विभेदक: Difference between revisions
No edit summary |
No edit summary |
||
Line 199: | Line 199: | ||
:<math> P=a_nx^n+a_{n-1}x^{n-1}+ \cdots +a_0</math> | :<math> P=a_nx^n+a_{n-1}x^{n-1}+ \cdots +a_0</math> | ||
:पर विचार करें। | :पर विचार करें। | ||
यह इस बात से अनुसरण करता है कि विभेदक में प्रकट होने वाले प्रत्येक [[एकपद|बहुपद]] <math>a_0^{i_0}, \dots , a_n^{i_n}</math> में घातांक दो समीकरणों | यह इस बात से अनुसरण करता है कि विभेदक में प्रकट होने वाले प्रत्येक [[एकपद|बहुपद]] <math>a_0^{i_0}, \dots , a_n^{i_n}</math> में घातांक दो समीकरणों | ||
:<math>i_0+i_1+\cdots+i_n=2n-2</math> | :<math>i_0+i_1+\cdots+i_n=2n-2</math> | ||
और | और | ||
:<math>i_1+2i_2 + \cdots+n i_n=n(n-1) | :<math>i_1+2i_2 + \cdots+n i_n=n(n-1)</math> | ||
और समीकरण | को संतुष्ट करते हैं और समीकरण | ||
:<math>ni_0 +(n-1)i_1+ \cdots+ i_{n-1}=n(n-1) | :<math>ni_0 +(n-1)i_1+ \cdots+ i_{n-1}=n(n-1)</math> | ||
जो | को भी जो पूर्व समीकरण को {{math|''n''}} से गुणा करके दूसरे समीकरण को घटाकर प्राप्त किया जाता है। | ||
यह विभेदक में संभावित शर्तों को प्रतिबंधित करता है। सामान्य द्विघात बहुपद के लिए विभेदक में मात्र दो संभावनाएँ और दो पद होते हैं, जबकि तीन चरों में घात दो के सामान्य सजातीय बहुपद में 6 पद होते हैं। सामान्य घन बहुपद के लिए, विभेदक में पाँच संभावनाएँ और पाँच पद हैं, जबकि 5 चरों में 4 घात के सामान्य सजातीय बहुपद में 70 पद हैं। | यह विभेदक में संभावित शर्तों को प्रतिबंधित करता है। सामान्य द्विघात बहुपद के लिए विभेदक में मात्र दो संभावनाएँ और दो पद होते हैं, जबकि तीन चरों में घात दो के सामान्य सजातीय बहुपद में 6 पद होते हैं। सामान्य घन बहुपद के लिए, विभेदक में पाँच संभावनाएँ और पाँच पद हैं, जबकि 5 चरों में 4 घात के सामान्य सजातीय बहुपद में 70 पद हैं। | ||
उच्च घात के लिए, ऐसे | उच्च घात के लिए, ऐसे एकपदीय हो सकते हैं जो उपरोक्त समीकरणों को संतुष्ट करते हैं और विभेदक में प्रकट नहीं होते हैं। पहला उदाहरण चतुर्थांश बहुपद <math>ax^4 + bx^3 + cx^2 + dx + e</math> के लिए है, जिस स्थिति में एकपदीय <math>bc^4d</math> विभेदक में प्रकट हुए बिना समीकरणों को संतुष्ट करता है। | ||
==वास्तविक मूल== | ==वास्तविक मूल== | ||
इस खंड में, सभी बहुपदों में वास्तविक संख्या गुणांक होते हैं। | इस खंड में, सभी बहुपदों में वास्तविक संख्या गुणांक होते हैं। | ||
{{slink||निम्न घात}} में यह देखा गया है कि विभेदक का संकेत घात 2 और 3 के बहुपदों के लिए मूलों की प्रकृति पर पूरी जानकारी प्रदान करता है। उच्च घात के लिए, विभेदक द्वारा प्रदान की गई जानकारी कम पूर्ण है, परन्तु फिर भी उपयोगी है। अधिक यथार्थ रूप से, घात {{math|''n''}} के बहुपद के लिए, एक के निकट है: | |||
*बहुपद का बहुपद होता है यदि और मात्र यदि उसका विभेदक शून्य हो। | *बहुपद का बहुपद होता है यदि और मात्र यदि उसका विभेदक शून्य हो। | ||
*यदि विभेदक धनात्मक है, तो अवास्तविक मूलों की संख्या 4 का गुणक है। अर्थात्, एक अऋणात्मक पूर्णांक | *यदि विभेदक धनात्मक है, तो अवास्तविक मूलों की संख्या 4 का गुणक है। अर्थात्, एक अऋणात्मक पूर्णांक {{math|''k'' ≤ ''n''/4}} है जैसे जटिल संयुग्म मूलों और {{math|''n'' − 4''k''}} वास्तविक मूल {{math|2''k''}} जोड़े हैं। | ||
*यदि विभेदक ऋणात्मक है, तो अवास्तविक मूलों की संख्या 4 का गुणज नहीं है। अर्थात्, एक अऋणात्मक पूर्णांक | *यदि विभेदक ऋणात्मक है, तो अवास्तविक मूलों की संख्या 4 का गुणज नहीं है। अर्थात्, एक अऋणात्मक पूर्णांक {{math|''k'' ≤ (''n'' − 2)/4}} है जैसे जटिल संयुग्म मूलों और {{math|''n'' − 4''k'' + 2}} वास्तविक मूल {{math|2''k'' + 1}}जोड़े हैं। | ||
