शक्ति अर्धचालक उपकरण: Difference between revisions

From Vigyanwiki
No edit summary
Line 166: Line 166:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 15/02/2023]]
[[Category:Created On 15/02/2023]]
[[Category:Vigyan Ready]]

Revision as of 16:15, 10 April 2023

शक्ति अर्धचालक उपकरण एक अर्धचालक उपकरण है जिसका उपयोग शक्ति इलेक्ट्रॉनिक्स में संचालित या सुधारक के रूप में किया जाता है (उदाहरण के लिए संचालित -प्रणाली विद्युत की आपूर्ति में)। इस तरह के उपकरण को शक्ति उपकरण भी कहा जाता है या जब एक एकीकृत परिपथ में उपयोग किया जाता है तो एक शक्ति आईसी होती है।

शक्ति अर्धचालक उपकरण प्राय: विनिमय प्रणाली में उपयोग किया जाता है (यानी यह या तो चालू या बंद है) और इसलिए इस तरह के उपयोग के लिए एक बनावट अनुकूलित है। यह प्राय: रैखिक संचालन में उपयोग नहीं किया जाना चाहिए। रैखिक विद्युत परिपथ वोल्टेज नियामकों, ऑडियो प्रवर्धकों और रेडियो आवृत्ति प्रवर्धकों के रूप में व्यापक हैं।

शक्ति अर्धचालक एक हेडफ़ोन प्रवर्धक के लिए कुछ दसियों मिलीवाट जितना कम देने वाले तंत्र में पाए जाते हैं जो एक उच्च वोल्टेज प्रत्यक्ष धारा संचरण रेखा में एक गीगावाट तक होता है।

इतिहास

विद्युत परिपथों में उपयोग किया जाने वाला पहला इलेक्ट्रॉनिक उपकरण इलेक्ट्रोलाइटिक सुधारक था - एक प्रारंभिक संस्करण का वर्णन एक फ्रांसीसी प्रयोगकर्ता ए.नोडोन ने 1904 में किया था। ये शुरुआती रेडियो प्रयोगकर्ताओं के साथ संक्षिप्त रूप से लोकप्रिय थे क्योंकि उन्हें एल्यूमीनियम शीट और घरेलू रसायनों से सुधारा जा सकता था। उनके पास कम वोल्टेज और सीमित दक्षता थी।[1]

पहले ठोस-राज्य शक्ति अर्धचालक उपकरण कॉपर ऑक्साइड सुधारक थे जिनका उपयोग शुरुआती बैटरी चार्जर्स और रेडियो उपकरणों के लिए विद्युत की आपूर्ति में किया जाता था जिसकी घोषणा 1927 में एलओ ग्रुंडाहल और पीएच गीगर ने की थी।[2]

पहला जर्मेनियम शक्ति अर्धचालक उपकरण 1952 में रॉबर्ट आर.एन. हॉल द्वारा शक्ति डायोड की शुरुआत के साथ दिखाई दिया। इसमें 200 वोल्ट की प्रतिलोम वोल्टेज अवरोधक क्षमता और 35 एम्पीयर की धारा नाविक थी।

1952 के आसपास पर्याप्त शक्ति संचालन क्षमताओं (100 mA कलेक्टर धारा ) के साथ जर्मेनियम द्विध्रुवी ट्रांजिस्टर प्रस्तुत किए गए थे। शक्ति व्यवहार क्षमता तेजी से विकसित हुई और 1954 तक जर्मेनियम मिश्र धातु संयोजन ट्रांजिस्टर 100 वाट अपव्यय के साथ उपलब्ध थे। ये सभी अपेक्षाकृत कम आवृत्ति वाले उपकरण थे जिनका उपयोग लगभग 100 kHz तक और 85 डिग्री सेल्सियस संयोजन तापमान तक किया जाता था।[3] सिलिकॉन शक्ति ट्रांजिस्टर 1957 तक नहीं बनाए गए थे लेकिन जब उपलब्ध थे तो जर्मेनियम उपकरणों की तुलना में बेहतर आवृत्ति प्रतिक्रिया थी और 150 सी संयोजन तापमान तक काम कर सकते थे।

थाइरिस्टर 1957 में दिखाई दिया। यह बहुत उच्च प्रतिलोम ब्रेकडाउन वोल्टेज का सामना करने में सक्षम है और उच्च धारा को ले जाने में भी सक्षम है। हालाँकि संचालित परिपथ में थाइरिस्टर का एक नुकसान यह है कि एक बार यह आयोजन अवस्था में 'लैच्ड-चालू' हो जाता है। इसे बाहरी नियंत्रण से बंद नहीं किया जा सकता है क्योंकि थाइरिस्टर घुमाव-बंद निष्क्रिय है यानी उपकरण से विद्युत काट दी जानी चाहिए। सुधारक जिन्हें बंद किया जा सकता था जिन्हें मार्ग घुमाव-बंद थाइरिस्टर (जीटीओ) कहा जाता था और यह 1960 में प्रस्तुत किए गए थे।[4] ये साधारण थाइरिस्टर की कुछ सीमाओं को पार कर जाते हैं क्योंकि इन्हें लागू सिग्नल के साथ चालू या बंद किया जा सकता है।

