|
|
Line 66: |
Line 66: |
| ==संदर्भ== | | ==संदर्भ== |
| * Lee, John M., ''Introduction to Smooth Manifolds'', Springer-Verlag, New York (2003) {{isbn|0-387-95495-3}}. Graduate-level textbook on smooth manifolds. | | * Lee, John M., ''Introduction to Smooth Manifolds'', Springer-Verlag, New York (2003) {{isbn|0-387-95495-3}}. Graduate-level textbook on smooth manifolds. |
| [[Category: विभेदक ज्यामिति]] [[Category: वेक्टर पथरी]]
| |
|
| |
|
|
| |
|
| |
| [[Category: Machine Translated Page]]
| |
| [[Category:Created On 24/03/2023]] | | [[Category:Created On 24/03/2023]] |
| [[Category:Vigyan Ready]] | | [[Category:Machine Translated Page]] |
| | [[Category:Templates Vigyan Ready]] |
| | [[Category:विभेदक ज्यामिति]] |
| | [[Category:वेक्टर पथरी]] |
गणित में, समय-निर्भर सदिश क्षेत्र सदिश कलन में एक निर्माण है जो सदिश क्षेत्रों की अवधारणा को सामान्य करता है। इसे एक सदिश क्षेत्र के रूप में माना जा सकता है जो समय बीतने के साथ चलता है। समय के हर पल के लिए, यह एक सदिश (ज्यामितीय) को यूक्लिडियन स्थल में या बहुमुख में हर बिंदु से जोड़ता है।
परिभाषा
बहुमुख 'M' पर एक समय-निर्भर सदिश क्षेत्र एक खुले उपवर्ग से एक प्रतिचित्र है पर
जैसे कि प्रत्येक , के लिए का एक मूल . है
हर के लिए ऐसा है कि सेट
अरिक्त है, खुले सेट पर परिभाषित सामान्य अर्थों में एक सदिश क्षेत्र है
संबद्ध अंतर समीकरण
बहुमुख M पर एक समय-निर्भर सदिश क्षेत्र X को देखते हुए, हम इसे निम्नलिखित अंतर समीकरण से जोड़ सकते हैं:
जिसे परिभाषा के अनुसार स्वायत्त (गणित) कहा जाता है।
अभिन्न वक्र
उपरोक्त समीकरण का एक अभिन्न वक्र (जिसे X का एक अभिन्न वक्र भी कहा जाता है) एक प्रतिचित्र है
ऐसा है कि , X और परिभाषा के कार्यक्षेत्र का एक मूल है
- .
समय-स्वतंत्र सदिश क्षेत्रों के साथ समानता
पर एक समय-निर्भर सदिश क्षेत्र को पर सदिश क्षेत्र के रूप में माना जा सकता है। जहाँ
पर निर्भर नहीं है।
इसके विपरीत, समय-निर्भर सदिश क्षेत्र पर एक समय-स्वतंत्र है
पर निर्देशांक में,
के लिए स्वायत्त अंतर समीकरणों की पद्धति के लिए गैर-स्वायत्त समीकरणों के बराबर है, और और के अभिन्न वक्रों के सेट के बीच एक आक्षेप है।
प्रवाह
एक समय-निर्भर सदिश क्षेत्र X का प्रवाह (गणित), अद्वितीय अवकलनीय प्रतिचित्र है
ऐसा कि प्रत्येक के लिए
X का अभिन्न वक्र जो को संतुष्ट करता है
गुण
हम को को परिभाषित करते हैं
- अगर और तब
- , विपरीत कार्य के साथ एक भिन्नता है .
अनुप्रयोग
बता दें कि X और Y सुचारू समय-निर्भर सदिश क्षेत्र हैं और , X का प्रवाह है। निम्नलिखित पहचान सिद्ध की जा सकती है:
इसके अतिरिक्त, हम समय पर निर्भर प्रदिश क्षेत्रों को एक समान प्रकार से परिभाषित कर सकते हैं, और यह मानते हुए समान पहचान प्रस्तुत कर सकते हैं कि एक सहज समय पर निर्भर प्रदिश क्षेत्र है:
यह अंतिम सर्वसमिका डार्बौक्स प्रमेय को सिद्ध करने के लिए उपयोगी है।
संदर्भ
- Lee, John M., Introduction to Smooth Manifolds, Springer-Verlag, New York (2003) ISBN 0-387-95495-3. Graduate-level textbook on smooth manifolds.