==सजातीय द्विभाजित बहुपद== | ==सजातीय द्विभाजित बहुपद== | ||
Line 223: | Line 223: | ||
मान लीजिए कि | मान लीजिए कि | ||
:<math>A(x,y) = a_0x^n+ a_1 x^{n-1}y + \cdots + a_n y^n=\sum_{i=0}^n a_i x^{n-i}y^i</math> | :<math>A(x,y) = a_0x^n+ a_1 x^{n-1}y + \cdots + a_n y^n=\sum_{i=0}^n a_i x^{n-i}y^i</math> | ||
घात | दो अनिश्चितांकों में घात {{math|''n''}} का एक सजातीय बहुपद है। | ||
मान लीजिए, | मान लीजिए, अभी के लिये, कि <math>a_0</math> और <math>a_n</math> दोनों गैर-शून्य हैं, एक के निकट | ||
:<math>\operatorname{Disc}_x(A(x,1))=\operatorname{Disc}_y(A(1,y)) | :<math>\operatorname{Disc}_x(A(x,1))=\operatorname{Disc}_y(A(1,y))</math> है। | ||
इस मात्रा को <math>\operatorname{Disc}^h (A)</math> दर्शाने द्वारा | |||
किसी के | किसी के निकट | ||
:<math>\operatorname{Disc}_x (A) =y^{n(n-1)} \operatorname{Disc}^h (A),</math> | :<math>\operatorname{Disc}_x (A) =y^{n(n-1)} \operatorname{Disc}^h (A),</math> | ||
और | और |
Revision as of 22:12, 16 March 2023
गणित में, बहुपद का विभेदक एक मात्रा है जो गुणांकों पर निर्भर करता है और किसी फलन के शून्य के कुछ गुणों को उनकी गणना किए बिना निकालने की अनुमति देता है। अधिक यथार्थ रूप से, यह मूल बहुपद के गुणांकों का बहुपद फलन है। विभेदक बहुपद गुणनखंडन, संख्या सिद्धांत और बीजगणितीय ज्यामिति में व्यापक रूप से उपयोग किया जाता है।
द्विघात बहुपद का विभेदक
है, वह मात्रा जो द्विघात सूत्र में वर्गमूल के अंतर्गत प्रकट होती है। यदि यह विभेदक शून्य है यदि और मात्र यदि बहुपद का दोहरा मूल है। वास्तविक संख्या गुणांक के विषय में, यदि बहुपद की दो अलग-अलग वास्तविक मूल हैं, तो यह धनात्मक है और यदि दो अलग-अलग जटिल संयुग्मी मूल हैं तो यह ऋणात्मक है।[1] इसी प्रकार, एक त्रिघात बहुपद का विभेदक शून्य होता है यदि और मात्र यदि बहुपद का एक बहुमूल हो। वास्तविक गुणांक वाले घन के विषय में, यदि बहुपद के तीन अलग-अलग वास्तविक मूल हैं, तो विभेदक धनात्मक होता है, और यदि इसके एक वास्तविक मूल और दो अलग-अलग जटिल संयुग्म मूल होते हैं, तो ऋणात्मक होता है।
अधिक सामान्यतः, एक बहुपद की धनात्मक घात के एक अविभाजित बहुपद का विभेदक शून्य होता है यदि और मात्र यदि बहुपद का एक बहुमूल हो। वास्तविक गुणांक और कोई बहुमूल नहीं होने के लिए, विभेदक धनात्मक होता है यदि गैर-वास्तविक मूलों की संख्या 4 का गुणज (गणित) है (कोई भी नहीं सहित), और अन्यथा ऋणात्मक है।
कई सामान्यीकरणों को विभेदक भी कहा जाता है: एक बीजगणितीय संख्या क्षेत्र का विभेदक; द्विघात रूप का विभेदक; और अधिक सामान्यतः, एक सजातीय बहुपद , या एक प्रक्षेपी ऊनविम सतह के एक रूप (गणित) का विभेदक (ये तीन अवधारणाएँ अनिवार्य रूप से समतुल्य हैं)।
उत्पत्ति
विभेदक शब्द 1851 में ब्रिटिश गणितज्ञ जेम्स जोसेफ सिल्वेस्टर द्वारा निर्मित किया गया था।[2]
परिभाषा
मान लीजिए
घात n का एक बहुपद (इसका अर्थ है ), जैसे कि गुणांक एक क्षेत्र (गणित) से संबंधित हैं, या अधिक सामान्यतः, एक क्रमविनिमेय वलय के लिए हैं। A और उसके रूपात्मक व्युत्पन्न,
- का परिणामी, पूर्णांक गुणांकों के साथ में एक बहुपद है, जो A और A′ सिल्वेस्टर आव्यूह का निर्धारक है। सिल्वेस्टर आव्यूह के प्रथम स्तंभ की गैर-शून्य प्रविष्टियाँ और हैं, और परिणामी इस प्रकार का गुणक है। इसलिए विभेदक - इसके संकेत तक - को :
