वीक ऑपरेटर टोपोलॉजी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Weak topology on function spaces}}
{{Short description|Weak topology on function spaces}}
{{unreferenced|date=June 2008}}
[[कार्यात्मक विश्लेषण]] में कमजोर ऑपरेटर [[टोपोलॉजी]], अधिकांशतः संक्षिप्त डब्लूओटी [[ हिल्बर्ट अंतरिक्ष |हिल्बर्ट स्पेस]] पर परिबद्ध प्रचालकों के समूह की सबसे कमज़ोर टोपोलॉजी है। <math>H</math>, जैसे कि [[ हिल्बर्ट अंतरिक्ष |हिल्बर्ट स्पेस]] में किसी भी वैक्टर <math>x</math> और <math>y</math> के लिए जटिल संख्या <math>\langle Tx, y\rangle</math> में एक ऑपरेटर <math>T</math> भेजने वाला [[कार्यात्मक (गणित)]] निरंतर है।
[[कार्यात्मक विश्लेषण]] में, कमजोर ऑपरेटर [[टोपोलॉजी]], अधिकांशतः संक्षिप्त डब्लूओटी, [[ हिल्बर्ट अंतरिक्ष ]] पर बंधे ऑपरेटरों के सेट पर सबसे कमजोर टोपोलॉजी है। <math>H</math>, जैसे कि [[कार्यात्मक (गणित)]] एक ऑपरेटर भेज रहा है <math>T</math> जटिल संख्या के लिए <math>\langle Tx, y\rangle</math> किसी भी सदिश के लिए सतत फलन है <math>x</math> और <math>y</math> हिल्बर्ट अंतरिक्ष में।


स्पष्ट रूप से, एक ऑपरेटर के लिए <math>T</math> निम्न प्रकार का पड़ोस आधार है: सदिशों की एक परिमित संख्या चुनें <math>x_i</math>, निरंतर कार्यात्मक <math>y_i</math>, और सकारात्मक वास्तविक स्थिरांक <math>\varepsilon_i</math> एक ही परिमित सेट द्वारा अनुक्रमित <math>I</math>. एक संचालिका <math>S</math> अगर और केवल अगर पड़ोस में है <math>| y_i(T(x_i) - S(x_i))| < \varepsilon_i</math> सभी के लिए <math>i \in I</math>.
स्पष्ट रूप से, एक ऑपरेटर <math>T</math> के लिए निम्न प्रकार के पड़ोस का आधार है: एक ही परिमित सेट <math>I</math> द्वारा अनुक्रमित वैक्टर <math>x_i</math>, निरंतर कार्यात्मक <math>y_i</math>, और सकारात्मक वास्तविक स्थिरांक <math>\varepsilon_i</math> की एक परिमित संख्या चुनी गयी है। अगर और केवल अगर <math>| y_i(T(x_i) - S(x_i))| < \varepsilon_i</math> सभी <math>i \in I</math> के लिए, एक ऑपरेटर <math>S</math> पड़ोस में स्थित है।


समतुल्य, एक [[नेट (गणित)]] <math>T_i \subseteq B(H)</math> बाउंडेड ऑपरेटर्स का अभिसरण होता है <math>T \in B(H)</math> डब्लूओटी में अगर सभी के लिए <math> y \in H^*</math> और <math>x \in H</math>, जाल <math>y(T_i x)</math> में विलीन हो जाता है <math> y(T x)</math>.
समतुल्य रूप से, बाध्य ऑपरेटरों का शुद्ध <math>T_i \subseteq B(H)</math> डब्लूओटी में <math>T \in B(H)</math> में परिवर्तित हो जाता है यदि सभी <math> y \in H^*</math> और <math>x \in H</math> के लिए, <math>y(T_i x)</math> जाल , <math> y(T x)</math> में परिवर्तित हो जाता है।


== बी (एच) == पर अन्य टोपोलॉजी के साथ संबंध
== <math>B(H)</math> पर अन्य टोपोलॉजी के साथ संबंध ==
हिल्बर्ट स्पेस <math>H</math> पर बंधे हुए ऑपरेटर, डब्लूओटी <math>B(H)</math> पर सभी सामान्य टोपोलॉजी में सबसे कमजोर है।


