विलेयता साम्य: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 91: Line 91:
2:2 और 3:3 लवणों के लिए, जैसे CaSO<sub>4</sub> और FePO<sub>4</sub>, घुलनशीलता उत्पाद के लिए सामान्य अभिव्यक्ति 1:1 इलेक्ट्रोलाइट के समान है:
2:2 और 3:3 लवणों के लिए, जैसे CaSO<sub>4</sub> और FePO<sub>4</sub>, घुलनशीलता उत्पाद के लिए सामान्य अभिव्यक्ति 1:1 इलेक्ट्रोलाइट के समान है:
<math display="block"> \mathrm{AB} \leftrightharpoons  \mathrm{A}^{p+} +  \mathrm{B}^{p-}</math>
<math display="block"> \mathrm{AB} \leftrightharpoons  \mathrm{A}^{p+} +  \mathrm{B}^{p-}</math>
:<math>K_{sp}= \mathrm{[A][B]} = \mathrm{[A]^2}= \mathrm{[B]^2}</math> (विद्युत आवेशों को सामान्य भावों में छोड़ दिया जाता है, अंकन की सरलता के लिए)
:<math>K_{sp}= \mathrm{[A][B]} = \mathrm{[A]^2}= \mathrm{[B]^2}</math> (विद्युत आवेशों को सामान्य भावों में, अंकन की सरलता के लिए त्याग दिया जाता है)
Ca(OH)<sub>2</sub> जैसे असममित नमक के साथ विलेयता व्यंजक द्वारा दिया जाता है:
Ca(OH)<sub>2</sub> जैसे असममित नमक के साथ विलेयता व्यंजक द्वारा दिया जाता है:
<math display="block"> \mathrm{ Ca(OH)_2 \leftrightharpoons  {Ca}^{2+} +  2OH^- }</math>
<math display="block"> \mathrm{ Ca(OH)_2 \leftrightharpoons  {Ca}^{2+} +  2OH^- }</math>
<math display="block">\mathrm{K_{sp} =  [Ca]  [OH]^2 }</math>
<math display="block">\mathrm{K_{sp} =  [Ca]  [OH]^2 }</math>
चूँकि हाइड्रॉक्साइड आयनों की सांद्रता कैल्शियम आयनों की सांद्रता से दोगुनी होती है, इसलिए यह अल्प हो जाती है <math>\mathrm{K_{sp} =  4[Ca]^3 }</math>
चूँकि हाइड्रॉक्साइड आयनों की सांद्रता कैल्शियम आयनों की सांद्रता से दोगुनी होती है, इसलिए यह अल्प हो जाती है:
 
<math>\mathrm{K_{sp} =  4[Ca]^3 }</math>


सामान्यतः, रासायनिक संतुलन के साथ
सामान्यतः, रासायनिक संतुलन के साथ
<math display="block"> \mathrm{A_pB_q \leftrightharpoons  p{A}^{n+} +  q{B}^{m-} }</math>
<math display="block"> \mathrm{A_pB_q \leftrightharpoons  p{A}^{n+} +  q{B}^{m-} }</math>
<math display="block"> \mathrm{[B] = \frac{q}{p}[A] }  </math>
<math display="block"> \mathrm{[B] = \frac{q}{p}[A] }  </math>
और निम्न तालिका, यौगिक की विलेयता और उसके विलेयता उत्पाद के मूल्य के मध्य के संबंध को दर्शाती है, प्राप्त की जा सकती है।<ref>{{Cite book|title=विश्लेषणात्मक रसायन विज्ञान के मूल तत्व|last=Skoog|first=Douglas A|last2=West|first2=Donald M| last3=Holler|first3=F James|publisher=Brooks/Cole|year=2004|edition=8th|pages=238–242|chapter=9B-5|ISBN = 0030355230}}</ref>
निम्न तालिका, यौगिक की विलेयता और उसके विलेयता उत्पाद के मूल्य के मध्य संबंध को दर्शाती है, जो प्राप्त की जा सकती है।<ref>{{Cite book|title=विश्लेषणात्मक रसायन विज्ञान के मूल तत्व|last=Skoog|first=Douglas A|last2=West|first2=Donald M| last3=Holler|first3=F James|publisher=Brooks/Cole|year=2004|edition=8th|pages=238–242|chapter=9B-5|ISBN = 0030355230}}</ref>
:{| class="wikitable"
:{| class="wikitable"
!Salt ||p||q||Solubility, S  
!लवण ||p||q||घुलनशीलता, S  
|-
|-
!AgCl<br>Ca(SO<sub>4</sub>)<br>Fe(PO<sub>4</sub>)
!AgCl<br>Ca(SO<sub>4</sub>)<br>Fe(PO<sub>4</sub>)
Line 121: Line 123:
|<math chem="">\sqrt[p+q]{K_\ce{sp}\over p^p q^q}</math>
|<math chem="">\sqrt[p+q]{K_\ce{sp}\over p^p q^q}</math>
|}
|}
घुलनशीलता उत्पादों को अक्सर लघुगणकीय रूप में व्यक्त किया जाता है। इस प्रकार, कैल्शियम सल्फेट के साथ {{math|1=''K''<sub>sp</sub> = {{val|4.93|e=-5}} mol<sup>2</sup> dm<sup>−6</sup>}}, {{math|1=log ''K''<sub>sp</sub> = −4.32}}. K<sub>sp</sub> का मान जितना छोटा होगा, या लॉग मान जितना अधिक ऋणात्मक होगा, विलेयता उतनी ही अल्प होगी।
घुलनशीलता उत्पादों को प्रायः लघुगणकीय रूप में व्यक्त किया जाता है। इस प्रकार, कैल्शियम सल्फेट के साथ {{math|1=''K''<sub>sp</sub> = {{val|4.93|e=-5}} mol<sup>2</sup> dm<sup>−6</sup>}}, {{math|1=log ''K''<sub>sp</sub> = −4.32}}. K<sub>sp</sub> का मान उतना छोटा होगा, या लॉग मान जितना अधिक ऋणात्मक होगा, विलेयता उतनी ही अल्प होगी।