शक्ति एमओएसएफईटी

1959 में बेल लैब्स में मोहम्मद ओटाला और डॉन काहंग द्वारा एमओएसएफईटी (मेटल-ऑक्साइड- अर्धचालक फील्ड-इफेक्ट ट्रांजिस्टर) के आविष्कार के साथ शक्ति इलेक्ट्रॉनिक्स में एक सफलता मिली। एमओएसएफईटी ट्रांजिस्टर की पीढ़ी ने शक्ति बनावट को प्रदर्शन और घनत्व स्तर प्राप्त करने में सक्षम बनाया जो संभव नहीं था।[5] एमओएसएफईटी प्रौद्योगिकी में सुधार के कारण (शुरुआत में एकीकृत परिपथ का उत्पादन करने के लिए उपयोग किया जाता था) और 1970 के दशक में एमओएसएफईटी शक्ति उपलब्ध हो गई थी।

1969 में हिताची ने पहला लंबरूप शक्ति एमओएसएफईटी प्रस्तुत किया।[6] जिसे बाद में वीएमओएस (V-groove एमओएसएफईटी) के नाम से जाना जाएगा।[7] 1974 से यामाहा, जेवीसी, पायोनियर कॉर्पोरेशन, सोनी और तोशिबा ने शक्ति एमओएसएफईटी के साथ ऑडियो प्रवर्धक का निर्माण शुरू किया।[8] अंतर्राष्ट्रीय सुधारक ने 1978 में 25 एम्पीयर, 400 वोल्ट शक्ति एमओएसएफईटी प्रस्तुत किया।[9] यह उपकरण द्विध्रुवी ट्रांजिस्टर की तुलना में उच्च आवृत्तियों पर संचालन की अनुमति देता है लेकिन कम वोल्टेज अनुप्रयोगों तक ही सीमित है।

विद्युत रोधित मार्ग द्विध्रुवी ट्रांजिस्टर (आईजीबीटी) 1980 के दशक में विकसित किया गया था और 1990 के दशक में व्यापक रूप से उपलब्ध हो गया। इस घटक में द्विध्रुवी ट्रांजिस्टर की शक्ति से निपटने की क्षमता और विद्युत एमओएसएफईटी के पृथक मार्ग बहाव के फायदे हैं।

सामान्य उपकरण

कुछ सामान्य विद्युत उपकरण हैं शक्ति एमओएसएफईटी, शक्ति डायोड, थाइरिस्टर और विद्युत रोधित मार्ग द्विध्रुवी ट्रांजिस्टर (आईजीबीटी) शक्ति डायोड और शक्ति एमओएसएफईटी अपने कम-शक्ति समकक्षों के समान सिद्धांतों पर काम करते हैं लेकिन बड़ी मात्रा में धारा ले जाने में सक्षम होते हैं और प्राय: बंद-अवस्था में एक बड़े पूर्वाग्रह वोल्टेज का सामना करने में सक्षम होते हैं।

उच्च धारा घनत्व, उच्च शक्ति अपव्यय और उच्च प्रतिलोम ब्रेकडाउन वोल्टेज को समायोजित करने के लिए संरचनात्मक परिवर्तन अक्सर एक विद्युत उपकरण में किए जाते हैं। असतत घटक (यानी, गैर-एकीकृत) विद्युत उपकरणों का विशाल बहुमत एक ऊर्ध्वाधर संरचना का उपयोग करके बनाया गया है जबकि छोटे-सिग्नल उपकरण एक पार्श्व संरचना का उपयोग करते हैं। ऊर्ध्वाधर संरचना के साथ उपकरण की धारा नाविक उसके क्षेत्र के लिए आनुपातिक है और मरने की ऊंचाई में वोल्टेज अवरोधन क्षमता उपलब्ध की जाती है। इस संरचना के साथ उपकरण का एक संबंध डाई (एकीकृत परिपथ) के तल पर स्थित है।

शक्ति एमओएसएफईटी दुनिया में सबसे आम विद्युत उपकरण है इसकी कम मार्ग ड्राइव शक्ति तेज संचालित गति और उन्नत समांतर क्षमता के कारण।[10] इसमें शक्ति इलेक्ट्रॉनिक्स अनुप्रयोगों की एक विस्तृत श्रृंखला है जैसे वहनीय सूचना उपकरण, विद्युत एकीकृत परिपथ, सेल फोन, नोटबुक कंप्यूटर और इंटरनेट को सक्षम करने वाली संचार अवसंरचना[11] 2010 तक विद्युत एमओएसएफईटी विद्युत ट्रांजिस्टर बाजार के बहुमत (53%) के लिए खाता है उसके बाद आईजीबीटी (27%) फिर आरएफ प्रवर्धक (11%) और फिर द्विध्रुवी संयोजन ट्रांजिस्टर (9%)।[12]