हिल्बर्ट स्पेस | टोपोलॉजी पर ऑपरेटरों के सेट पर डब्लूओटी सभी सामान्य टोपोलॉजी में सबसे कमजोर है <math>B(H)</math>, हिल्बर्ट स्पेस पर बंधे हुए ऑपरेटर <math>H</math>.
=== [[मजबूत ऑपरेटर टोपोलॉजी]] ===


=== [[मजबूत ऑपरेटर टोपोलॉजी]] ===
क्योंकि आंतरिक उत्पाद एक सतत कार्य है, SOT डब्लूओटी से अधिक मजबूत है। निम्नलिखित उदाहरण से पता चलता है कि यह समावेश सख्त है। होने देना <math>H = \ell^2(\mathbb N)</math> और क्रम पर विचार करें <math>\{T^n\}</math> एकतरफा पारियों की। कौशी-श्वार्ज़ के एक प्रयोग से यह पता चलता है <math>T^n \to 0</math> डब्लूओटी में। लेकिन स्पष्ट रूप से <math>T^n</math> में नहीं मिलता है <math>0</math> एसओटी में।


मजबूत ऑपरेटर टोपोलॉजी, या एसओटी, ऑन <math>B(H)</math> बिंदुवार अभिसरण की टोपोलॉजी है। क्योंकि आंतरिक उत्पाद एक सतत कार्य है, SOT डब्लूओटी से अधिक मजबूत है। निम्नलिखित उदाहरण से पता चलता है कि यह समावेश सख्त है। होने देना <math>H = \ell^2(\mathbb N)</math> और क्रम पर विचार करें <math>\{T^n\}</math> एकतरफा पारियों की। कौशी-श्वार्ज़ के एक प्रयोग से यह पता चलता है <math>T^n \to 0</math> डब्लूओटी में। लेकिन स्पष्ट रूप से <math>T^n</math> में नहीं मिलता है <math>0</math> एसओटी में।
'''<math>B(H)</math> पर मजबूत ऑपरेटर टोपोलॉजी, या एसओटी, बिंदुवार अभिसरण की टोपोलॉजी है।'''


मजबूत ऑपरेटर टोपोलॉजी में निरंतर हिल्बर्ट स्पेस पर बंधे ऑपरेटरों के सेट पर [[रैखिक कार्यात्मक]] ठीक वही हैं जो डब्ल्यूओटी में निरंतर हैं (वास्तव में, डब्ल्यूओटी सबसे कमजोर ऑपरेटर टोपोलॉजी है जो निरंतर सभी दृढ़ता से निरंतर रैखिक कार्यात्मक छोड़ देता है। तय करना <math>B(H)</math> हिल्बर्ट स्पेस एच पर बंधे ऑपरेटरों की संख्या)। इस तथ्य के कारण, डब्लूओटी में ऑपरेटरों के एक [[उत्तल सेट]] का बंद होना, SOT में उस सेट के बंद होने के समान है।
मजबूत ऑपरेटर टोपोलॉजी में निरंतर हिल्बर्ट स्पेस पर बंधे ऑपरेटरों के सेट पर [[रैखिक कार्यात्मक]] ठीक वही हैं जो डब्ल्यूओटी में निरंतर हैं (वास्तव में, डब्ल्यूओटी सबसे कमजोर ऑपरेटर टोपोलॉजी है जो निरंतर सभी दृढ़ता से निरंतर रैखिक कार्यात्मक छोड़ देता है। तय करना <math>B(H)</math> हिल्बर्ट स्पेस एच पर बंधे ऑपरेटरों की संख्या)। इस तथ्य के कारण, डब्लूओटी में ऑपरेटरों के एक [[उत्तल सेट]] का बंद होना, SOT में उस सेट के बंद होने के समान है।

Revision as of 23:12, 17 March 2023

कार्यात्मक विश्लेषण में कमजोर ऑपरेटर टोपोलॉजी, अधिकांशतः संक्षिप्त डब्लूओटी हिल्बर्ट स्पेस पर परिबद्ध प्रचालकों के समूह की सबसे कमज़ोर टोपोलॉजी है। , जैसे कि हिल्बर्ट स्पेस में किसी भी वैक्टर और के लिए जटिल संख्या में एक ऑपरेटर भेजने वाला कार्यात्मक (गणित) निरंतर है।

स्पष्ट रूप से, एक ऑपरेटर के लिए निम्न प्रकार के पड़ोस का आधार है: एक ही परिमित सेट द्वारा अनुक्रमित वैक्टर , निरंतर कार्यात्मक , और सकारात्मक वास्तविक स्थिरांक की एक परिमित संख्या चुनी गयी है। अगर और केवल अगर सभी के लिए, एक ऑपरेटर पड़ोस में स्थित है।