कुछ लवण विलयन में पूर्णतः वियोजित नहीं होते हैं। उदाहरणों में  MgSO<sub>4</sub> सम्मिलित हैं, प्रसिद्ध रूप से [[मैनफ्रेड ईजेन]] द्वारा [[समुद्री जल]] में आंतरिक क्षेत्र परिसर और [[आयन संघ]] दोनों के रूप में उपस्थित होने के लिए शोध किया गया।<ref>{{cite web|url=http://nobelprize.org/nobel_prizes/chemistry/laureates/1967/eigen-lecture.pdf |first=Manfred |last=Eigen|author-link=Manfred Eigen |title=नोबेल व्याख्यान|date=1967|website=Nobel Prize}}</ref> ऐसे लवणों की विलेयता की गणना अभिक्रिया के साथ विघटन में उल्लिखित विधि द्वारा की जाती है।
कुछ लवण विलयन में पूर्णतः वियोजित नहीं होते हैं। उदाहरणों में  MgSO<sub>4</sub> सम्मिलित हैं, प्रसिद्ध रूप से [[मैनफ्रेड ईजेन]] द्वारा [[समुद्री जल]] में आंतरिक क्षेत्र परिसर और [[आयन संघ]] दोनों के रूप में उपस्थित होने के लिए शोध किया गया।<ref>{{cite web|url=http://nobelprize.org/nobel_prizes/chemistry/laureates/1967/eigen-lecture.pdf |first=Manfred |last=Eigen|author-link=Manfred Eigen |title=नोबेल व्याख्यान|date=1967|website=Nobel Prize}}</ref> ऐसे लवणों की विलेयता की गणना अभिक्रिया के साथ विघटन में उल्लिखित विधि द्वारा की जाती है।
Line 132: Line 134:
<math display="block">\mathrm{M(OH)_n + nH^+ \leftrightharpoons M^{n+} + n H_2O }</math>  
<math display="block">\mathrm{M(OH)_n + nH^+ \leftrightharpoons M^{n+} + n H_2O }</math>  
  <math display="block">K^*_\text{sp} = \mathrm{[M^{n+}][H^+]^{-n}} </math>
  <math display="block">K^*_\text{sp} = \mathrm{[M^{n+}][H^+]^{-n}} </math>
हाइड्रॉक्साइड्स के लिए, घुलनशीलता उत्पादों को अक्सर संशोधित रूप में दिया जाता है, K*<sub>sp</sub>हाइड्रॉक्साइड आयन सांद्रता के स्थान पर हाइड्रोजन आयन सांद्रता का उपयोग करना। दो मूल्य पानी के स्व-आयनीकरण से संबंधित हैं। पानी के लिए स्व-आयनीकरण स्थिरांक, ''K''<sub>w</sub> होता है।<ref name="bm">{{cite book|last1=Baes |first1=C. F.|last2= Mesmer |first2=R. E. |title=उद्धरणों का हाइड्रोलिसिस|date=1976|publisher=Wiley|location= New York}}</ref>  
हाइड्रॉक्साइड्स के लिए, घुलनशीलता उत्पादों को प्रायः संशोधित रूप में दिया जाता है, K*<sub>sp</sub> हाइड्रॉक्साइड आयन सांद्रता के स्थान पर हाइड्रोजन आयन का उपयोग करता है। दो मूल्य पानी के स्व-आयनीकरण से संबंधित हैं। पानी के लिए स्व-आयनीकरण स्थिरांक, ''K''<sub>w</sub> होता है।<ref name="bm">{{cite book|last1=Baes |first1=C. F.|last2= Mesmer |first2=R. E. |title=उद्धरणों का हाइड्रोलिसिस|date=1976|publisher=Wiley|location= New York}}</ref>  
<math display="block">K_\mathrm{w} = [\mathrm{H^+}] [\mathrm{OH^-}]</math>
<math display="block">K_\mathrm{w} = [\mathrm{H^+}] [\mathrm{OH^-}]</math>
<math display="block">K^*_\text{sp} =  \frac{K_\text{sp}}{(K_\text{w})^n}</math>
<math display="block">K^*_\text{sp} =  \frac{K_\text{sp}}{(K_\text{w})^n}</math>
Line 139: Line 141:


=== प्रतिक्रिया के साथ विघटन ===
=== प्रतिक्रिया के साथ विघटन ===
[[File:Silver Chloride dissolution.png|thumb|220px| जब सिल्वर क्लोराइड के निलंबन में अमोनिया का सांद्र घोल मिलाया जाता है, तो यह घुल जाता है क्योंकि Ag<sup>+</sup> का परिसर बनता है।]]विघटन के साथ विशिष्ट प्रतिक्रिया में तनु आधार, B, अम्लीय [[जलीय घोल]] में घुलना सम्मिलित है।
[[File:Silver Chloride dissolution.png|thumb|220px| जब सिल्वर क्लोराइड के निलंबन में अमोनिया का सांद्र घोल मिलाया जाता है, तो यह घुल जाता है क्योंकि Ag<sup>+</sup> का परिसर बनता है।]]विघटन के साथ विशिष्ट प्रतिक्रिया में तनु आधार, B, अम्लीय [[जलीय घोल]] में सम्मिलित है।
<math display="block">\mathrm {B} \mathrm{(s)} + \mathrm H^+ \mathrm {(aq)} \leftrightharpoons \mathrm {BH}^+ (\mathrm{aq)}</math>
<math display="block">\mathrm {B} \mathrm{(s)} + \mathrm H^+ \mathrm {(aq)} \leftrightharpoons \mathrm {BH}^+ (\mathrm{aq)}</math>
यह प्रतिक्रिया फार्मास्युटिकल उत्पादों के लिए अधिक महत्वपूर्ण है।<ref>{{cite web|url=http://www.pharmainfo.net/reviews/potential-solubility-drug-discovery-and-development |title=ड्रग डिस्कवरी और विकास में विलेयता की क्षमता|last=Payghan |first=Santosh |year=2008 |publisher=Pharminfo.net |access-date=5 July 2010 |url-status=dead |archive-url=https://web.archive.org/web/20100330171700/http://www.pharmainfo.net/reviews/potential-solubility-drug-discovery-and-development |archive-date=March 30, 2010 }}</ref> क्षारीय माध्यम में दुर्बल अम्लों का विलयन भी इसी प्रकार महत्वपूर्ण है।
यह प्रतिक्रिया फार्मास्युटिकल उत्पादों के लिए अधिक महत्वपूर्ण है।<ref>{{cite web|url=http://www.pharmainfo.net/reviews/potential-solubility-drug-discovery-and-development |title=ड्रग डिस्कवरी और विकास में विलेयता की क्षमता|last=Payghan |first=Santosh |year=2008 |publisher=Pharminfo.net |access-date=5 July 2010 |url-status=dead |archive-url=https://web.archive.org/web/20100330171700/http://www.pharmainfo.net/reviews/potential-solubility-drug-discovery-and-development |archive-date=March 30, 2010 }}</ref> क्षारीय माध्यम में दुर्बल अम्लों का विलयन भी इसी प्रकार महत्वपूर्ण है।
<math display="block">\mathrm{ HA(s) + OH^-(aq) \leftrightharpoons A^- (aq) + H_2O}</math> अनावेशित अणु में सामान्यतः आयनिक रूप की तुलना में अल्प घुलनशीलता होती है, इसलिए विलेयता pH और विलेय के [[अम्ल पृथक्करण स्थिरांक]] पर निर्भर करती है। अम्ल या क्षार की अनुपस्थिति में आयनित रूप की घुलनशीलता का वर्णन करने के लिए आंतरिक विलेयता शब्द का उपयोग किया जाता है।
<math display="block">\mathrm{ HA(s) + OH^-(aq) \leftrightharpoons A^- (aq) + H_2O}</math> अनावेशित अणु में सामान्यतः आयनिक रूप की तुलना में अल्प घुलनशीलता होते है, इसलिए विलेयता pH और विलेय के [[अम्ल पृथक्करण स्थिरांक]] पर निर्भर करती है। अम्ल या क्षार की अनुपस्थिति में आयनित रूप की घुलनशीलता का वर्णन करने के लिए आंतरिक विलेयता शब्द का उपयोग किया जाता है।


[[अम्ल वर्षा|अम्लीय वर्षा]] द्वारा चट्टानों और मिट्टी से एल्यूमीनियम लवणों का निक्षालन प्रतिक्रिया के साथ विघटन का और उदाहरण है: [[alumino-सिलिकेट|एल्युमिनो-सिलिकेट]] ऐसे आधार हैं जो अम्ल के साथ प्रतिक्रिया करके घुलनशील प्रजातियों का निर्माण करते हैं, जैसे Al<sup>3+</sup>(aq) है।
[[अम्ल वर्षा|अम्लीय वर्षा]] द्वारा चट्टानों और मिट्टी से एल्यूमीनियम लवणों का निक्षालन प्रतिक्रिया के साथ विघटन का उदाहरण है: [[alumino-सिलिकेट|एल्युमिनो-सिलिकेट]] ऐसे आधार हैं जो अम्ल के साथ प्रतिक्रिया करके घुलनशील प्रजातियों का निर्माण करते हैं, जैसे Al<sup>3+</sup>(aq) है।


रासायनिक परिसर का निर्माण भी विलेयता को परिवर्तित कर सकता है। प्रसिद्ध उदाहरण सिल्वर क्लोराइड के निलंबन के लिए [[अमोनिया]] के केंद्रित समाधान को जोड़ना है, जिसमें अमाइन कॉम्प्लेक्स के गठन से विघटन का पक्ष लिया जाता है।
रासायनिक परिसर का निर्माण भी विलेयता को परिवर्तित कर सकता है। प्रसिद्ध उदाहरण सिल्वर क्लोराइड के निलंबन के लिए [[अमोनिया]] के केंद्रित समाधान को जोड़ना है, जिसमें अमाइन कॉम्प्लेक्स के गठन से विघटन का पक्ष लिया जाता है।

Revision as of 20:13, 1 April 2023

घुलनशीलता ऐसा गतिशील संतुलन है जो तब उपस्थित होता है जब ठोस अवस्था में रासायनिक यौगिक का समाधान रासायनिक संतुलन में होता है। पृथक्करण के साथ, या समाधान के किसी अन्य घटक जैसे अम्ल या क्षार की रासायनिक प्रतिक्रिया के साथ ठोस अपरिवर्तित हो सकता है। प्रत्येक घुलनशीलता संतुलन को तापमान-निर्भर घुलनशीलता उत्पाद द्वारा चित्रित किया जाता है जो संतुलन स्थिरांक के जैसे कार्य करता है। घुलनशीलता संतुलन दवा, पर्यावरण और अन्य परिदृश्यों में महत्वपूर्ण हैं।