- द्वारा A और A' के परिणाम के भागफल के रूप में परिभाषित किया गया है
ऐतिहासिक रूप से, इस संकेत को इस प्रकार चुना गया है कि, वास्तविक के ऊपर, विभेदक धनात्मक होगा जब बहुपद के सभी मूल वास्तविक हों। यदि गुणांकों के वलय (गणित) में शून्य विभाजक होते हैं तो द्वारा विभाजन ठीक रूप से परिभाषित नहीं किया जा सकता है। निर्धारक की गणना करने से पूर्व सिल्वेस्टर आव्यूह के प्रथम स्तंभ में को 1- से बदलकर ऐसी समस्या से बचा जा सकता है। किसी भी विषय में, विभेदक पूर्णांक गुणांक वाले में एक बहुपद है।
मूलों के संदर्भ में अभिव्यक्ति
जब उपरोक्त बहुपद को एक क्षेत्र (गणित) पर परिभाषित किया जाता है, तो क्षेत्र के बीजगणितीय रूप से बंद विस्तार में इसके n मूल, होती हैं, आवश्यक नहीं कि सभी अलग हों। (यदि गुणांक वास्तविक संख्याएं हैं, तो मूलों को जटिल संख्याओं के क्षेत्र में लिया जा सकता है, जहां बीजगणित का मौलिक प्रमेय लागू होता है।)
मूलों के संदर्भ में, विभेदक
- के बराबर है।
इस प्रकार यह वेंडरमोंडे बहुपद गुणा का वर्ग है।
विभेदक के लिए यह अभिव्यक्ति प्रायः एक परिभाषा के रूप में ली जाती है। यह स्पष्ट करता है कि यदि बहुपद का एक बहुपद है, तो इसका विभेदक शून्य है, और यह कि, वास्तविक गुणांकों के विषय में, यदि सभी मूल वास्तविक और सरल मूल हैं, तो विभेदक धनात्मक है। पूर्व परिभाषा के विपरीत, यह अभिव्यक्ति गुणांक में स्पष्ट रूप से एक बहुपद नहीं है, परन्तु यह या तो गैलोज सिद्धांत के मौलिक प्रमेय से या सममित बहुपदों के मौलिक प्रमेय अनुसरण करता है और वीटा के सूत्रों से यह देखते हुए कि यह अभिव्यक्ति A के मूल में एक सममित बहुपद है।
निम्न घात
एक रेखीय बहुपद (घात 1) का विभेदक संभवतः माना जाता है। यदि आवश्यक हो, तो इसे सामान्यतः 1 के बराबर परिभाषित किया जाता है (रिक्त उत्पाद के लिए सामान्य परिपाटी का उपयोग करके और यह मानते हुए कि सिल्वेस्टर आव्यूह के दो कक्षों में से एक रिक्त आव्यूह है)। एक अचर बहुपद (अर्थात् घात 0 का बहुपद) के विभेदक के लिए कोई सामान्य परिपाटी नहीं है।
छोटी घात के लिए, विभेदक सरल है (नीचे देखें), परन्तु उच्च घात के लिए, यह स्थूल हो सकता है। उदाहरण के लिए, एक सामान्य बहुपद चतुर्थक फलन के विभेदक के 16 पद हैं,[3] एक पंचक फलन के 59 पद हैं,[4] और एक सेक्सटिक समीकरण के 246 पद हैं।[5] यह ओईआईएस अनुक्रम A007878 है।
घात 2
द्विघात बहुपद में विभेदक
- है।
विभेदक का वर्गमूल द्विघात बहुपद के मूलों के द्विघात सूत्र में प्रकट होता है:
जहां विभेदक शून्य है यदि और मात्र यदि दो मूल समान हैं। यदि a, b, c वास्तविक संख्याएँ हैं, यदि विभेदक धनात्मक है तो बहुपद की दो विशिष्ट वास्तविक मूल हैं, और यदि ऋणात्मक है तो दो जटिल संयुग्मी मूल हैं।[6] विभेदक का उत्पाद है a2 और मूलों के अंतर का वर्ग।
यदि a, b, c परिमेय संख्याएँ हैं, तो विभेदक परिमेय संख्या का वर्ग है यदि और मात्र यदि दो मूल परिमेय संख्याएँ हैं।
घात 3
घन बहुपद में विभेदक
- है।
एक अवनत घन बहुपद के विशेष विषय में , विभेदक
- को सरल करता है।
विभेदक शून्य होता है यदि और मात्र यदि कम से कम दो मूल बराबर हों। यदि गुणांक वास्तविक संख्याएँ हैं, और विभेदक शून्य नहीं है, तो विभेदक धनात्मक है यदि मूल तीन अलग-अलग वास्तविक संख्याएँ हैं, और ऋणात्मक है यदि एक वास्तविक मूल और दो जटिल संयुग्म मूल हैं।[7]
विभेदक से दृढ़ता से संबंधित मात्रा का वर्गमूल एक घन बहुपद के मूल के सूत्रों में प्रकट होता है। विशेष रूप से, यह मात्रा−3 गुणा विभेदक, या परिमेय संख्या के वर्ग के साथ इसका गुणनफल हो सकती है; उदाहरण के लिए, कार्डानो सूत्र के विषय में 1/18 का वर्ग।