सॉलिड-अवस्था उपकरण

उपकरण विवरण नाविक
डायोड यूनी-पोलर, अनियंत्रित, संचालित उपकरण का उपयोग सुधार और परिपथ दिशात्मक धारा नियंत्रण जैसे अनुप्रयोगों में किया जाता है। प्रतिलोम वोल्टेज अवरुद्ध उपकरण, प्राय: वोल्टेज स्रोत के साथ श्रृंखला में एक संचालित रूप में तैयार किया जाता है। प्राय: 0.7 वोल्टDC धारा प्रवाह के संबंध में डायोड वोल्टेज ड्रॉप की सटीक भविष्यवाणी करने के लिए संयोजन प्रतिरोध को सम्मिलित करने के लिए मॉडल को बढ़ाया जा सकता है। एक सिलिकॉन उपकरण में 3000 एम्पीयर और 5000 वोल्ट तक। उच्च वोल्टेज के लिए कई श्रृंखला सिलिकॉन उपकरणों की आवश्यकता होती है।
सिलिकॉन नियंत्रित करनेवाला (एससीआर) यह अर्ध-नियंत्रित उपकरण तब चालू होता है जब एक मार्ग स्पंद स्थित होता है और कैथोड की तुलना में एनोड निश्चित होता है। जब मार्ग स्पंद स्थित होता है, तो उपकरण मानक डायोड की तरह काम करता है। जब कैथोड की तुलना में एनोड निष्क्रिय होता है, तो उपकरण बंद हो जाता है और स्थित निश्चित या निष्क्रिय वोल्टेज को ब्लॉक कर देता है। मार्ग वोल्टेज उपकरण को बंद करने की अनुमति नहीं देता है। एक सिलिकॉन उपकरण में 3000 एम्पीयर, 5000 वोल्ट तक।
thyristor थाइरिस्टर तीन-चरम उपकरणों का एक परिवार है जिसमें एससीआर, जीटीओ और एमसीटी सम्मिलित हैं। अधिकांश उपकरणों के लिए, मार्ग स्पंद उपकरण को चालू करता है। उपकरण की विशेषताओं द्वारा निर्धारित मान (कैथोड के सापेक्ष) से ​​नीचे एनोड वोल्टेज गिरने पर उपकरण बंद हो जाता है। बंद होने पर इसे प्रतिलोम वोल्टेज अवरुद्ध उपकरण माना जाता है।
मार्ग घुमाव-बंद थाइरिस्टर (जीटीओ) मार्ग घुमाव-बंद थाइरिस्टर, एक एससीआर के विपरीत, मार्ग स्पंद के साथ चालू और बंद किया जा सकता है। उपकरण के साथ एक समस्या यह है कि मार्ग वोल्टेज बंद करें प्राय:बड़े होते हैं और स्तरों को चालू करने की तुलना में अधिक धारा की आवश्यकता होती है। यह घुमाव बंद वोल्टेज मार्ग से स्रोत तक एक निष्क्रिय वोल्टेज है, प्राय: इसे केवल थोड़े समय के लिए उपस्थित होने की आवश्यकता होती है, लेकिन एनोड धारा के 1/3 के क्रम पर परिमाण। इस उपकरण के लिए प्रयोग करने योग्य संचालित कर्व प्रदान करने के लिए एक स्नबर परिपथ की आवश्यकता होती है। स्नबर परिपथ के बिना आगमनात्मक भार को बंद करने के लिए जीटीओ का उपयोग नहीं किया जा सकता है। आईजीसीटी प्रौद्योगिकी के विकास के कारण ये उपकरण विद्युत इलेक्ट्रॉनिक्स क्षेत्र में बहुत लोकप्रिय नहीं हैं। उन्हें नियंत्रित एक-ध्रुवीय और द्वि-ध्रुवीय वोल्टेज अवरोधक माना जाता है।
triac त्रिक एक उपकरण है जो अनिवार्य रूप से एक ही चिप पर व्युत्क्रम-समानांतर में जुड़े चरण-नियंत्रित सुधारक की एक एकीकृत जोड़ी है। एससीआर की तरह, जब मार्ग चरम पर एक वोल्टेज स्पंद स्थित होता है, तो उपकरण चालू हो जाता है। एससीआर और Triac के बीच मुख्य अंतर यह है कि निश्चित या निष्क्रिय मार्ग स्पंद का उपयोग करके निश्चित और निष्क्रिय चक्र दोनों को एक दूसरे से स्वतंत्र रूप से चालू किया जा सकता है। एससीआर के समान उपकरण चालू होने के बाद उपकरण को बंद नहीं किया जा सकता है। इस उपकरण को द्वि-ध्रुवीय और प्रतिलोम वोल्टेज अवरोधक माना जाता है।
द्विध्रुवी संयोजन ट्रांजिस्टर (बीजेटी) बीजेटी का उपयोग उच्च शक्ति पर नहीं किया जा सकता है; एमओएसएफईटी प्रकार के उपकरणों की तुलना में वे धीमे होते हैं और अधिक प्रतिरोधक नुकसान होते हैं। उच्च धारा ले जाने के लिए बीजेटी में अपेक्षाकृत बड़ी आधार धाराएँ होनी चाहिए इस प्रकार एमओएसएफईटी उपकरणों की तुलना में इन उपकरणों में उच्च शक्ति हानि होती है। एमओएसएफईटीs के साथ बीजेटीs को भी एकध्रुवीय [ स्पष्ट ] माना जाता है और प्रतिलोम वोल्टेज को बहुत अच्छी तरह से ब्लॉक नहीं करता है, जब तक कि सुरक्षा डायोड के साथ जोड़े में स्थापित नहीं किया जाता है। प्राय: बीजेटीs का उपयोग शक्ति इलेक्ट्रॉनिक्स संचालित परिपथ में नहीं किया जाता है क्योंकि प्रतिरोध और आधार धारा आवश्यकताओं से जुड़े I बीजेटी के पास उच्च शक्ति पैकेज में कम धारा लाभ है, इस प्रकार उन्हें डार्लिंगटन कॉन्फ़िगरेशन में स्थापित करने की आवश्यकता होती है विद्युत इलेक्ट्रॉनिक परिपथ द्वारा आवश्यक धाराओं को संभालने के लिए। इन एकाधिक ट्रांजिस्टर विन्यासों के कारण, संचालित समय सैकड़ों नैनोसेकंड से माइक्रोसेकंड में होते हैं। उपकरणों में वोल्टेज नाविक होती है जो अधिकतम लगभग 1500 वोल्ट और काफी उच्च धारा नाविक होती है। शक्ति व्यवहार बढ़ाने के लिए उन्हें समानांतर भी किया जा सकता है, लेकिन धारा साझाकरण के लिए लगभग 5 उपकरणों तक सीमित होना चाहिए।
र एमओएसएफईटी बीजेटी की तुलना में शक्ति एमओएसएफईटी का मुख्य लाभ यह है कि एमओएसएफईटी एक कमी चैनल उपकरण है और इसलिए वोल्टेज, धारा नहीं, नाली से स्रोत तक एक चालन पथ बनाने के लिए आवश्यक है। कम आवृत्तियों पर यह मार्ग धारा को बहुत कम कर देता है क्योंकि संचालित के दौरान केवल मार्ग संधारित्र को चार्ज करने की आवश्यकता होती है, हालांकि जैसे-जैसे आवृत्ति बढ़ती है यह लाभ कम हो जाता है। एमओएसएफईटीs में अधिकांश नुकसान चालू-प्रतिरोध के कारण होते हैं, उपकरण के माध्यम से अधिक धारा प्रवाह के रूप में बढ़ सकते हैं और उन उपकरणो में भी अधिक होते हैं जो एक उच्च अवरोधक वोल्टेज प्रदान करते हैं।

