सेंटर-ऑफ-मोमेंटम फ्रेम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 7: Line 7:
[[विशेष सापेक्षता]] में, सम-गति केंद्र फ्रेम आवश्यक रूप से एकमात्र तभी अद्वितीय होता है जब सिस्टम पृथक होता है।
[[विशेष सापेक्षता]] में, सम-गति केंद्र फ्रेम आवश्यक रूप से एकमात्र तभी अद्वितीय होता है जब सिस्टम पृथक होता है।


== गुण ==
== '''गुण''' ==


=== सामान्य ===
=== सामान्य ===
संवेग फ्रेम के केंद्र को जड़त्वीय फ्रेम के रूप में परिभाषित किया गया है जिसमें सभी कणों के रैखिक संवेग का योग 0 के बराबर है। एस को प्रयोगशाला संदर्भ प्रणाली को निरूपित करने दें और एस' केंद्र-संवेग संदर्भ फ्रेम को निरूपित करें। गैलिलियन रूपांतरण का उपयोग करते हुए, S′ में कण वेग है
सम-गति केंद्र फ्रेम को उस अगणित फ्रेम के रूप में परिभाषित किया जाता है जिसमें सभी कणों के लीनियर प्रण का योगफल 0 होता है।एस को प्रयोगशाला संदर्भ सिस्टम और एस-प्राइम को सम-गति केंद्र संदर्भ ढांचा दर्शाता है। गैलिलियन रूपांतरण का उपयोग करके, S′ में कण वेग है :


:<math> v' = v - V_c ,</math>
:<math> v' = v - V_c ,</math>
Line 17: Line 17:
V_c = \frac{\sum_i m_i v_i}{\sum_i m_i}
V_c = \frac{\sum_i m_i v_i}{\sum_i m_i}
</math>
</math>
द्रव्यमान केंद्र का वेग है। केंद्र-संवेग प्रणाली में कुल गति तब गायब हो जाती है:
जो कि मान देने के लिए संभव है। सम-गति केंद्र सिस्टम में कुल प्रण फिर शून्य हो जाता है।


:<math>
:<math>
Line 26: Line 26:
= 0.
= 0.
</math>
</math>
साथ ही, सिस्टम की कुल [[ऊर्जा]] न्यूनतम ऊर्जा है जैसा कि सभी जड़त्वीय संदर्भ फ़्रेमों से देखा जाता है।
साथ ही, सिस्टम की कुल [[ऊर्जा]] न्यूनतम ऊर्जा सभी अविराम संदर्भ ढांचाओं से देखने पर न्यूनतम ऊर्जा होती है।


=== विशेष सापेक्षता ===
=== विशेष सापेक्षता ===

Revision as of 11:57, 18 March 2023

भौतिकी में, एक प्रणाली का सम-गति केंद्र (जिसे शून्य-गति केंद्र या सम-गति केंद्र फ्रेम भी कहा जाता है) एक ऐसा अथक होता है जड़त्वीय फ्रेम है जिसमें प्रणाली की कुल गति-द्रव्यमान शून्य होता है (यह फ्रेम वेग के लिए समान होता है, लेकिन मूल के लिए नहीं होता है)। एक प्रणाली का 'सम-गति केंद्र' कोई स्थान नहीं है (किन्तु यह एक समूह निश्चितता वाली गतियों / वेगों का संग्रह होता है: एक संदर्भ फ्रेम)। इसलिए "सम-गति केंद्र" का अर्थ होता है "सम-गति केंद्र फ्रेम" और यह इस वाक्य का एक संक्षिप्त रूप होता है।[1]

सम-गति केंद्र फ्रेम का एक विशेष स्थिति सम-द्रव्यमान केंद्र फ्रेम है: एक थोश बिंदु पर रहने वाले स्थिरचुंबकीय फ्रेम, जिसमें संदर्भ फ्रेम का मूल बिंदु रहता है। सभी सीओएम फ्रेमों में, संदर्भ फ्रेम का सम-द्रव्यमान केंद्र शांत होता है, लेकिन यह स्थानीय तंत्र के मूल पर निश्चित रूप से नहीं होता है।