परिभाषाएँ

घुलनशीलता संतुलन तब उपस्थित होता है जब ठोस अवस्था में रासायनिक यौगिक का समाधान रासायनिक संतुलन में होता है। इस प्रकार गतिशील संतुलन का उदाहरण है जिसमें कुछ भिन्न-भिन्न अणु ठोस और समाधान चरणों के मध्य माइग्रेट करते हैं जैसे कि विघटन (रसायन विज्ञान) और वर्षा की दर समान होती है। जब संतुलन स्थापित हो जाता है और ठोस प्रत्येक प्रकार से भंग नहीं होता है, तो समाधान को संतृप्त कहा जाता है। संतृप्त विलयन में विलेय की सांद्रता को विलेयता के रूप में जाना जाता है। विलेयता की इकाइयां मोलर (mol dm-3) हो सकती हैं या द्रव्यमान को प्रति इकाई आयतन के रूप में व्यक्त किया जाता है, जैसे μg mL-1, घुलनशीलता तापमान पर निर्भर है। घुलनशीलता की तुलना में विलेय की उच्च सांद्रता वाले विलयन को अतिसंतृप्ति कहा जाता है। अतिसंतृप्ति घोल को बीज के अतिरिक्त संतुलन में आने के लिए प्रेरित किया जा सकता है जो विलेय का छोटा क्रिस्टल या ठोस कण हो सकता है, जो वर्षा प्रारंभ करता है।

घुलनशीलता संतुलन के तीन मुख्य प्रकार हैं।

  1. सरल विघटन।
  2. पृथक्करण प्रतिक्रिया के साथ विघटन होता है। यह लवण की विशेषता है। इस स्थिति में संतुलन स्थिरांक को घुलनशीलता उत्पाद के रूप में जाना जाता है।
  3. आयनीकरण प्रतिक्रिया के साथ विघटन होता है। यह भिन्न -भिन्न पीएच के जलीय मीडिया में अम्ल या तनु आधारों के विघटन की विशेषता है।

प्रत्येक स्थिति में संतुलन स्थिरांक को गतिविधियों के भागफल के रूप में निर्दिष्ट किया जा सकता है। यह संतुलन स्थिरांक विमाहीन है क्योंकि गतिविधि विमाहीन मात्रा है। चूँकि, गतिविधियों का उपयोग अधिक असुविधाजनक है, इसलिए संतुलन स्थिरांक को सामान्यतः गतिविधि गुणांक के भागफल से विभाजित किया जाता है, जिससे कि सांद्रता का भागफल बन सके। विवरण के लिए इक्विलिब्रियम केमिस्ट्री इक्विलिब्रियम स्थिरांक देखें। इसके अतिरिक्त, ठोस की गतिविधि, परिभाषा के अनुसार, 1 के समान होती है, इसलिए इसे परिभाषित अभिव्यक्ति से विस्थापित कर दिया जाता है।

रासायनिक संतुलन के लिए

यौगिक ApBq के लिए घुलनशीलता गुणनफल Ksp निम्नानुसार परिभाषित किया गया है:
जहां [A] और [B] संतृप्त समाधान में A और B की सांद्रता हैं। विलेयता उत्पाद में संतुलन स्थिरांक के समान कार्यक्षमता होती है, चूँकि औपचारिक रूप से Ksp (एकाग्रता)p+q का आयाम है।

परिस्थितियों का प्रभाव

तापमान प्रभाव

SolubilityVsTemperature.png

घुलनशीलता तापमान में परिवर्तन के प्रति संवेदनशील है। उदाहरण के लिए, चीनी ठंडे पानी की तुलना में गर्म पानी में अधिक घुलनशील होती है। ऐसा इसलिए होता है क्योंकि घुलनशीलता उत्पाद, जैसे अन्य प्रकार के संतुलन स्थिरांक, तापमान के कार्य होते हैं। ले चेटेलियर के सिद्धांत के अनुसार, जब विघटन प्रक्रिया एंडोथर्मिक प्रतिक्रिया (गर्मी अवशोषित होती है) होती है, तो बढ़ते तापमान के साथ घुलनशीलता बढ़ जाती है। यह प्रभाव पुनर्संरचना की प्रक्रिया का आधार है, जिसका उपयोग रासायनिक यौगिक को शुद्ध करने के लिए किया जा सकता है। जब विघटन एक्ज़ोथिर्मिक होता है तो बढ़ते तापमान के साथ घुलनशीलता अल्प हो जाती है।[1] सोडियम सल्फेट लगभग 32.4 °C से नीचे के तापमान के साथ बढ़ती घुलनशीलता, किन्तु उच्च तापमान पर घटती घुलनशीलता दिखाता है।[2] ऐसा इसलिए है क्योंकि ठोस चरण डिकाहाइड्रेट है (Na
2
SO
4
·10H
2
O
) संक्रमण तापमान के नीचे, किन्तु उस तापमान के ऊपर भिन्न हाइड्रेट होते हैं।

आदर्श समाधान (अल्प घुलनशीलता वाले पदार्थों के लिए प्राप्त) के लिए घुलनशीलता के तापमान पर निर्भरता निम्नलिखित अभिव्यक्ति द्वारा दी जाती है जिसमें पिघलने की तापीय धारिता ΔmH, और मोल अंश संतृप्ति पर विलेय का होता है:

जहाँ अनंत तनुता पर विलेय की आंशिक मोलर एन्थैल्पी है और शुद्ध क्रिस्टल की एन्थैल्पी प्रति मोल है।[3]

अन्य-इलेक्ट्रोलाइट के लिए यह अंतर अभिव्यक्ति तापमान अंतराल पर देने के लिए एकीकृत किया जा सकता है:[4]

अन्य-आदर्श समाधानों के लिए तापमान के संबंध में डेरिवेटिव में मोल अंश विलेयता के अतिरिक्त संतृप्ति पर विलेय की गतिविधि प्रकट होती है:

सामान्य-आयन प्रभाव

सामान्य-आयन प्रभाव नमक की घटी हुई घुलनशीलता का प्रभाव है, जब अन्य नमक जिसमें आयन होता है, वह भी उपस्थित होता है। उदाहरण के लिए, सिल्वर क्लोराइड, AgCl की घुलनशीलता अल्प हो जाती है, जब सोडियम क्लोराइड, सामान्य आयन क्लोराइड का स्रोत, पानी में AgCl के निलंबन में जोड़ा जाता है।[5]