संचालित का समय दसियों नैनोसेकंड से लेकर कुछ सौ माइक्रोसेकंड तक होता है। एमओएसएफईटी संचालित उपकरणों के लिए नाममात्र वोल्टेज कुछ वोल्ट से लेकर 1000 वोल्ट से थोड़ा अधिक होता है, जिसमें लगभग 100 एम्पीयर या इससे अधिक की धाराएँ होती हैं, हालाँकि एमओएसएफईटीs संचालित धारा को बढ़ाने के लिए समानांतर हो सकते हैं। एमओएसएफईटी उपकरण द्वि-दिशात्मक नहीं हैं, न ही वे प्रतिलोम वोल्टेज अवरुद्ध हैं।

इंसुलेटेड-मार्ग बाइपोलर ट्रांजिस्टर (आईजीबीटी) इन उपकरणों में एमओएसएफईटीs और बीजेटीs की सर्वोत्तम विशेषताएँ हैं। एमओएसएफईटी उपकरणों की तरह, इन्सुलेटेड मार्ग द्विध्रुवी ट्रांजिस्टर में उच्च मार्ग प्रतिबाधा होती है। बीजेटीs की तरह इस उपकरण में अवस्था वोल्टेज ड्रॉप कम है, इस प्रकार कार्यरत मोड में संचालित में कम विद्युत की हानि होती है। जीटीओ के समान, आईजीबीटी का उपयोग निश्चित और निष्क्रिय वोल्टेज दोनों को अवरुद्ध करने के लिए किया जा सकता है। कार्यरत धाराएं काफी अधिक हैं, 1500 एम्पीयर से अधिक और संचालित वोल्टेज 3000 वोल्ट तक। आईजीबीटी ने एमओएसएफईटी उपकरणों की तुलना में इनपुट समाई को कम कर दिया है जो उच्च dवोल्ट/dt चालू और बंद होने के दौरान मिलर फीडबैक प्रभाव में सुधार करता है।
एमओएस-नियंत्रित थाइरिस्टर (एमसीटी) एमओएस-नियंत्रित थाइरिस्टर थाइरिस्टर की तरह होता है और इसे एमओएसएफईटी मार्ग पर स्पंद द्वारा चालू या बंद किया जा सकता है।  चूंकि इनपुट एमओएस तकनीक है, इसलिए बहुत कम विद्युत प्रवाह होता है, जिससे बहुत कम विद्युत नियंत्रण संकेत मिलते हैं। उपकरण का निर्माण दो एमओएसएफईटी इनपुट और बीजेटी आउटपुट चरणों की एक जोड़ी के साथ किया गया है। इनपुट एमओएसएफईटीs को निश्चित और निष्क्रिय आधे चक्रों के दौरान नियंत्रण चालू करने की अनुमति देने के लिए कॉन्फ़िगर किया गया है। आउटपुट बीजेटी को द्विदिश नियंत्रण और कम वोल्टेज प्रतिलोम अवरुद्ध की अनुमति देने के लिए कॉन्फ़िगर किया गया है। एमसीटी के कुछ लाभ तेजी से संचालित आवृत्ति, काफी उच्च वोल्टेज और मध्यम धारा नाविक (लगभग 100 एम्पीयर) हैं।
इंटीग्रेटेड मार्ग-कम्यूटेटेड थाइरिस्टर (आईजीसीटी) जीटीओ के समान, लेकिन लोड चालू या बंद करने के लिए उच्च धारा आवश्यकताओं के बिना। आईजीसीटी का उपयोग छोटे मार्ग धारा के साथ त्वरित संचालित के लिए किया जा सकता है। एमओएसएफईटी मार्ग ड्राइवरों के कारण बड़े पैमाने पर उपकरण उच्च इनपुट प्रतिबाधा। उनके पास कम प्रतिरोध आउटपुट हैं जो विद्युत बर्बाद नहीं करते हैं और बीजेटी के प्रतिद्वंद्वी के बहुत तेजी से क्षणिक समय हैं। एबीबी ग्रुप कंपनी ने इन उपकरणों के लिए डेटा शीट प्रकाशित की हैं और आंतरिक कार्यप्रणाली का विवरण प्रदान किया है। उपकरण में एक वैकल्पिक रूप से पृथक इनपुट के साथ एक मार्ग होता है, प्रतिरोध बीजेटी आउटपुट ट्रांजिस्टर पर कम होता है, जो कम वोल्टेज ड्रॉप और उपकरण में काफी उच्च संचालित वोल्टेज और धारा स्तरों पर कम विद्युत की हानि का कारण बनता है।