विशेष सापेक्षता में, सम-गति केंद्र फ्रेम आवश्यक रूप से एकमात्र तभी अद्वितीय होता है जब सिस्टम पृथक होता है।

गुण

सामान्य

सम-गति केंद्र फ्रेम को उस अगणित फ्रेम के रूप में परिभाषित किया जाता है जिसमें सभी कणों के लीनियर प्रण का योगफल 0 होता है।एस को प्रयोगशाला संदर्भ सिस्टम और एस-प्राइम को सम-गति केंद्र संदर्भ ढांचा दर्शाता है। गैलिलियन रूपांतरण का उपयोग करके, S′ में कण वेग है :

यहाँ

जो कि मान देने के लिए संभव है। सम-गति केंद्र सिस्टम में कुल प्रण फिर शून्य हो जाता है।

साथ ही, सिस्टम की कुल ऊर्जा न्यूनतम ऊर्जा सभी अविराम संदर्भ ढांचाओं से देखने पर न्यूनतम ऊर्जा होती है।

विशेष सापेक्षता

विशेष सापेक्षता में, सम-गति केंद्र फ्रेम एक पृथक विशाल प्रणाली के लिए सम्मलित है। यह नोएदर के प्रमेय का परिणाम है उदाहरण 2: संवेग केंद्र का संरक्षण | नोएदर का प्रमेय। सम-गति केंद्र फ्रेम में सिस्टम की कुल ऊर्जा बाकी ऊर्जा है, और यह मात्रा (जब कारक c2, जहाँ c प्रकाश की गति है) प्रणाली का शेष द्रव्यमान (अपरिवर्तनीय द्रव्यमान) देता है:

सिस्टम का अपरिवर्तनीय द्रव्यमान सापेक्षतावादी अपरिवर्तनीय संबंध के माध्यम से किसी भी जड़त्वीय फ्रेम में दिया जाता है

किन्तु शून्य संवेग के लिए संवेग पद (p/c)2 गायब हो जाता है और इस प्रकार कुल ऊर्जा शेष ऊर्जा के साथ मेल खाती है।

ऐसी प्रणालियाँ जिनमें गैर-शून्य ऊर्जा होती है, किन्तु शून्य विश्राम द्रव्यमान (जैसे कि एक ही दिशा में चलने वाले फोटॉन, या समतुल्य, समतल तरंग विद्युत चुम्बकीय तरंगें) में सम-गति केंद्र फ्रेम नहीं होते हैं, क्योंकि ऐसा कोई फ्रेम नहीं है जिसमें उनका शुद्ध संवेग शून्य हो। प्रकाश की गति के अपरिवर्तनीय होने के कारण, द्रव्यमान रहित कण प्रणाली को किसी भी फ्रेम में प्रकाश की गति से यात्रा करनी चाहिए, और हमेशा शुद्ध गति होती है। इसकी ऊर्जा है - प्रत्येक संदर्भ फ्रेम के लिए - प्रकाश की गति से गुणा किए गए गति के परिमाण के बराबर होती है:


दो शरीर की समस्या

इस फ्रेम के उपयोग का एक उदाहरण नीचे दिया गया है - दो-पिंडों की टक्कर में, आवश्यक नहीं कि लोचदार (जहां गतिज ऊर्जा संरक्षित हो) हो। प्रयोगशाला फ्रेम की तुलना में सम-गति केंद्र फ्रेम का उपयोग कणों की गति को बहुत आसान खोजने के लिए किया जा सकता है: वह फ्रेम जहां माप या गणना की जाती है। द्रव्यमान m के दो कणों के लिए गैलिलियन परिवर्तनों और संवेग के संरक्षण (सामान्यता के लिए, एकमात्र गतिज ऊर्जा के अतिरिक्त) का उपयोग करके स्थिति का विश्लेषण किया जाता है।1 और एम2, प्रारंभिक वेगों पर (टक्कर से पहले) चल रहा है1 और आप2 क्रमश। लैब फ्रेम (अप्राइमेड मात्रा) से प्रत्येक कण के वेग से सम-गति केंद्र फ्रेम (प्राइमेड मात्रा) में फ्रेम के वेग को लेने के लिए परिवर्तन लागू किए जाते हैं:[1]