यदि बहुपद अप्रासंगिक है और इसके गुणांक परिमेय संख्याएँ हैं (या किसी संख्या क्षेत्र से संबंधित हैं), तो विभेदक एक परिमेय संख्या का वर्ग है (या संख्या क्षेत्र से एक संख्या) यदि और मात्र यदि घन समीकरण का गैलोज़ समूह क्रम का चक्रीय समूह (समूह सिद्धांत) तीन है।
घात 4
चतुर्थक बहुपद में विभेदक
- है।
विभेदक शून्य होता है यदि और मात्र यदि कम से कम दो मूल समान हों। यदि गुणांक वास्तविक संख्याएँ हैं और विभेदक ऋणात्मक है, तो दो वास्तविक मूल और दो जटिल संयुग्मी मूल होते हैं। इसके विपरीत, यदि विभेदक धनात्मक है, तो मूल या तो सभी वास्तविक हैं या सभी गैर-वास्तविक हैं।
गुण
शून्य विभेदक
किसी क्षेत्र (गणित) पर एक बहुपद का विभेदक शून्य होता है यदि और मात्र यदि बहुपद का कुछ क्षेत्र विस्तार में बहुपद हो।
एक अभिन्न प्रांत पर एक बहुपद का विभेदक शून्य है यदि और मात्र यदि बहुपद और इसके व्युत्पन्न में एक गैर-नियतांक सामान्य भाजक है।
विशेषता (बीजगणित) 0 में, यह कहने के बराबर है कि बहुपद वर्ग-मुक्त बहुपद नहीं है(अर्थात, एक गैर-नियतांक बहुपद के वर्ग से विभाज्य)।
गैर-शून्य विशेषता p में, विभेदक शून्य है यदि और मात्र यदि बहुपद वर्ग-मुक्त नहीं है या इसमें एक अलघुकरणीय बहुपद है जो वियोज्य नहीं है (अर्थात्, अलघुकरणीय कारक में एक बहुपद है)।
चर के परिवर्तन के अंतर्गत व्युत्क्रम
एक बहुपद का विभेदक, सोपानी तक, चर के किसी प्रक्षेपी परिवर्तन के अंतर्गत अपरिवर्तनीय है। एक प्रक्षेपी परिवर्तन के रूप में अनुवाद, समरूपता और व्युत्क्रम के उत्पाद में विघटित हो सकता है, इसका परिणाम सरल परिवर्तनों के लिए निम्नलिखित सूत्र में होता है, जहाँ P(x) घात n के एक बहुपद को दर्शाता है, के साथ प्रमुख गुणांक के रूप में।
- अनुवाद द्वारा व्युत्क्रम:
- यह मूलों के संदर्भ में विभेदक की अभिव्यक्ति का परिणाम है
- समरूपता द्वारा व्युत्क्रम:
- यह मूलों, या विभेदक की अर्ध-समरूपता के संदर्भ में अभिव्यक्ति का परिणाम है।
- व्युत्क्रमण द्वारा व्युत्क्रम:
- जब । यहाँ, के पारस्परिक बहुपद P को दर्शाता है; अर्थात , यदि और तब
- ।
वलय समरूपता के अंतर्गत व्युत्क्रम
मान लीजिए कि क्रमविनिमेय वलयों का एक समरूपता है। R[x] में एक बहुपद
दिया गया है, समरूपता S[x] में बहुपद
के उत्पादन के लिए A कार्य करता है।
निम्नलिखित अर्थों में विभेदक के अंतर्गत अपरिवर्तनीय है। यदि तो
- ।
जैसा कि विभेदक को एक निर्धारक के संदर्भ में परिभाषित किया गया है, यह गुण निर्धारकों की समान गुण से तुरंत परिणाम देती है।
यदि तो शून्य हो सकता है या नहीं। एक है, जब
जब कोई मात्र यह जानने में रुचि रखता है कि क्या एक विभेदक शून्य है (जैसा कि सामान्यतः बीजगणितीय ज्यामिति में होता है), तो इन गुणों को संक्षेप में प्रस्तुत किया जा सकता है:
- यदि और मात्र यदि या तो या
इसे प्रायः यह कहते हुए व्याख्यायित किया जाता है कि यदि और मात्र यदि का एक बहु मूल है (संभवतः अनंत पर)।
बहुपदों का गुणनफल
यदि R = PQ , x में बहुपदों का गुणनफल है तो
जहाँ चर x के संबंध में परिणाम को दर्शाता है, और p और q, P और Q की क्रमशः घात हैं।
यह गुण संबंधित बहुपदों की मूलों के संदर्भ में परिणामी और विभेदक के लिए अभिव्यक्ति को प्रतिस्थापित करके तुरंत अनुसरण करती है।
एकरूपता
विभेदक गुणांकों में एक सजातीय बहुपद है; यह मूलों में एक सजातीय बहुपद भी है और इस प्रकार गुणांकों में अर्ध-सजातीय बहुपद है।
घात n वाले बहुपद का विभेदक गुणांकों में घात 2n − 2 का समरूप है। इसे दो प्रकार से देखा जा सकता है। रूट-एंड-लीडिंग-टर्म सूत्र के संदर्भ में, सभी गुणांकों को λ से गुणा करने पर मूलों को नहीं बदलता है, परन्तु अग्रणी शब्द को λ से गुणा करते हैं। an द्वारा विभाजित (2n − 1) × (2n − 1) आव्यूह (गणित) (सिल्वेस्टर आव्यूह) के एक के निर्धारक के रूप में इसकी अभिव्यक्ति के संदर्भ में , निर्धारक प्रविष्टियों में घात 2n − 1का सजातीय है , और घात 2n − 2 बनाता है।