समतुल्य रूप से, बाध्य ऑपरेटरों का शुद्ध डब्लूओटी में में परिवर्तित हो जाता है यदि सभी और के लिए, जाल , में परिवर्तित हो जाता है।

पर अन्य टोपोलॉजी के साथ संबंध

हिल्बर्ट स्पेस पर बंधे हुए ऑपरेटर, डब्लूओटी पर सभी सामान्य टोपोलॉजी में सबसे कमजोर है।

मजबूत ऑपरेटर टोपोलॉजी

क्योंकि आंतरिक उत्पाद एक सतत कार्य है, SOT डब्लूओटी से अधिक मजबूत है। निम्नलिखित उदाहरण से पता चलता है कि यह समावेश सख्त है। होने देना और क्रम पर विचार करें एकतरफा पारियों की। कौशी-श्वार्ज़ के एक प्रयोग से यह पता चलता है डब्लूओटी में। लेकिन स्पष्ट रूप से में नहीं मिलता है एसओटी में।

पर मजबूत ऑपरेटर टोपोलॉजी, या एसओटी, बिंदुवार अभिसरण की टोपोलॉजी है।

मजबूत ऑपरेटर टोपोलॉजी में निरंतर हिल्बर्ट स्पेस पर बंधे ऑपरेटरों के सेट पर रैखिक कार्यात्मक ठीक वही हैं जो डब्ल्यूओटी में निरंतर हैं (वास्तव में, डब्ल्यूओटी सबसे कमजोर ऑपरेटर टोपोलॉजी है जो निरंतर सभी दृढ़ता से निरंतर रैखिक कार्यात्मक छोड़ देता है। तय करना हिल्बर्ट स्पेस एच पर बंधे ऑपरेटरों की संख्या)। इस तथ्य के कारण, डब्लूओटी में ऑपरेटरों के एक उत्तल सेट का बंद होना, SOT में उस सेट के बंद होने के समान है।

यह ध्रुवीकरण पहचान से अनुसरण करता है कि एक net में विलीन हो जाता है एसओटी में अगर और केवल अगर डब्लूओटी में।

कमजोर-स्टार ऑपरेटर टोपोलॉजी

बी (एच) का पूर्ववर्ती ट्रेस क्लास ऑपरेटर सी है1(H), और यह B(H) पर w*-टोपोलॉजी उत्पन्न करता है, जिसे कमजोर-स्टार ऑपरेटर टोपोलॉजी या σ-कमजोर टोपोलॉजी कहा जाता है। कमजोर-ऑपरेटर और σ-कमज़ोर टोपोलॉजी बी(एच) में मानदंड-बद्ध सेट पर सहमत हैं।

एक जाल {टीα} ⊂ B(H) डब्लूओटी में T में परिवर्तित होता है यदि और केवल Tr(TαF) सभी परिमित-रैंक ऑपरेटर F के लिए Tr(TF) में परिवर्तित होता है। चूंकि प्रत्येक परिमित-रैंक ऑपरेटर ट्रेस-क्लास है, इसका तात्पर्य है कि डब्लूओटी σ-कमजोर टोपोलॉजी से कमजोर है। यह देखने के लिए कि दावा सत्य क्यों है, याद रखें कि प्रत्येक परिमित-रैंक ऑपरेटर F एक परिमित योग है

तो {टीα} डब्लूओटी साधन में T में परिवर्तित होता है

थोड़ा विस्तार करते हुए, कोई कह सकता है कि कमजोर-संचालक और σ-कमजोर टोपोलॉजी बी (एच) में मानक-बद्ध सेट पर सहमत हैं: प्रत्येक ट्रेस-क्लास ऑपरेटर का रूप है

जहां श्रृंखला अभिसरण। कल्पना करना और डब्लूओटी में। हर ट्रेस-क्लास S के लिए,

उदाहरण के लिए, वर्चस्व वाले अभिसरण प्रमेय का आह्वान करके।

इसलिए बानाच-अलाग्लु प्रमेय द्वारा डब्लूओटी में प्रत्येक मानदंड-बद्ध सेट कॉम्पैक्ट है।