सामान्य आयन की अनुपस्थिति में विलेयता, S की गणना निम्नानुसार की जा सकती है। सांद्रता [Ag+] और [Cl] समान हैं क्योंकि AgCl का मोल Ag+ के मोल में वियोजित हो जाएगा। मान लीजिए [Ag+(aq)] की सांद्रता x द्वारा निरूपित की जाती है। तब,
AgCl के लिए Ksp डिग्री सेल्सियस पर 1.77×10−10 mol2 dm−6 25 के समान है, इसलिए घुलनशीलता 1.33×10−5 mol dm−3 है।

अब मान लीजिए कि 0.01 mol dm−3 = 0.01 M की सांद्रता पर सोडियम क्लोराइड भी उपस्थित है। सोडियम आयनों के किसी भी संभावित प्रभाव को उपेक्षित करके विलेयता की गणना की जाती है:

यह x में द्विघात समीकरण है, जो विलेयता के समान भी है।
सिल्वर क्लोराइड की स्थिति में, x2 0.01 M x से अधिक छोटा है, इसलिए प्रथम पद की उपेक्षा की जा सकती है। इसलिए:
1.33×10−5 mol dm−3 से अधिक अल्पता है, चांदी के गुरुत्वाकर्षण विश्लेषण में, सामान्य आयन प्रभाव के कारण घुलनशीलता में अल्पता का उपयोग AgCl की पूर्ण अवक्षेपण सुनिश्चित करने के लिए किया जाता है।

कण आकार प्रभाव

थर्मोडायनामिक घुलनशीलता स्थिरांक को बड़े मोनोक्रिस्टल के लिए परिभाषित किया गया है। अतिरिक्त सतह ऊर्जा के कारण विलेय कण (या छोटी बूंद) के घटते आकार के साथ विलेयता बढ़ेगी। यह प्रभाव सामान्यतः छोटा होता है जब तक कण अधिक छोटे नहीं हो जाते, सामान्यतः 1 माइक्रोन से छोटे होते हैं। विलेयता स्थिरांक पर कण आकार के प्रभाव को निम्नानुसार परिमाणित किया जा सकता है:

जहां *KA मोलर सतह क्षेत्र A, के साथ विलेय कणों के लिए विलेयता स्थिरांक है *KA→0 मोलर सतह क्षेत्र के साथ पदार्थ के लिए घुलनशीलता स्थिरांक शून्य है (अर्थात, जब कण बड़े होते हैं), γ विलायक में विलेय कण का सतही तनाव है, Am विलेय का मोलर सतह क्षेत्र है (m2/mol में), R सार्वभौमिक गैस स्थिरांक है, और T परम तापमान है।[6]

नमक प्रभाव

नमक प्रभाव[7] (नमकीन बनाना एंड भिन्न कर रहा है) इस तथ्य को संदर्भित करता है कि नमक की उपस्थिति जिसका विलेय के साथ सामान्य आयन प्रभाव होता है, और समाधान की आयनिक शक्ति पर प्रभाव पड़ता है इसलिए गतिविधि गुणांक पर, जिससे कि संतुलन स्थिरांक व्यक्त किया जा सके एकाग्रता भागफल के रूप में, परिवर्तित करता है।

चरण प्रभाव

संतुलन को विशिष्ट क्रिस्टल चरण (पदार्थ) के लिए परिभाषित किया गया है। इसलिए, ठोस के चरण के आधार पर घुलनशीलता उत्पाद भिन्न होने की अपेक्षा है। उदाहरण के लिए, एंरेगोनाइट और केल्साइट के भिन्न -भिन्न घुलनशीलता उत्पाद होंगे, भले ही उनके निकट रासायनिक पहचान (कैल्शियम कार्बोनेट) हो। किसी भी परिस्थिति में चरण दूसरे की तुलना में थर्मोडायनामिक रूप से अधिक स्थिर होगा; इसलिए, यह चरण तब बनेगा जब थर्मोडायनामिक संतुलन स्थापित हो जाएगा। चूँकि, काइनेटिक कारक प्रतिकूल अवक्षेपण (जैसे अर्गोनाइट) के गठन का पक्ष ले सकते हैं, जिसे तब मेटास्टेबल अवस्था कहा जाता है।

फार्माकोलॉजी में, मेटास्टेबल राज्य को कभी-कभी अनाकार राज्य कहा जाता है। क्रिस्टल जाली में निहित लंबी दूरी के सम्बन्ध की अनुपस्थिति के कारण अनाकार दवाओं में उनके क्रिस्टलीय समकक्षों की तुलना में उच्च घुलनशीलता होती है। इस प्रकार, अनाकार चरण में अणुओं को घोलने में अल्प ऊर्जा लगती है। विलेयता पर अनाकार चरण के विवो सुपरसेटेशन में व्यापक रूप से दवाओं को अधिक घुलनशील बनाने के लिए उपयोग किया जाता है।[8][9]

दबाव प्रभाव

संघनित चरणों (ठोस और तरल पदार्थ) के लिए, घुलनशीलता की दबाव निर्भरता सामान्यतः तनुता होती है और सामान्यतः व्यवहार में उपेक्षित होती है। आदर्श समाधान मानते हुए, निर्भरता को इस प्रकार निर्धारित किया जा सकता है:

जहाँ का मोल अंश है -th समाधान में घटक, दबाव है, परम तापमान है, का आंशिक मोलर आयतन है, समाधान में वें घटक, का आंशिक मोलर आयतन है घुलने वाले ठोस में वें घटक, और सार्वत्रिक गैस नियतांक है।[10]

घुलनशीलता की दबाव निर्भरता का कभी-कभी व्यावहारिक महत्व होता है। उदाहरण के लिए, कैल्शियम सल्फेट (जो दबाव में अल्पता के साथ इसकी घुलनशीलता को अल्प करता है) द्वारा तेल क्षेत्रों और कुओं के दूषित होने से समय के साथ उत्पादकता में अल्पता आ सकती है।