घात n वाले बहुपद का विभेदक मूलों में घात n(n − 1) का समरूप होता है। यह मूलों के संदर्भ में विभेदक की अभिव्यक्ति से अनुसरण करता है, जो मूलों के स्थिर और वर्ग अंतर का उत्पाद है।
घात n वाले बहुपद का विभेदक गुणांकों में घात n(n − 1) का अर्ध-सजातीय होता है, यदि, प्रत्येक i के लिए, के गुणांक को भार n − i दिया जाता है। यह उसी घात का अर्ध-सजातीय भी है, यदि प्रत्येक i के लिए , के गुणांक को भार i दिया जाता है। यह सामान्य तथ्य का परिणाम है कि मूलों में सजातीय और सममित बहुपद वाले प्रत्येक बहुपद को मूलों के प्राथमिक सममित कार्यों में अर्ध-सजातीय बहुपद के रूप में व्यक्त किया जा सकता है।
बहुपद
- पर विचार करें।
यह इस बात से अनुसरण करता है कि विभेदक में प्रकट होने वाले प्रत्येक बहुपद में घातांक दो समीकरणों
और
को संतुष्ट करते हैं और समीकरण
को भी जो पूर्व समीकरण को n से गुणा करके दूसरे समीकरण को घटाकर प्राप्त किया जाता है।
यह विभेदक में संभावित शर्तों को प्रतिबंधित करता है। सामान्य द्विघात बहुपद के लिए विभेदक में मात्र दो संभावनाएँ और दो पद होते हैं, जबकि तीन चरों में घात दो के सामान्य सजातीय बहुपद में 6 पद होते हैं। सामान्य घन बहुपद के लिए, विभेदक में पाँच संभावनाएँ और पाँच पद हैं, जबकि 5 चरों में 4 घात के सामान्य सजातीय बहुपद में 70 पद हैं।
उच्च घात के लिए, ऐसे एकपदीय हो सकते हैं जो उपरोक्त समीकरणों को संतुष्ट करते हैं और विभेदक में प्रकट नहीं होते हैं। पहला उदाहरण चतुर्थांश बहुपद के लिए है, जिस स्थिति में एकपदीय विभेदक में प्रकट हुए बिना समीकरणों को संतुष्ट करता है।
वास्तविक मूल
इस खंड में, सभी बहुपदों में वास्तविक संख्या गुणांक होते हैं।
§ निम्न घात में यह देखा गया है कि विभेदक का संकेत घात 2 और 3 के बहुपदों के लिए मूलों की प्रकृति पर पूरी जानकारी प्रदान करता है। उच्च घात के लिए, विभेदक द्वारा प्रदान की गई जानकारी कम पूर्ण है, परन्तु फिर भी उपयोगी है। अधिक यथार्थ रूप से, घात n के बहुपद के लिए, एक के निकट है:
- बहुपद का बहुपद होता है यदि और मात्र यदि उसका विभेदक शून्य हो।
- यदि विभेदक धनात्मक है, तो अवास्तविक मूलों की संख्या 4 का गुणक है। अर्थात्, एक अऋणात्मक पूर्णांक k ≤ n/4 है जैसे जटिल संयुग्म मूलों और n − 4k वास्तविक मूल 2k जोड़े हैं।
- यदि विभेदक ऋणात्मक है, तो अवास्तविक मूलों की संख्या 4 का गुणज नहीं है। अर्थात्, एक अऋणात्मक पूर्णांक k ≤ (n − 2)/4 है जैसे जटिल संयुग्म मूलों और n − 4k + 2 वास्तविक मूल 2k + 1जोड़े हैं।
सजातीय द्विभाजित बहुपद
मान लीजिए कि
दो अनिश्चितांकों में घात n का एक सजातीय बहुपद है।
मान लीजिए, अभी के लिये, कि और दोनों गैर-शून्य हैं, एक के निकट
- है।
इस मात्रा को दर्शाने द्वारा किसी के निकट
और
इन्हीं गुणों के कारण मात्रा का विभेदक या सजातीय विभेदक कहा जाता है A।
यदि और शून्य होने की अनुमति है, बहुपद A(x, 1) और A(1, y) से छोटी घात हो सकती है n। इस विषय में, उपरोक्त सूत्र और परिभाषा मान्य रहती है, यदि विभेदकों की गणना इस प्रकार की जाती है जैसे कि सभी बहुपदों की घात होगी n। इसका मतलब है कि भेदभाव करने वालों की गणना की जानी चाहिए और अनिश्चित, उनके लिए उनके वास्तविक मूल्यों का प्रतिस्थापन इस गणना के बाद किया जा रहा है। समान रूप से, के सूत्र § वलय समरूपता के अंतर्गत इनवेरियन उपयोग किया जाना चाहिए।
== बीजगणितीय ज्यामिति == में प्रयोग करें
