सेंटर-ऑफ-मोमेंटम फ्रेम: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (12 revisions imported from alpha:सेंटर-ऑफ-मोमेंटम_फ्रेम) |
(No difference)
|
Revision as of 08:52, 6 April 2023
भौतिकी में, एक प्रणाली का सम-गति केंद्र (जिसे शून्य-गति केंद्र या सम-गति केंद्र फ्रेम भी कहा जाता है) एक ऐसा अथक होता है जड़त्वीय फ्रेम है जिसमें प्रणाली की कुल गति-द्रव्यमान शून्य होता है (यह फ्रेम वेग के लिए समान होता है, लेकिन मूल के लिए नहीं होता है)। एक प्रणाली का 'सम-गति केंद्र' कोई स्थान नहीं है (किन्तु यह एक समूह निश्चितता वाली गतियों / वेगों का संग्रह होता है: एक संदर्भ फ्रेम)। इसलिए "सम-गति केंद्र" का अर्थ होता है "सम-गति केंद्र फ्रेम" और यह इस वाक्य का एक संक्षिप्त रूप होता है।[1]
द्रव्यमान केंद्र ढेर (सेंटर ऑफ मास) के फ्रेम का एक विशेष मामला है: एक अचल संदर्भ में जिसमें द्रव्यमान केंद्र (जो एक भौतिक बिंदु होता है) मूल पर बना रहता है। सभी द्रव्यमान केंद्र ढेर फ्रेमों में, द्रव्यमान केंद्र शांत होता है, लेकिन यह समय-स्थान तंत्र के मूल पर नहीं होता है।
विशेष सापेक्षता में, जब तंत्र संचरित होता हो तब केंद्र ढेर फ्रेम अनिवार्य रूप से अद्वितीय नहीं होता है।
गुण
सामान्य
द्रव्यमान प्रणाली के सभी कणों के लीनियर मोमेंट के योग को 0 के बराबर मानने वाली अचल संदर्भ तंत्र को मोमेंटम का केंद्रीय तंत्र कहा जाता है। S को प्रयोगशाला संदर्भ प्रणाली और S 'को गति के केंद्र संदर्भ तंत्र के रूप में दर्शाया जाता है। एक गैलिलियन परिवर्तन का उपयोग करके, S' में कण की वेगवृत्ति होती है। :
यहाँ
द्रव्यमान केंद्र का वेग है। केंद्र-संवेग प्रणाली में कुल गति तब गायब हो जाती है:
साथ ही, प्रणाली की कुल ऊर्जा न्यूनतम ऊर्जा है जैसा कि सभी जड़त्वीय संदर्भ फ़्रेमों से देखा जाता है।
विशेष सापेक्षता
सापेक्षता सिद्धांत में, सम-गति केंद्र फ्रेम एक अलग भारी प्रणीत प्रणाली के लिए सम्मलित होता है। यह नोएथर का सिद्धांत का परिणाम है सम-गति केंद्र संदर्भ में, प्रणाली की कुल ऊर्जा शेष ऊर्जा होती है, और इस मात्रा को (जब कारक c2 से विभाजित किया जाता है जहाँ c प्रकाश की गति है) प्रणाली का शेष द्रव्यमान (अपरिवर्तनीय द्रव्यमान) देता है:
किसी भी अचल संदर्भ में, प्रणाली का अविरोधी द्रव्यमान विश्वसनीयता संबंध से दिया जाता है।
जब प्रण क्षेत्र शून्य होता है तो चंद्रबिंदु (p/c)2 का शक्ति टर्म गायब हो जाता है और इस प्रकार कुल ऊर्जा शेष ऊर्जा से मेल खाती है।
जिन प्रणाली का शून्य शक्तिमान लेकिन अविरोधी द्रव्यमान नहीं होता है (जैसे कि एक ही दिशा में चलने वाले फोटॉन, या समतुल्य, समतल तरंग विद्युत चुम्बकीय तरंगें) उनके पास सीओएम फ्रेम नहीं होते हैं, क्योंकि उन्हें कोई ऐसा कोई फ्रेम नहीं होता है जिसमें उनके जवाब को कोई अस्थायी जवाब नहीं होता है। प्रकाश की गति के अपरिवर्तनीय होने के कारण,एक शून्य द्रव्यमान रहित कण प्रणाली को किसी भी फ्रेम में प्रकाश की गति से यात्रा करनी चाहिए, और हमेशा शुद्ध गति होती है। इसकी ऊर्जा प्रत्येक संदर्भ फ्रेम के लिए प्रकाश की गति से गुणा किए गए गति के परिमाण के बराबर होती है:
दो शरीर की समस्या