मात्रात्मक विषय

सरल विघटन

कार्बनिक ठोस के विघटन को उसके ठोस और घुलित रूपों में पदार्थ के मध्य संतुलन के रूप में वर्णित किया जा सकता है। उदाहरण के लिए, जब सुक्रोज (टेबल शुगर) संतृप्त घोल बनाता है

इस प्रतिक्रिया के लिए संतुलन अभिव्यक्ति लिखी जा सकती है, जैसा कि किसी भी रासायनिक प्रतिक्रिया के लिए होता है (अभिकारकों पर उत्पाद):
जहां Ko को थर्मोडायनामिक घुलनशीलता स्थिरांक कहा जाता है। जो ब्रेसिज़ गतिविधि का संकेत देते हैं। शुद्ध ठोस की गतिविधि, परिभाषा के अनुसार, एकता है। इसलिए:
पदार्थ की गतिविधि, A, समाधान में एकाग्रता के उत्पाद के रूप में व्यक्त की जा सकती है, [A], और गतिविधि गुणांक, γ जब Ko को γ, से विभाजित किया जाता है, तो विलेयता स्थिरांक Ks द्वारा:
प्राप्त होता है। यह मानक स्थिति को संतृप्त समाधान के रूप में परिभाषित करने के समान है जिससे कि गतिविधि गुणांक के समान हो। विलेयता स्थिरांक केवल वास्तविक स्थिरांक है यदि गतिविधि गुणांक किसी अन्य विलेय की उपस्थिति से प्रभावित नहीं होता है जो उपस्थित हो सकता है। घुलनशीलता स्थिरांक की इकाई विलेय की सांद्रता की इकाई के समान होती है। सुक्रोज के लिए Ks= 1.971 mol dm-3 25 डिग्री सेल्सियस पर ज्ञात होता है कि 25 डिग्री सेल्सियस पर सुक्रोज की घुलनशीलता लगभग 2 mol dm−3 है (540 g/L)। सुक्रोज इस अर्थ में असामान्य है कि यह सरलता से उच्च सांद्रता पर अतिसंतृप्ति घोल नहीं बनाता है, जैसा कि अधिकांश अन्य कार्बोहाइड्रेट करते हैं।

पृथक्करण के साथ विघटन

आयनिक यौगिक सामान्यतः पानी में घुलने पर उनके घटक आयनों में विघटन होता है। उदाहरण के लिए, सिल्वर क्लोराइड के लिए:

इस प्रतिक्रिया के लिए संतुलन स्थिरांक की अभिव्यक्ति है:
जहाँ थर्मोडायनामिक संतुलन स्थिरांक है और ब्रेसिज़ गतिविधि का संकेत देते हैं। शुद्ध ठोस की गतिविधि, परिभाषा के अनुसार, समान होती है।

जब नमक की विलेयता अधिक अल्प होती है तो विलयन में आयनों के सक्रियता गुणांक लगभग समान होते हैं। उन्हें वास्तव में व्यस्थापित करके यह अभिव्यक्ति घुलनशीलता उत्पाद को अल्प कर देता है:

2:2 और 3:3 लवणों के लिए, जैसे CaSO4 और FePO4, घुलनशीलता उत्पाद के लिए सामान्य अभिव्यक्ति 1:1 इलेक्ट्रोलाइट के समान है:

(विद्युत आवेशों को सामान्य भावों में, अंकन की सरलता के लिए त्याग दिया जाता है)

Ca(OH)2 जैसे असममित नमक के साथ विलेयता व्यंजक द्वारा दिया जाता है:

चूँकि हाइड्रॉक्साइड आयनों की सांद्रता कैल्शियम आयनों की सांद्रता से दोगुनी होती है, इसलिए यह अल्प हो जाती है:

सामान्यतः, रासायनिक संतुलन के साथ

निम्न तालिका, यौगिक की विलेयता और उसके विलेयता उत्पाद के मूल्य के मध्य संबंध को दर्शाती है, जो प्राप्त की जा सकती है।[11]

लवण p q घुलनशीलता, S
AgCl
Ca(SO4)
Fe(PO4)
1 1 Ksp
Na2(SO4)
Ca(OH)2
2
1
1
2
Na3(PO4)
FeCl3
3
1
1
3
Al2(SO4)3
Ca3(PO4)2
2
3
3
2
Mp(An)q p q

घुलनशीलता उत्पादों को प्रायः लघुगणकीय रूप में व्यक्त किया जाता है। इस प्रकार, कैल्शियम सल्फेट के साथ Ksp = 4.93×10−5 mol2 dm−6, log Ksp = −4.32. Ksp का मान उतना छोटा होगा, या लॉग मान जितना अधिक ऋणात्मक होगा, विलेयता उतनी ही अल्प होगी।

कुछ लवण विलयन में पूर्णतः वियोजित नहीं होते हैं। उदाहरणों में MgSO4 सम्मिलित हैं, प्रसिद्ध रूप से मैनफ्रेड ईजेन द्वारा समुद्री जल में आंतरिक क्षेत्र परिसर और आयन संघ दोनों के रूप में उपस्थित होने के लिए शोध किया गया।[12] ऐसे लवणों की विलेयता की गणना अभिक्रिया के साथ विघटन में उल्लिखित विधि द्वारा की जाती है।

हाइड्रॉक्साइड्स

धातु आयन, Mn+ के हाइड्रॉक्साइड के लिए घुलनशीलता उत्पाद, सामान्यतः निम्नानुसार परिभाषित किया जाता है:

चूँकि, सामान्य प्रयोजन के कंप्यूटर प्रोग्राम वैकल्पिक परिभाषाओं के साथ हाइड्रोजन आयन सांद्रता का उपयोग करने के लिए डिज़ाइन किए गए हैं।