बीजगणितीय ज्यामिति में विभेदकों का विशिष्ट उपयोग समतल बीजगणितीय वक्रों का अध्ययन करने के लिए है, और अधिक सामान्यतः ऊनविम पृष्ठ मान लीजिए कि V ऐसा वक्र या ऊनविम सतह हो; V को बहुभिन्नरूपी बहुपद के शून्य समुच्चय के रूप में परिभाषित किया जाता है। इस बहुपद को एक अनिश्चित में एक अविभाजित बहुपद के रूप में माना जा सकता है, अन्य अनिश्चित में गुणांक के रूप में बहुपद के साथ। चयनित अनिश्चित के संबंध में विभेदक एक हाइपरसफेस को परिभाषित करता है W अन्य अनिश्चित के स्थान पर। के अंक W बिल्कुल बिंदुओं का प्रक्षेपण है V (अनंत पर बिंदुओं सहित), जो या तो एकवचन हैं या एक स्पर्शरेखा स्थान है जो चयनित अनिश्चित के अक्ष के समानांतर है।
उदाहरण के लिए, चलो f में एक द्विभाजित बहुपद हो X और Y वास्तविक गुणांकों के साथ, ताकिf = 0 एक वास्तविक समतल बीजगणितीय वक्र का अंतर्निहित समीकरण है। देखना f में एक अविभाजित बहुपद के रूप में Y गुणांक के आधार पर X, तो विभेदक एक बहुपद है X जिसकी मूल हैं X-एकवचन बिंदुओं के निर्देशांक, स्पर्शरेखा के समानांतर बिंदुओं के Y-अक्ष और कुछ स्पर्शोन्मुख के समानांतर Y-एक्सिस। दूसरे शब्दों में, की मूलों की गणना Y-विभेदक और X-discriminant किसी को वक्र के सभी उल्लेखनीय बिंदुओं की गणना करने की अनुमति देता है, सिवाय विभक्ति बिंदुओं के।
सामान्यीकरण
विभेदक की अवधारणा के दो वर्ग हैं। प्रथम वर्ग एक बीजगणितीय संख्या क्षेत्र का विभेदक है, जो द्विघात क्षेत्रों सहित कुछ मामलों में क्षेत्र को परिभाषित करने वाले बहुपद का विभेदक है।
गुणांक के आधार पर समस्याओं के लिए द्वितीय श्रेणी के भेदभाव उत्पन्न होते हैं, जब गुणांक में एक एकल बहुपद के लुप्त होने की समस्या के पतित उदाहरण या विलक्षणता की विशेषता होती है। यह एक बहुपद के विभेदक का मामला है, जो दो मूलों के ढहने पर शून्य होता है। अधिकांश विषय, जहां इस प्रकार के सामान्यीकृत विभेदक को परिभाषित किया गया है, निम्नलिखित के उदाहरण हैं।
मान लीजिए कि A में एक सजातीय बहुपद हो n विशेषता (बीजगणित) 0, या एक अभाज्य संख्या विशेषता के क्षेत्र में अनिश्चित है जो बहुपद की घात को विभाजित नहीं करता है। बहुपद A एक प्रोजेक्टिव हाइपरसफेस को परिभाषित करता है, जिसमें बीजगणितीय किस्म का विलक्षण बिंदु होता है यदि और मात्र n का आंशिक डेरिवेटिव A में एक फ़ंक्शन का एक गैर-तुच्छ सामान्य शून्य है। यह मामला है यदि और मात्र यदि इन आंशिक डेरिवेटिव का बहुभिन्नरूपी परिणाम शून्य है, और इस परिणामी को विभेदक के रूप में माना जा सकता है A। हालाँकि, व्युत्पत्ति के परिणामस्वरूप पूर्णांक गुणांक के कारण, यह बहुभिन्नरूपी परिणामी की शक्ति से विभाज्य हो सकता है n, और एक विभेदक के रूप में लेना बेहतर है, परिणामी का आदिम भाग, सामान्य गुणांक के साथ गणना की जाती है। विशेषता पर प्रतिबंध की आवश्यकता है क्योंकि अन्यथा आंशिक व्युत्पन्न का एक सामान्य शून्य आवश्यक रूप से बहुपद का शून्य नहीं है (सजातीय बहुपदों के लिए यूलर की पहचान देखें)।
घात के एक सजातीय द्विभाजित बहुपद के विषय में d, यह सामान्य विभेदक है विभेदक में परिभाषित गुना § Homogeneous bivariate polynomial। कई अन्य शास्त्रीय प्रकार के भेदभाव, जो कि सामान्य परिभाषा के उदाहरण हैं, अगले खंडों में वर्णित हैं।
द्विघात रूप
एक द्विघात रूप एक सदिश स्थान पर एक कार्य है, जिसे घात 2 के एक सजातीय बहुपद द्वारा कुछ [[आधार (सदिश स्थल)]] पर परिभाषित किया गया है:
या, आव्यूह रूप में,
के लिए सममित आव्यूह , द पंक्ति वेक्टर , और यह स्तंभ वेक्टर । विशेषता (बीजगणित) में 2 से भिन्न,[8] का विभेदक या निर्धारक Q का निर्धारक है A।[9] का हेसियन निर्धारक Q है इसके भेदभाव का समय। के आंशिक डेरिवेटिव का बहुभिन्नरूपी परिणामी Q इसके हेस्सियन निर्धारक के बराबर है। तो, एक द्विघात रूप का विभेदक एक विभेदक की उपरोक्त सामान्य परिभाषा का एक विशेष मामला है।