जहाँ V सम-गति केंद्र फ्रेम का वेग है। चूँकि V सम-गति केंद्र का वेग है, अर्थात सम-गति केंद्र स्थान R का समय व्युत्पन्न (सिस्टम के द्रव्यमान के केंद्र की स्थिति):[2]

इसलिए सम-गति केंद्र फ्रेम के मूल में, R' = 0, इसका तात्पर्य है

लैब फ्रेम में संवेग संरक्षण को लागू करके वही परिणाम प्राप्त किए जा सकते हैं, जहाँ संवेग p हैं1 और पी2:

और सम-गति केंद्र फ्रेम में, जहां यह निश्चित रूप से कहा गया है कि कणों का कुल संवेग, p1' और प2', गायब हो जाता है:

वी के लिए हल करने के लिए सम-गति केंद्र फ्रेम समीकरण का उपयोग ऊपर दिए गए लैब फ्रेम समीकरण को लौटाता है, कणों के संवेग की गणना के लिए किसी भी फ्रेम (सम-गति केंद्र फ्रेम सहित) का प्रदर्शन किया जा सकता है। यह स्थापित किया गया है कि उपरोक्त फ्रेम का उपयोग करके गणना से सम-गति केंद्र फ्रेम के वेग को हटाया जा सकता है, इसलिए सम-गति केंद्र फ्रेम में कणों का संवेग हो सकता है

लैब फ्रेम में मात्राओं के संदर्भ में व्यक्त किया गया (अर्थात दिए गए प्रारंभिक मान):

ध्यान दें कि पार्टिकल 1 से 2 के लैब फ्रेम में आपेक्षिक वेग है

और 2-बॉडी कम द्रव्यमान है

इसलिए कणों का संवेग सघन रूप से कम हो जाता है

यह दोनों कणों के संवेग की काफी सरल गणना है; घटे हुए द्रव्यमान और सापेक्ष वेग की गणना लैब फ्रेम और द्रव्यमान में प्रारंभिक वेगों से की जा सकती है, और एक कण का संवेग एकमात्र दूसरे का ऋणात्मक होता है। गणना को अंतिम वेग v के लिए दोहराया जा सकता है1 और वी2 प्रारंभिक वेग यू के स्थान पर1 और आप2, टक्कर के बाद से वेग अभी भी उपरोक्त समीकरणों को संतुष्ट करते हैं:[3]

इसलिए सम-गति केंद्र फ्रेम के मूल में, R = 0, इसका तात्पर्य टक्कर के बाद है

लैब फ्रेम में, संवेग का संरक्षण पूरी तरह से पढ़ता है:

यह समीकरण इसका अर्थ नहीं है

इसके अतिरिक्त, यह एकमात्र इंगित करता है कि कुल द्रव्यमान M को द्रव्यमान के केंद्र के वेग से गुणा किया जाता है 'V' प्रणाली का कुल संवेग 'P' है:

उपरोक्त के समान विश्लेषण प्राप्त होता है

जहां कण 1 से 2 के लैब फ्रेम में अंतिम सापेक्ष वेग है


यह भी देखें

संदर्भ

  1. 1.0 1.1 Dynamics and Relativity, J.R. Forshaw, A.G. Smith, Wiley, 2009, ISBN 978-0-470-01460-8
  2. Classical Mechanics, T.W.B. Kibble, European Physics Series, 1973, ISBN 0-07-084018-0
  3. An Introduction to Mechanics, D. Kleppner, R.J. Kolenkow, Cambridge University Press, 2010, ISBN 978-0-521-19821-9