्धित मैट्रिक्स की रैंक (रैखिक बीजगणित) (वेक्टर b से मिलकर एक अतिरिक्त कॉलम के साथ संवर्धित गुणांक मैट्रिक्स ) गुणांक मैट्रिक्स के रैंक से अधिक है। यदि, दूसरी ओर, इन दो आव्यूहों की कोटि समान हैं, तो तंत्र में कम से कम एक समाधान होना चाहिए। समाधान अद्वितीय है यदि और एकमात्र यदि रैंक r चरों की संख्या n के समान है। अन्यथा सामान्य समाधान है n – r नि: शुल्क पैरामीटर होते हैं; इसलिए ऐसे स्थितियों में n – r वेक्तरों में अनिश्चित मान लगाकर उन्हें बंधन देकर एक समीकरण के लिए उसके अद्वितीय समाधान को हल करने से असंख्य समाधान होते हैं; बंधन करने के वेक्तरों को बदलने और उनमें अलग-अलग मान लगाने से अलग-अलग समाधान होते हैं।

गतिशील समीकरण

स्थिर पद के साथ प्रथम-क्रम मैट्रिक्स अंतर समीकरण को इस रूप में लिखा जा सकता है।

जहाँ A है n × n और y और c हैं n × 1. यह प्रणाली y अपने स्थिर-अवस्था स्तर पर अभिसरित होती है यदि और एकमात्र यदि सभी के निरपेक्ष मान n के आइगेनवैल्यू A 1 से कम हैं।

स्थिर पद के साथ प्रथम-क्रम मैट्रिक्स अंतर समीकरण को इस रूप में लिखा जा सकता है।

यह प्रणाली स्थिर है यदि और एकमात्र यदि सभी n के आइगेनवैल्यू A में नकारात्मक सम्मिश्र संख्या होती है।

संदर्भ

  1. Liebler, Robert A. (December 2002). बुनियादी मैट्रिक्स बीजगणित एल्गोरिदम और अनुप्रयोगों के साथ. CRC Press. pp. 7–8. ISBN 9781584883333. Retrieved 13 May 2016.