एबीबी के इस नए उपकरण का एक उदाहरण दिखाता है कि शक्ति इलेक्ट्रॉनिक्स अनुप्रयोगों में हाई वोल्टेज और हाई धारा संचालित करने के लिए यह उपकरण जीटीओ तकनीक में कैसे सुधार करता है। एबीबी के अनुसार, आईजीसीटी उपकरण बहुत उच्च आवृत्तियों पर 5000 वीएसी और 5000 ए से अधिक संचालित करने में सक्षम हैं, जीटीओ उपकरणों के साथ कुशलतापूर्वक ऐसा करना संभव नहीं है।

वर्गीकरण

एक विद्युत उपकरण को निम्नलिखित मुख्य श्रेणियों में से एक के रूप में वर्गीकृत किया जा सकता है (चित्र 1 देखें):

  • एक दो-चरम उपकरण (जैसे, एक डायोड) जिसकी स्थिति पूरी तरह से उस बाहरी शक्ति परिपथ पर निर्भर है जिससे यह जुड़ा हुआ है।
  • एक तीन-चरम उपकरण जिसका राज्य न केवल इसके बाहरी शक्ति परिपथ पर निर्भर है, बल्कि इसके बहाव चरम पर सिग्नल भी है (इस चरम को मार्ग या बेस के रूप में जाना जाता है)।
  • एक चार चरम उपकरण (जैसे सिलिकॉन नियंत्रित संचालित -एससीएस)। एससीएस एक प्रकार का थाइरिस्टर है जिसमें चार परतें और चार चरम होते हैं जिन्हें एनोड, एनोड मार्ग, कैथोड मार्ग और कैथोड कहा जाता है। चरम क्रमशः पहली, दूसरी, तीसरी और चौथी परत से जुड़े होते हैं।[13]एक और वर्गीकरण कम स्पष्ट है लेकिन उपकरण के प्रदर्शन पर इसका गहरा प्रभाव है।
  • एक बहुसंख्यक वाहक उपकरण (जैसे एक स्कॉटकी डायोड, एक एमओएसएफईटी आदि)। यह केवल एक प्रकार के आवेश वाहकों का उपयोग करता है।
  • एक माइनॉरिटी कैरियर उपकरण (जैसे एक थाइरिस्टर, एक बाइपोलर ट्रांजिस्टर, एक आईजीबीटी आदि)। यह बहुसंख्यक और अल्पसंख्यक दोनों वाहकों (इलेक्ट्रॉनों और इलेक्ट्रॉन छिद्रों) का उपयोग करता है। बहुसंख्यक वाहक उपकरण तेज होता है लेकिन अल्पसंख्यक वाहक उपकरणों का चार्ज इंजेक्शन बेहतर चालू-अवस्था प्रदर्शन की अनुमति देता है।

डायोड

एक आदर्श डायोड में निम्नलिखित विशेषताएं होनी चाहिए:

  • अग्र-अभिनत होने पर डायोड के अंत चरमों पर वोल्टेज शून्य होना चाहिए इससे कोई फर्क नहीं पड़ता कि धारा (चालू-अवस्था) प्रवाहित होता है।
  • विपरीत पक्षपात होने पर लीकेज धारा शून्य होना चाहिए चाहे वोल्टेज (बंद-अवस्था) कोई भी हो।
  • चालू-अवस्था और बंद-अवस्था के बीच संक्रमण (या रूपांतरण) तात्कालिक होना चाहिए।

वास्तव में डायोड का डिज़ाइन चालू-अवस्था, बंद-अवस्था और विनिमय में प्रदर्शन के बीच एक व्यापार-बंद है। वास्तव में उपकरण के एक ही क्षेत्र को बंद-अवस्था में अवरुद्ध वोल्टेज को बनाए रखना चाहिए और चालू-अवस्था में धारा प्रवाह की अनुमति देनी चाहिए चूंकि दो राज्यों की आवश्यकताएं पूरी तरह से विपरीत हैं। एक डायोड को या तो उनमें से एक के लिए अनुकूलित किया जाना चाहिए या समय को एक राज्य से दूसरे राज्य में संचालित करने की अनुमति दी जानी चाहिए।

ये ट्रेड-बंद सभी विद्युत उपकरणों के लिए समान हैं। उदाहरण के लिए एक Schottky डायोड में उत्कृष्ट संचालित गति और चालू-अवस्था प्रदर्शन होता है लेकिन बंद-अवस्था में उच्च स्तर का रिसाव धारा होता है। दूसरी ओर एक पिन डायोड व्यावसायिक रूप से विभिन्न विनिमय गति (जिसे तेज और अति तेज सुधारक कहा जाता है) में उपलब्ध है लेकिन गति में कोई भी वृद्धि आवश्यक रूप से चालू-अवस्था में कम प्रदर्शन से जुड़ी हुई है।