हाइड्रॉक्साइड्स के लिए, घुलनशीलता उत्पादों को प्रायः संशोधित रूप में दिया जाता है, K*sp हाइड्रॉक्साइड आयन सांद्रता के स्थान पर हाइड्रोजन आयन का उपयोग करता है। दो मूल्य पानी के स्व-आयनीकरण से संबंधित हैं। पानी के लिए स्व-आयनीकरण स्थिरांक, Kw होता है।[13]

उदाहरण के लिए, परिवेश के तापमान पर, कैल्शियम हाइड्रॉक्साइड के लिए, Ca(OH)2, lg Ksp ca है। -5 और lg K*sp ≈ −5 + 2 × 14 ≈ 23 होता है।

प्रतिक्रिया के साथ विघटन

जब सिल्वर क्लोराइड के निलंबन में अमोनिया का सांद्र घोल मिलाया जाता है, तो यह घुल जाता है क्योंकि Ag+ का परिसर बनता है।

विघटन के साथ विशिष्ट प्रतिक्रिया में तनु आधार, B, अम्लीय जलीय घोल में सम्मिलित है।

यह प्रतिक्रिया फार्मास्युटिकल उत्पादों के लिए अधिक महत्वपूर्ण है।[14] क्षारीय माध्यम में दुर्बल अम्लों का विलयन भी इसी प्रकार महत्वपूर्ण है।
अनावेशित अणु में सामान्यतः आयनिक रूप की तुलना में अल्प घुलनशीलता होते है, इसलिए विलेयता pH और विलेय के अम्ल पृथक्करण स्थिरांक पर निर्भर करती है। अम्ल या क्षार की अनुपस्थिति में आयनित रूप की घुलनशीलता का वर्णन करने के लिए आंतरिक विलेयता शब्द का उपयोग किया जाता है।

अम्लीय वर्षा द्वारा चट्टानों और मिट्टी से एल्यूमीनियम लवणों का निक्षालन प्रतिक्रिया के साथ विघटन का उदाहरण है: एल्युमिनो-सिलिकेट ऐसे आधार हैं जो अम्ल के साथ प्रतिक्रिया करके घुलनशील प्रजातियों का निर्माण करते हैं, जैसे Al3+(aq) है।

रासायनिक परिसर का निर्माण भी विलेयता को परिवर्तित कर सकता है। प्रसिद्ध उदाहरण सिल्वर क्लोराइड के निलंबन के लिए अमोनिया के केंद्रित समाधान को जोड़ना है, जिसमें अमाइन कॉम्प्लेक्स के गठन से विघटन का पक्ष लिया जाता है।

जब सिल्वर क्लोराइड के निलंबन में पर्याप्त अमोनिया मिलाई जाती है, तो ठोस घुल जाता है। साबुन के मैल के निर्माण को रोकने के लिए वाशिंग पाउडर में पानी सॉफ़्नर मिलाना व्यावहारिक महत्व का उदाहरण प्रदान करता है।

प्रायोगिक निर्धारण

घुलनशीलता का निर्धारण कठिनाइयों से भरा होता है।[6]सबसे प्रथम और महत्वपूर्ण यह स्थापित करने में कठिनाई है कि प्रणाली चयन किए हुए तापमान पर संतुलन में है। ऐसा इसलिए है क्योंकि वर्षा और विघटन प्रतिक्रिया दोनों ही अनंत धीमी हो सकती हैं। यदि प्रक्रिया अधिक धीमी है तो विलायक वाष्पीकरण उद्देश्य हो सकता है। अतिसंतृप्ति हो सकती है। अधिक अघुलनशील पदार्थों के साथ, समाधान में सांद्रता अधिक अल्प होती है और इसे निर्धारित करना कठिन होता है। उपयोग की जाने वाली विधियाँ सामान्यतः दो श्रेणियों स्थिर और गतिशील में आती हैं।

स्थैतिक विधि

स्थैतिक विधियों में मिश्रण को संतुलन में लाया जाता है और रासायनिक विश्लेषण द्वारा समाधान चरण में प्रजाति की एकाग्रता निर्धारित की जाती है। इसके लिए सामान्यतः ठोस और समाधान चरणों को भिन्न करने की आवश्यकता होती है। ऐसा करने के लिए थर्मोस्टेट वाले कक्ष में संतुलन और पृथक्करण किया जाना चाहिए।[15] ठोस चरण में रेडियोधर्मी अनुरेखक सम्मिलित होने पर अधिक अल्प सांद्रता को मापा जा सकता है।

जलीय बफर समाधान मिश्रण में डाइमिथाइल सल्फ़ोक्साइड जैसे अन्य -जलीय विलायक में पदार्थ के घोल को जोड़ने के लिए स्थैतिक विधि का रूपांतर है।[16] तुरंत वर्षा हो सकती है जिससे मेघाच्छादित मिश्रण बन सकता है। इस प्रकार के मिश्रण के लिए मापी गई घुलनशीलता को गतिज घुलनशीलता के रूप में जाना जाता है। मेघाच्छादन इस तथ्य के कारण होता है कि अवक्षेप कण बहुत छोटे होते हैं जिसके परिणामस्वरूप टिंडल का प्रकीर्णन होता है। वास्तव में कण इतने छोटे होते हैं कि कण आकार प्रभाव खेल में आता है और गतिज घुलनशीलता प्रायः संतुलन घुलनशीलता से अधिक होती है। समय के साथ-साथ स्फटिकों के आकार में वृद्धि के साथ बादल विलुप्त हो जाएगा, और अंतत: संतुलन उम्र बढ़ने के रूप में जाने वाली प्रक्रिया में संतुलन तक पहुंच जाएगा।[17]