अन्य गुण

आसन्न ऑपरेशन T → T*, इसकी परिभाषा के तत्काल परिणाम के रूप में, डब्लूओटी में निरंतर है।

गुणा संयुक्त रूप से डब्लूओटी में निरंतर नहीं है: फिर से चलो एकतरफा बदलाव हो। कॉची-श्वार्ज़ से अपील करते हुए, एक ने कहा कि दोनों टीएन और टी*n डब्लूओटी में 0 में परिवर्तित हो जाता है। लेकिन टी*एनटीn सभी के लिए आइडेंटिटी ऑपरेटर है . (क्योंकि डब्लूओटी बंधे हुए सेट पर σ-कमजोर टोपोलॉजी के साथ मेल खाता है, गुणन σ-कमजोर टोपोलॉजी में संयुक्त रूप से निरंतर नहीं है।)

हालाँकि, एक कमजोर दावा किया जा सकता है: डब्लूओटी में गुणा अलग से निरंतर है। अगर नेट टीi→ डब्लूओटी में T, फिर STi→ एसटी और टीiडब्लूओटी में S → TS।

एसओटी और डब्ल्यूओटी बी (एक्स, वाई) पर जब एक्स और वाई मानक स्थान हैं

हम SOT और डब्लूओटी की परिभाषाओं को अधिक सामान्य सेटिंग तक बढ़ा सकते हैं जहां X और Y मानक सदिश स्थान हैं और प्रपत्र के परिबद्ध रेखीय संचालकों का स्थान है . इस मामले में, प्रत्येक जोड़ी और एक मानदंड परिभाषित करता है (गणित) पर नियम के माध्यम से . सेमिनोर्म्स का परिणामी परिवार कमजोर ऑपरेटर टोपोलॉजी को उत्पन्न करता है . समान रूप से, डब्लूओटी ऑन फॉर्म के उन सेटों को आधार (टोपोलॉजी) मानकर बनाया जाता है

कहाँ एक परिमित समुच्चय है, एक परिमित समुच्चय भी है, और . अंतरिक्ष डब्लूओटी से संपन्न होने पर स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस होता है।

मजबूत ऑपरेटर टोपोलॉजी ऑन सेमिनोर्म्स के परिवार द्वारा उत्पन्न होता है नियमों के माध्यम से . इस प्रकार, एसओटी के लिए एक सांस्थितिकीय आधार फॉर्म के खुले पड़ोस द्वारा दिया जाता है

जहां पहले की तरह एक परिमित सेट है, और


=== बी (एक्स, वाई) === पर विभिन्न टोपोलॉजी के बीच संबंध

विभिन्न टोपोलॉजी के लिए अलग-अलग शब्दावली कभी-कभी भ्रमित हो सकता है। उदाहरण के लिए, एक मानक स्थान में वैक्टर के लिए मजबूत अभिसरण कभी-कभी मानदंड-अभिसरण को संदर्भित करता है, जो एसओटी-अभिसरण की तुलना में अधिकांशतः अलग (और इससे अधिक मजबूत) होता है जब प्रश्न में मानक स्थान होता है . एक आदर्श स्थान पर कमजोर टोपोलॉजी सबसे मोटे टोपोलॉजी है जो रैखिक कार्यों को बनाता है निरंतर; जब हम लेते हैं की जगह , कमजोर टोपोलॉजी कमजोर ऑपरेटर टोपोलॉजी से बहुत अलग हो सकती है। और जबकि डब्लूओटी औपचारिक रूप से SOT से कमजोर है, SOT ऑपरेटर मानक टोपोलॉजी से कमजोर है।

सामान्य तौर पर, निम्नलिखित समावेशन धारण करते हैं:

और ये समावेशन विकल्पों के आधार पर सख्त हो सकते हैं या नहीं भी हो सकते हैं और .

डब्लूओटी चालू है एसओटी की तुलना में औपचारिक रूप से कमजोर टोपोलॉजी है, लेकिन फिर भी वे कुछ महत्वपूर्ण गुणों को साझा करते हैं। उदाहरण के लिए,

नतीजतन, अगर तब उत्तल है

दूसरे शब्दों में, एसओटी-क्लोजर और डब्ल्यूओटी-क्लोजर उत्तल सेट के लिए मेल खाते हैं।

यह भी देखें

श्रेणी:टोपोलॉजिकल वेक्टर स्पेस श्रेणी:फ़ंक्शन स्पेस की टोपोलॉजी