संचालित

एक संचालित के लिए वोल्टेज, धारा और आवृत्ति नाविक के बीच ट्रेड-बंद भी स्थित है। वास्तव में वोल्टेज को बनाए रखने के लिए कोई भी शक्ति अर्धचालक एक पिन डायोड संरचना पर निर्भर करता है। शक्ति एमओएसएफईटी में बहुसंख्यक वाहक उपकरण के फायदे हैं इसलिए यह बहुत उच्च परिचालन आवृत्ति प्राप्त कर सकता है लेकिन इसका उपयोग उच्च वोल्टेज के साथ नहीं किया जा सकता है। चूंकि यह एक भौतिक सीमा है इसकी अधिकतम वोल्टेज नाविक के संबंध में सिलिकॉन एमओएसएफईटी के बनावट में कोई सुधार अपेक्षित नहीं है। हालांकि कम वोल्टेज अनुप्रयोगों में इसका उत्कृष्ट प्रदर्शन इसे 200 वोल्ट से कम वोल्टेज वाले अनुप्रयोगों के लिए पसंद का उपकरण (वास्तव में एकमात्र विकल्प धारा में) बनाता है। कई उपकरणों को समानांतर में रखकर संचालित की धारा नाविक को बढ़ाना संभव है। एमओएसएफईटी विशेष रूप से इस विन्यास के लिए उपयुक्त है, क्योंकि प्रतिरोध के निश्चित उष्ण गुणांक के परिणामस्वरूप अलग-अलग उपकरणों के बीच धारा संतुलन होता है।

आईजीबीटी एक हालिया घटक है इसलिए जैसे-जैसे तकनीक विकसित होती है। इसके प्रदर्शन में नियमित रूप से सुधार होता है। यह पहले से ही विद्युत अनुप्रयोगों में द्विध्रुवी ट्रांजिस्टर को पूरी तरह से बदल चुका है। एक शक्ति मॉड्यूल उपलब्ध है जिसमें कई आईजीबीटी उपकरण समानांतर में जुड़े हुए हैं, जो इसे कई मेगावाट तक विद्युत के स्तर के लिए आकर्षक बनाता है, जो उस सीमा को आगे बढ़ाता है जिस पर सुधारक और मार्ग घुमाव-बंद थाइरिस्टर एकमात्र विकल्प बन जाते हैं। मूल रूप से एक आईजीबीटी एक द्विध्रुवीय ट्रांजिस्टर है जो एक शक्ति एमओएसएफईटी द्वारा संचालित होता है। इसमें एमओएसएफईटी के उच्च इनपुट प्रतिबाधा के साथ अल्पसंख्यक वाहक उपकरण होने के फायदे हैं (इसे बहुत कम मात्रा में विद्युत के साथ चालू या बंद किया जा सकता है)।

कम वोल्टेज अनुप्रयोगों के लिए आईजीबीटी की प्रमुख सीमा उच्च वोल्टेज ड्रॉप है जो इसे चालू-अवस्था (2-से-4 वोल्ट) में प्रदर्शित करता है। एमओएसएफईटी की तुलना में आईजीबीटी की कार्यरत आवृत्ति अपेक्षाकृत कम है (प्राय: 50 kHz से अधिक नहीं है ) मुख्य रूप से घुमाव-बंद़ के दौरान एक समस्या के कारण धारा -टेल के रूप में जाना जाता है: घुमाव-बंद परिणामों के दौरान प्रवाहकत्त्व धारा का धीमा क्षय चालन के दौरान बड़ी संख्या में वाहकों के धीमे पुनर्संयोजन से आईजीबीटी के मोटे 'बहाव' क्षेत्र में बाढ़ आती है। शुद्ध परिणाम यह है कि घुमाव-बंद संचालित लॉस एक आईजीबीटी का घुमाव-चालू नुकसान की तुलना में काफी अधिक है। प्राय: डेटाशीट में घुमाव-बंद एनर्जी को मापे गए पैरामीटर के रूप में वर्णित किया जाता है। घुमाव-बंद नुकसान का अनुमान लगाने के लिए उस संख्या को इच्छित आवेदन की संचालित आवृत्ति के साथ गुणा करना होगा।

बहुत उच्च शक्ति स्तरों पर एक थाइरिस्टर-आधारित उपकरण (जैसे एक सिलिकॉन-नियंत्रित दिष्टकारी, एक जीटीओ, एक एमओएस-नियंत्रित थाइरिस्टर आदि) अभी भी अक्सर उपयोग किये जाते है। इस उपकरण को एक बहाव परिपथ द्वारा प्रदान की गई स्पंद द्वारा चालू किया जा सकता है लेकिन स्पंद को हटाकर इसे बंद नहीं किया जा सकता है। एक थाइरिस्टर बंद हो जाता है जैसे ही इसके माध्यम से कोई और धारा प्रवाहित नहीं होती है। यह स्वचालित रूप से प्रत्येक चक्र पर एक वैकल्पिक चालू प्रणाली में होता है या उपकरण के चारों ओर धारा को बदलने के लिए एक परिपथ की आवश्यकता होती है। इस सीमा को पार करने के लिए एमसीटी और जीटीओ दोनों विकसित किए गए हैं और विद्युत वितरण अनुप्रयोगों में व्यापक रूप से उपयोग किए जाते हैं।

संचालित प्रणाली में शक्ति अर्धचालको के कुछ अनुप्रयोगों में लैंप डिमर्स, संचालित प्रणाली विद्युत की आपूर्ति, इंडक्शन कुकर, ऑटोमोटिव ज्वलन प्रणाली और सभी आकारों के एसी और डीसी इलेक्ट्रिक मोटर ड्राइव सम्मिलित हैं।