गतिशील विधि

कार्बनिक अम्लों, क्षारों, और फार्मास्युटिकल रुचि के एम्फ़ोलिट्स के विलेयता मान प्रक्रिया द्वारा प्राप्त किए जा सकते हैं जिसे चेज़िंग इक्विलिब्रियम घुलनशीलता नामक प्रक्रिया द्वारा प्राप्त किया जा सकता है।[18] इस प्रक्रिया में, पदार्थ की मात्रा को पहले पीएच में घोला जाता है जहां यह मुख्य रूप से अपने आयनित रूप में उपस्थित होता है और फिर पीएच को परिवर्तित करके तटस्थ (अन-आयनित) प्रजातियों का अवक्षेप बनता है। इसके पश्चात, वर्षा या विघटन के कारण पीएच के परिवर्तन की दर पर नजर रखी जाती है और दो दरों के समान होने पर संतुलन की स्थिति काज्ञात करने के लिए पीएच को समायोजित करने के लिए दृढ़ अम्ल और क्षार टाइट्रेंट को जोड़ा जाता है। इस विधि का लाभ यह है कि यह अपेक्षाकृत तीव्र है क्योंकि बनने वाले अवक्षेप की मात्रा अधिक अल्प होती है। चूँकि, विधि का प्रदर्शन अतिसंतृप्ति समाधानों के निर्माण से प्रभावित हो सकता है।

यह भी देखें

संदर्भ

  1. Pauling, Linus (1970). सामान्य रसायन शास्त्र. Dover Publishing. p. 450.
  2. Linke, W.F.; Seidell, A. (1965). अकार्बनिक और धातु कार्बनिक यौगिकों की घुलनशीलता (4th ed.). Van Nostrand. ISBN 0-8412-0097-1.
  3. Kenneth Denbigh, The Principles of Chemical Equilibrium, 1957, p. 257
  4. Peter Atkins, Physical Chemistry, p. 153 (8th edition)
  5. Housecroft, C. E.; Sharpe, A. G. (2008). Inorganic Chemistry (3rd ed.). Prentice Hall. ISBN 978-0-13-175553-6. Section 6.10.
  6. 6.0 6.1 Hefter, G. T.; Tomkins, R. P. T., eds. (2003). घुलनशीलता का प्रायोगिक निर्धारण. Wiley-Blackwell. ISBN 0-471-49708-8.
  7. Mendham, J.; Denney, R. C.; Barnes, J. D.; Thomas, M. J. K. (2000), Vogel's Quantitative Chemical Analysis (6th ed.), New York: Prentice Hall, ISBN 0-582-22628-7 Section 2.14
  8. Hsieh, Yi-Ling; Ilevbare, Grace A.; Van Eerdenbrugh, Bernard; Box, Karl J.; Sanchez-Felix, Manuel Vincente; Taylor, Lynne S. (2012-05-12). "pH-Induced Precipitation Behavior of Weakly Basic Compounds: Determination of Extent and Duration of Supersaturation Using Potentiometric Titration and Correlation to Solid State Properties". Pharmaceutical Research (in English). 29 (10): 2738–2753. doi:10.1007/s11095-012-0759-8. ISSN 0724-8741. PMID 22580905. S2CID 15502736.
  9. Dengale, Swapnil Jayant; Grohganz, Holger; Rades, Thomas; Löbmann, Korbinian (May 2016). "सह-अनाकार दवा योगों में हालिया प्रगति". Advanced Drug Delivery Reviews. 100: 116–125. doi:10.1016/j.addr.2015.12.009. ISSN 0169-409X. PMID 26805787.
  10. Gutman, E. M. (1994). ठोस सतहों की मेकेनोकेमिस्ट्री. World Scientific Publishing.
  11. Skoog, Douglas A; West, Donald M; Holler, F James (2004). "9B-5". विश्लेषणात्मक रसायन विज्ञान के मूल तत्व (8th ed.). Brooks/Cole. pp. 238–242. ISBN 0030355230.
  12. Eigen, Manfred (1967). "नोबेल व्याख्यान" (PDF). Nobel Prize.
  13. Baes, C. F.; Mesmer, R. E. (1976). उद्धरणों का हाइड्रोलिसिस. New York: Wiley.
  14. Payghan, Santosh (2008). "ड्रग डिस्कवरी और विकास में विलेयता की क्षमता". Pharminfo.net. Archived from the original on March 30, 2010. Retrieved 5 July 2010.
  15. Rossotti, F. J. C.; Rossotti, H. (1961). "Chapter 9: Solubility". स्थिरता स्थिरांक का निर्धारण. McGraw-Hill.
  16. Aqueous solubility measurement – kinetic vs. thermodynamic methods Archived July 11, 2009, at the Wayback Machine
  17. Mendham, J.; Denney, R. C.; Barnes, J. D.; Thomas, M. J. K. (2000), Vogel's Quantitative Chemical Analysis (6th ed.), New York: Prentice Hall, ISBN 0-582-22628-7 Chapter 11: Gravimetric analysis
  18. Stuart, M.; Box, K. (2005). "Chasing Equilibrium: Measuring the Intrinsic Solubility of Weak Acids and Bases". Analytical Chemistry. 77 (4): 983–990. doi:10.1021/ac048767n. PMID 15858976.


बाहरी संबंध

A number of computer programs are available to do the calculations. They include:

  • CHEMEQL: A comprehensive computer program for the calculation of thermodynamic equilibrium concentrations of species in homogeneous and heterogeneous systems. Many geochemical applications.
  • JESS: All types of chemical equilibria can be modelled including protonation, complex formation, redox, solubility and adsorption interactions. Includes an extensive database.
  • MINEQL+: A chemical equilibrium modeling system for aqueous systems. Handles a wide range of pH, redox, solubility and sorption scenarios.
  • PHREEQC: USGS software designed to perform a wide variety of low-temperature aqueous geochemical calculations, including reactive transport in one dimension.
  • MINTEQ: A chemical equilibrium model for the calculation of metal speciation, solubility equilibria etc. for natural waters.
  • WinSGW: A Windows version of the SOLGASWATER computer program.