एक द्विघात रूप का विभेदक चर के रैखिक परिवर्तन के अंतर्गत अपरिवर्तनीय है (जो कि सदिश स्थान के आधार पर एक परिवर्तन है, जिस पर द्विघात रूप परिभाषित किया गया है) निम्नलिखित अर्थों में: चर का एक रैखिक परिवर्तन एक गैर-एकवचन आव्यूह द्वारा परिभाषित किया गया है S, आव्यूह को बदलता है A में और इस प्रकार विभेदक को के सारणिक के वर्ग से गुणा करता है S। इस प्रकार विभेदक मात्र एक वर्ग द्वारा गुणा करने तक ही ठीक रूप से परिभाषित होता है। दूसरे शब्दों में, एक क्षेत्र पर द्विघात रूप का विभेदक K का एक तत्व है K/(K×)2, के गुणक मोनोइड का भागफल मोनोइड K गैर-शून्य वर्गों के उपसमूह द्वारा (अर्थात, के दो तत्व K समान तुल्यता वर्ग में हैं यदि एक दूसरे का गैर-शून्य वर्ग द्वारा उत्पाद है)। यह इस प्रकार है कि जटिल संख्याओं पर, एक विभेदक 0 या 1 के बराबर होता है। वास्तविक संख्याओं पर, एक विभेदक -1, 0, या 1 के बराबर होता है। परिमेय संख्याओं पर, एक विभेदक एक अद्वितीय वर्ग-मुक्त के बराबर होता है पूर्णांक।
कार्ल गुस्ताव जैकब जैकोबी के एक प्रमेय द्वारा, 2 से भिन्न विशेषता के एक क्षेत्र पर एक द्विघात रूप, चर के एक रैखिक परिवर्तन के बाद, विकर्ण रूप में व्यक्त किया जा सकता है
अधिक यथार्थ रूप से, एक द्विघात रूपों को योग के रूप में व्यक्त किया जा सकता है
जहां Li स्वतंत्र रैखिक रूप हैं और n चरों की संख्या है (कुछ ai शून्य हो सकता है)। समान रूप से, किसी भी सममित आव्यूह के लिए A, एक प्रारंभिक आव्यूह है S ऐसा है कि एक विकर्ण आव्यूह है। तब विभेदक का उत्पाद है ai, जिसे एक वर्ग के रूप में ठीक रूप से परिभाषित किया गया है K/(K×)2।
ज्यामितीय रूप से, तीन चरों में एक द्विघात रूप का विभेदक प्रक्षेपी वक्र का समीकरण है। विभेदक शून्य है यदि और मात्र यदि वक्र रेखाओं में विघटित हो (संभवतः क्षेत्र के बीजगणितीय रूप से बंद विस्तार पर)।
चार चरों में एक द्विघात रूप प्रक्षेपी सतह का समीकरण है। सतह में एक बीजगणितीय विविधता का एक विलक्षण बिंदु है यदि और मात्र इसका विभेदक शून्य है। इस विषय में, या तो सतह कोन समतल में विघटित किया जा सकता है, या इसका एक अनूठा विलक्षण बिंदु है, और यह एक शंकु या एक सिलेंडर है। वास्तविक पर, यदि विभेदक धनात्मक है, तो सतह का या तो कोई वास्तविक बिंदु नहीं है या हर जगह एक ऋणात्मक गॉसियन वक्रता है। यदि विभेदक ऋणात्मक है, तो सतह के वास्तविक बिंदु होते हैं, और एक ऋणात्मक गाऊसी वक्रता होती है।
शंकु परिच्छेद
एक शंक्वाकार खंड एक समतल वक्र है जिसे फॉर्म के एक अंतर्निहित समीकरण द्वारा परिभाषित किया गया है
जहाँ a, b, c, d, e, f वास्तविक संख्याएँ हैं।
दो द्विघात रूप, और इस प्रकार दो विभेदक एक शंकु खंड से जुड़े हो सकते हैं।
पहला द्विघात रूप है
इसका विभेदक निर्धारक है
यदि शंक्वाकार खंड दो रेखाओं, एक दोहरी रेखा या एक बिंदु में पतित हो जाता है तो यह शून्य है।
दूसरा विभेदक, जो मात्र वही है जिसे कई प्रारंभिक पाठ्यपुस्तकों में माना जाता है, समीकरण के घात दो के सजातीय भाग का विभेदक है। यह बराबर है[10]
और शांकव खंड के आकार को निर्धारित करता है। यदि यह विभेदक ऋणात्मक है, तो वक्र का या तो कोई वास्तविक बिंदु नहीं है, या एक दीर्घवृत्त या एक वृत्त है, या, यदि पतित है, तो एक बिंदु तक कम हो जाता है। यदि विभेदक शून्य है, तो वक्र एक परवलय है, या, यदि पतित है, तो एक दोहरी रेखा या दो समानांतर रेखाएँ हैं। यदि विभेदक धनात्मक है, तो वक्र एक अतिपरवलय है, या, यदि पतित है, तो प्रतिच्छेदी रेखाओं की एक जोड़ी।