प्रवर्धक

प्रवर्धक सक्रिय क्षेत्र में काम करते हैं जहां उपकरण धारा और वोल्टेज दोनों गैर-शून्य हैं। नतीजतन शक्ति लगातार छितरी हुई है और अर्धचालक उपकरण से अतिरिक्त गर्मी को हटाने की आवश्यकता पर इसकी बनावट हावी है। शक्ति प्रवर्धक उपकरणों को अक्सर उपयोग किए जाने वाले ताप सिंक द्वारा पहचाना जा सकता है। कई प्रकार के शक्ति अर्धचालक प्रवर्धक उपकरण स्थित हैं जैसे कि बाइपोलर संयोजन ट्रांजिस्टर, लंबरूप एमओएस फील्ड इफेक्ट ट्रांजिस्टर और अन्य। व्यक्तिगत प्रवर्धक उपकरणों के लिए विद्युत का स्तर सैकड़ों वाट तक होता है और आवृत्ति सीमा कम माइक्रोवेव बैंड तक होती है। एक पूर्ण ऑडियो शक्ति प्रवर्धक दो चैनलों के साथ और दसियों वाट के क्रम पर एक शक्ति नाविक एक छोटे एकीकृत परिपथ पैकेज में डाला जा सकता है जिसे कार्य करने के लिए केवल कुछ बाहरी निष्क्रिय घटकों की आवश्यकता होती है।

सक्रिय-प्रणाली प्रवर्धकों के लिए एक अन्य महत्वपूर्ण अनुप्रयोग रैखिक विनियमित विद्युत आपूर्ति में है जब एक प्रवर्धक उपकरण को वांछित व्यवस्था पर भार वोल्टेज बनाए रखने के लिए वोल्टेज नियामक के रूप में उपयोग किया जाता है। हालांकि इस तरह की विद्युत आपूर्ति संचालित प्रणाली विद्युत आपूर्ति की तुलना में कम ऊर्जा कुशल हो सकती है और आवेदन की सरलता उन्हें लोकप्रिय बनाती है।

पैरामीटर

    1. ब्रेकडाउन वोल्टेज : अक्सर ब्रेकडाउन वोल्टेज नाविक और चालू-प्रतिरोध के बीच एक ट्रेड-बंद होता है क्योंकि मोटे और निचले डोप्ड बहाव क्षेत्र को सम्मिलित करके ब्रेकडाउन वोल्टेज को बढ़ाने से उच्च चालू-प्रतिरोध होता है।
    2. चालू-प्रतिरोध : एक उच्च धारा नाविक समानांतर कोशिकाओं की अधिक संख्या के कारण चालू-प्रतिरोध को कम करती है। यह समग्र समाई को बढ़ाता है और गति को धीमा कर देता है।
    3. उठने और गिरने का समय : चालू-अवस्था और बंद-अवस्था के बीच संचालित करने में लगने वाला समय।
    4. सुरक्षित-संचालन क्षेत्र : यह एक उष्ण अपव्यय और "लैच-अप" विचार है।
    5. उष्ण प्रतिरोध : व्यावहारिक बनावटके दृष्टिकोण से यह अक्सर उपेक्षित लेकिन अत्यंत महत्वपूर्ण पैरामीटर है। एक अर्धचालक ऊंचे तापमान पर अच्छा प्रदर्शन नहीं करता है और फिर भी बड़े धारा प्रवाहकत्त्व के कारण एक शक्ति अर्धचालक उपकरण हमेशा गर्म होता है। इसलिए ऐसे उपकरणों को उस गर्मी को लगातार हटाकर ठंडा करने की आवश्यकता होती है। पैकेजिंग और ताप सिंक तकनीक एक अर्धचालक उपकरण से गर्मी को बाहरी वातावरण में ले जाने के लिए एक साधन प्रदान करती है। प्राय: एक बड़े धारा उपकरण में एक बड़ा डाई और पैकेजिंग सतह क्षेत्र और कम तापीय प्रतिरोध होता है।

अनुसंधान और विकास

पैकेजिंग

पैकेजिंग की भूमिका है:

  • एक डाई को बाहरी परिपथ से संयोजित करें।
  • उपकरण द्वारा उत्पन्न गर्मी को दूर करने का एक तरीका प्रदान करें।
  • डाई को बाहरी वातावरण (नमी, धूल, आदि) से बचाएं।

विद्युत उपकरण की विश्वसनीयता के कई बिषय या तो अत्यधिक तापमान या उष्ण चक्र के कारण थकान से संबंधित हैं। अनुसंधान धारा में निम्नलिखित विषयों पर किया जाता है:

  • ठंडा प्रदर्शन।
  • पैकेजिंग के उष्ण विस्तार के गुणांक को सिलिकॉन के साथ निकटता से मिलान करके उष्ण चक्र का प्रतिरोध।
  • पैकेजिंग सामग्री का अधिकतम कार्यरत तापमान।

पैकेजिंग के परजीवी संस्थापन को कम करने जैसे विद्युत के बिषय पर भी अनुसंधान चल रहा है। यह संस्थापन कार्यरत आवृत्ति को सीमित करता है क्योंकि यह रूपांतरण के दौरान नुकसान उत्पन्न करता है।

एक लो-वोल्टेज एमओएसएफईटी भी इसके पैकेज के परजीवी प्रतिरोध द्वारा सीमित है क्योंकि इसका आंतरिक चालू-अवस्था प्रतिरोध एक या दो मिली ओएचएम जितना कम है।

कुछ सबसे सामान्य प्रकार के शक्ति अर्धचालक पैकेज में TO-220, TO-247, TO-262, TO-3, D2 पाक आदि सम्मिलित हैं।।