इस फ्रेम का उपयोग नीचे दिए गए उदाहरण में किया गया है - दो-शरीरी टकराव में, जो आवश्यकतानुसार असंगत (जहां द्रव्यमान ऊर्जा संरक्षित होती है) नहीं होता है। प्रयोगशाला फ्रेम की उपमा में सम-गति केंद्र फ्रेम का उपयोग कणों की गति को बहुत आसान खोजने के लिए किया जा सकता है: वह फ्रेम जहां माप या गणना की जाती है। गैलिलियन संवेदना और शक्ति संरक्षण (एकमात्र किनेटिक ऊर्जाओं के अतिरिक्त विस्तार के लिए) का उपयोग दो शरीरों के लिए किया जाता है, जिनका द्रव्यमान m1और m2 है, और जो आवर्ती वेगों (टकराव से पहले) u1 और u2 से ले जाते हैं। गतिवेग को प्राप्त करने के लिए संवेदनात्मक रूप से गेलिलियन बदलाव का उपयोग किया जाता है जिससे लैब ढांचे (अप्रधान मात्राएं) से टकराव से पहले प्रत्येक कण की वेग लेने के लिए ढांचा की वेग (प्राधान मात्राएं) लिया जाता है[1]
जहाँ V सम-गति केंद्र फ्रेम का वेग है। चूँकि V सम-गति केंद्र का वेग है, अर्थात सम-गति केंद्र स्थान R का समय व्युत्पन्न (प्रणाली के द्रव्यमान के केंद्र की स्थिति):[2]
इसलिए सम-गति केंद्र फ्रेम के मूल में, R' = 0, इसका तात्पर्य है
लैब फ्रेम में संवेग संरक्षण को लागू करके वही परिणाम प्राप्त किए जा सकते हैं, जहाँ संवेग p हैं1 और पी2:
और सम-गति केंद्र फ्रेम में, जहां यह निश्चित रूप से कहा गया है कि कणों का कुल संवेग, p1' और प2', गायब हो जाता है:
वी के लिए सीओएम ढांचा का समीकरण उपयोग करके मोमेंटा की गणना के लिए किसी भी ढांचे का उपयोग किया जा सकता है (सीओएम ढांचे सहित)। यह साबित हुआ है कि उपरोक्त ढांचा का उपयोग करके सीओएम ढांचे की वेग को गणना से हटाया जा सकता है, इसलिए सीओएम ढांचे में कणों के मोमेंटा दिए गए प्रारंभिक मूल्यों के आधार पर लैब ढांचे के मात्राओं के संबंध में व्यक्त किए जा सकते हैं:
लैब फ्रेम में मात्राओं के संदर्भ में व्यक्त किया गया (अर्थात दिए गए प्रारंभिक मान):
ध्यान दें कि पार्टिकल 1 से 2 के लैब फ्रेम में आपेक्षिक वेग है
और 2-बॉडी कम द्रव्यमान है
इसलिए कणों का संवेग सघन रूप से कम हो जाता है
दोनों कणों के मोमेंटा की इस गणना में अधिक सरलता होती है। प्रारंभिक वेगों और मास के आधार पर कम की गई मास और सांदर्भिक वेग की गणना की जा सकती है और एक कण का मोमेंटम सिर्फ दूसरे कण के उलट होता है। गणना अंतिम वेग v1 और v2 के लिए प्रारंभिक वेग u1 और u2 के स्थान पर दोहराई जा सकती है, क्योंकि संघर्ष के बाद वेग अभी भी ऊपर दिए गए समीकरणों को पूरा करते हैं :[3]
इसलिए सम-गति केंद्र फ्रेम के मूल में, R = 0, इसका तात्पर्य टक्कर के बाद है
लैब फ्रेम में, संवेग का संरक्षण पूरी तरह से पढ़ता है:
यह समीकरण इसका अर्थ नहीं है
इसके अतिरिक्त, यह एकमात्र इंगित करता है कि कुल द्रव्यमान M को द्रव्यमान के केंद्र के वेग से गुणा किया जाता है 'V' प्रणाली का कुल संवेग 'P' है:
उपरोक्त के समान विश्लेषण प्राप्त होता है
जहां कण 1 से 2 के लैब फ्रेम में अंतिम सापेक्ष वेग है
यह भी देखें
- संदर्भ की प्रयोगशाला फ्रेम
- चौड़ा फ्रेम
संदर्भ
- ↑ 1.0 1.1 Dynamics and Relativity, J.R. Forshaw, A.G. Smith, Wiley, 2009, ISBN 978-0-470-01460-8
- ↑ Classical Mechanics, T.W.B. Kibble, European Physics Series, 1973, ISBN 0-07-084018-0
- ↑ An Introduction to Mechanics, D. Kleppner, R.J. Kolenkow, Cambridge University Press, 2010, ISBN 978-0-521-19821-9