वास्तविक चतुर्भुज सतह
आयाम तीन के यूक्लिडियन अंतरिक्ष में एक वास्तविक चतुष्कोणीय सतह एक ऐसी सतह है जिसे तीन चर में घात दो के बहुपद के शून्य के रूप में परिभाषित किया जा सकता है। शंक्वाकार वर्गों के लिए दो विभेदक हैं जिन्हें स्वाभाविक रूप से परिभाषित किया जा सकता है। दोनों एक चतुष्कोणीय सतह की प्रकृति के बारे में जानकारी प्राप्त करने के लिए उपयोगी हैं।
मान लीजिए कि तीन चरों में घात दो का एक बहुपद हो जो एक वास्तविक चतुष्कोणीय सतह को परिभाषित करता है। पहला संबद्ध द्विघात रूप, चार चरों पर निर्भर करता है, और एक बहुपद के समरूपीकरण द्वारा प्राप्त किया जाता है P; अर्थात
आइए इसके विभेदक को निरूपित करें दूसरा द्विघात रूप, तीन चर पर निर्भर करता है, और घात दो की शर्तें शामिल हैं P; अर्थात
आइए इसके विभेदक को निरूपित करें यदि और सतह के वास्तविक बिंदु हैं, तो यह या तो अतिशयोक्तिपूर्ण परवलयज है या एक-पत्रक अतिपरवलयज है। दोनों ही मामलों में, यह एक शासित सतह है जिसमें हर बिंदु पर ऋणात्मक गॉसियन वक्रता होती है।
यदि सतह या तो एक दीर्घवृत्ताभ या एक दो-शीट अतिपरवलयज या एक दीर्घवृत्तीय परवलयज है। सभी मामलों में, इसके प्रत्येक बिंदु पर धनात्मक गाऊसी वक्रता होती है।
यदि सतह में एक बीजगणितीय किस्म का एक विलक्षण बिंदु है, संभवतः अनंत पर इंगित करता है। यदि मात्र एक विलक्षण बिंदु है, तो सतह एक बेलन या शंक्वाकार सतह है। यदि कई एकवचन बिंदु हैं तो सतह में दो तल होते हैं, एक दोहरा तल या एक रेखा।
कब का संकेत यदि नहीं 0, कोई उपयोगी जानकारी प्रदान नहीं करता है, जैसा कि बदल रहा है P में −P सतह को नहीं बदलता, बल्कि के संकेत को बदल देता है हालांकि, यदि और सतह एक परवलयज है, जो अण्डाकार या अतिशयोक्तिपूर्ण है, के संकेत के आधार पर
एक बीजगणितीय संख्या क्षेत्र का विभेदक
संदर्भ
- ↑ "Discriminant | mathematics". Encyclopedia Britannica (in English). Retrieved 2020-08-09.
- ↑ Sylvester, J. J. (1851). "विहित रूपों और अतिनिर्धारकों के सिद्धांत में एक उल्लेखनीय खोज पर". Philosophical Magazine. 4th series. 2: 391–410.
Sylvester coins the word "discriminant" on page 406. - ↑ Wang, Dongming (2004). Elimination practice: software tools and applications. Imperial College Press. ch. 10 p. 180. ISBN 1-86094-438-8.
- ↑ Gelfand, Israel M.; Kapranov, Mikhail M.; Zelevinsky, Andrei V. (1994). Discriminants, resultants and multidimensional determinants. Birkhäuser. p. 1. ISBN 3-7643-3660-9. Archived from the original on 2013-01-13.
- ↑ Dickenstein, Alicia; Emiris, Ioannis Z. (2005). Solving polynomial equations: foundations, algorithms, and applications. Springer. ch. 1 p. 26. ISBN 3-540-24326-7.
- ↑ Irving, Ronald S. (2004). Integers, polynomials, and rings. Springer-Verlag New York, Inc. ch. 10.3 pp. 153–154. ISBN 0-387-40397-3.
- ↑ Irving, Ronald S. (2004). Integers, polynomials, and rings. Springer-Verlag New York, Inc. ch. 10 ex. 10.14.4 & 10.17.4, pp. 154–156. ISBN 0-387-40397-3.
- ↑ In characteristic 2, the discriminant of a quadratic form is not defined, and is replaced by the Arf invariant.
- ↑ Cassels, J. W. S. (1978). वाजिब द्विघात रूप. London Mathematical Society Monographs. Vol. 13. Academic Press. p. 6. ISBN 0-12-163260-1. Zbl 0395.10029.
- ↑ Fanchi, John R. (2006). Math refresher for scientists and engineers. John Wiley and Sons. sec. 3.2, p. 45. ISBN 0-471-75715-2.