संरचनाओं में सुधार

आईजीबीटी बनावट अभी भी विकास के अधीन है और कार्यरत वोल्टेज में बढ़ोतरी की उम्मीद की जा सकती है। सीमा के उच्च-शक्ति अंत में एमओएस-नियंत्रित थाइरिस्टर एक आशाजनक उपकरण है। सुपर संयोजन प्रभारी संतुलन सिद्धांत को नियोजित करके पारंपरिक एमओएसएफईटी संरचना पर एक बड़ा सुधार प्राप्त करना अनिवार्य रूप से यह एक शक्ति एमओएसएफईटी के मोटे बहाव क्षेत्र को भारी रूप से डोप करने की अनुमति देता है जिससे ब्रेकडाउन वोल्टेज से समझौता किए बिना इलेक्ट्रॉन प्रवाह के विद्युत प्रतिरोध को कम किया जा सकता है। यह एक ऐसे क्षेत्र के साथ जुड़ा हुआ है जो समान रूप से विपरीत वाहक ध्रुवीयता (छिद्रों) के साथ डोप किया गया है लेकिन विपरीत रूप से डोप किए गए क्षेत्र प्रभावी रूप से अपने मोबाइल चार्ज को रद्द कर देते हैं और एक 'क्षीण क्षेत्र' विकसित करते हैं जो बंद-अवस्था के दौरान उच्च वोल्टेज का समर्थन करता है। दूसरी ओर चालू-अवस्था के दौरान अभिप्राय क्षेत्र का उच्च डोपिंग वाहकों के आसान प्रवाह की अनुमति देता है जिससे चालू-प्रतिरोध कम हो जाता है। इस सुपर संयोजन सिद्धांत पर आधारित वाणिज्यिक उपकरण, Infineon (Cool एमओएस उत्पाद) और इंटरनेशनल सुधारक (IR) जैसी कंपनियों द्वारा विकसित किए गए हैं।

वाइड बैंड-गैप अर्धचालक्स

शक्ति अर्धचालक उपकरणों में बड़ी सफलता की उम्मीद एक विस्तृत बैंड-गैप अर्धचालक द्वारा सिलिकॉन के प्रतिस्थापन से की जाती है। धारा में सिलिकन कार्बाइड (SiC) को सबसे आशाजनक माना जाता है। 1200 वोल्ट के ब्रेकडाउन वोल्टेज वाला एक सिलिकन कार्बाइड (SiC) Schottky डायोड व्यावसायिक रूप से उपलब्ध है जैसा कि 1200 वोल्ट JFET है। चूंकि दोनों बहुसंख्यक वाहक उपकरण हैं, वे उच्च गति से काम कर सकते हैं। उच्च वोल्टेज (20 kवोल्ट तक) के लिए एक द्विध्रुवी उपकरण विकसित किया जा रहा है। इसके फायदों में सिलिकॉन कार्बाइड उच्च तापमान (400 डिग्री सेल्सियस तक) पर काम कर सकता है और इसमें सिलिकॉन की तुलना में कम उष्ण प्रतिरोध होता है जिससे बेहतर शीतलन की अनुमति मिलती है।



यह भी देखें

नोट्स और संदर्भ

टिप्पणियाँ

  1. Bernard Finn, Exposing Electronics, CRC Press, 2000 ISBN 9058230562 pages 14-15
  2. Peter Robin Morris, A History of the World Semiconductor Industry, IET 1990 ISBN 0863412270 page 18
  3. Peter Robin Morris, A History of the World Semiconductor Industry, IET 1990 ISBN 0863412270 pages 39-41
  4. H. van Ligten, D. Navon, "Basic turn-off of GTO switches", IRE Wescon Convention Record, Part 3 on Electron Devices, pp. 49 - 52, August 1960.
  5. "Rethink Power Density with GaN". Electronic Design. 21 April 2017. Retrieved 23 July 2019.
  6. Oxner, E. S. (1988). Fet Technology and Application. CRC Press. p. 18. ISBN 9780824780500.
  7. "Advances in Discrete Semiconductors March On". Power Electronics Technology. Informa: 52–6. September 2005. Archived (PDF) from the original on 22 March 2006. Retrieved 31 July 2019.
  8. Duncan, Ben (1996). High Performance Audio Power Amplifiers. Elsevier. pp. 177-8, 406. ISBN 9780080508047.
  9. Jacques Arnould, Pierre Merle Dispositifs de l'électronique de puissance, Éditions Hermès, ISBN 2-86601-306-9 (in French)
  10. "Power MOSFET Basics" (PDF). Alpha & Omega Semiconductor. Retrieved 29 July 2019.
  11. Whiteley, Carol; McLaughlin, John Robert (2002). Technology, Entrepreneurs, and Silicon Valley. Institute for the History of Technology. ISBN 9780964921719. These active electronic components, or power semiconductor products, from Siliconix are used to switch and convert power in a wide range of systems, from portable information appliances to the communications infrastructure that enables the Internet. The company's power MOSFETs — tiny solid-state switches, or metal oxide semiconductor field-effect transistors — and power integrated circuits are widely used in cell phones and notebook computers to manage battery power efficiently
  12. "Power Transistor Market Will Cross $13.0 Billion in 2011". IC Insights. June 21, 2011. Retrieved 15 October 2019.
  13. Robert Boylestad and Louis Nashelsky (2006). Electronic Devices. and Circuit Theory. 9th edition Prentice Hall. Upper Saddle River, New Jersey. Columbus


संदर्भ


बाहरी संबंध