प्रतिरेखीय प्रतिचित्र: Difference between revisions

From Vigyanwiki
No edit summary
Line 45: Line 45:
== एंटी-डुअल स्पेस ==
== एंटी-डुअल स्पेस ==


सदिश समष्टि पर सभी प्रतिरेखीय रूपों का सदिश स्थान <math>X</math> कहा जाता है {{em|algebraic [[anti-dual space]]}} का <math>X.</math> अगर <math>X</math> एक [[टोपोलॉजिकल वेक्टर स्पेस]] है, फिर सभी का वेक्टर स्पेस {{em|continuous}} एंटीलाइनर फंक्शंस ऑन <math>X,</math> द्वारा चिह्नित <math display="inline">\overline{X}^{\prime},</math> कहा जाता है {{em|continuous anti-dual space}} या बस {{em|anti-dual space}} का <math>X</math>{{sfn|Trèves|2006|pp=112-123}} अगर कोई भ्रम पैदा नहीं हो सकता।
सदिश समष्टि पर <math>X</math> सभी प्रतिरेखीय रूपों का सदिश स्थान को <math>X</math> बीजगणितीय दोहरा स्पेस कहा जाता है। यदि <math>X</math> संस्थितिक [[टोपोलॉजिकल वेक्टर स्पेस|वेक्टर स्पेस]] है, फिर सभी का वेक्टर स्पेस निरंतर <math>X</math> प्रतिरैखिक फंक्शंस ऑन, <math display="inline">\overline{X}^{\prime}</math>द्वारा चिह्नित,<math>X</math> को निरंतर दोहरा स्पेस या बस दोहरा स्पेस कहा जाता है।{{sfn|Trèves|2006|pp=112-123}} यदि कोई विभ्रांति उत्पन्न नहीं हो सकता है।


कब <math>H</math> एक आदर्श स्थान है तो (निरंतर) विरोधी दोहरे स्थान पर विहित मानदंड <math display="inline">\overline{X}^{\prime},</math> द्वारा चिह्नित <math display="inline">\|f\|_{\overline{X}^{\prime}},</math> इसी समीकरण का उपयोग करके परिभाषित किया गया है:{{sfn|Trèves|2006|pp=112–123}}
<math>H</math> आदर्श स्थान है तो (निरंतर) <math display="inline">\overline{X}^{\prime}</math> विरोधी दोहरे स्थान पर विहित मानदंड <math display="inline">\overline{X}^{\prime}</math> द्वारा चिह्नित <math display="inline">\|f\|_{\overline{X}^{\prime}},</math> इसी समीकरण का उपयोग करके परिभाषित किया गया है:{{sfn|Trèves|2006|pp=112–123}}
<math display=block>\|f\|_{\overline{X}^{\prime}} ~:=~ \sup_{\|x\| \leq 1, x \in X} |f(x)| \quad \text{ for every } f \in \overline{X}^{\prime}.</math> यह सूत्र के सूत्र के समान है {{em|[[dual norm]]}} निरंतर दोहरे स्थान पर <math>X^{\prime}</math> का <math>X,</math> जिसके द्वारा परिभाषित किया गया है{{sfn|Trèves|2006|pp=112–123}}
<math display=block>\|f\|_{\overline{X}^{\prime}} ~:=~ \sup_{\|x\| \leq 1, x \in X} |f(x)| \quad \text{ for every } f \in \overline{X}^{\prime}.</math> यह सूत्र के सूत्र के समान है {{em|[[dual norm]]}} निरंतर दोहरे स्थान पर <math>X^{\prime}</math> का <math>X,</math> जिसके द्वारा परिभाषित किया गया है{{sfn|Trèves|2006|pp=112–123}}
<math display=block>\|f\|_{X^{\prime}} ~:=~ \sup_{\|x\| \leq 1, x \in X} |f(x)| \quad \text{ for every } f \in X^{\prime}.</math> दोहरे और विरोधी दोहरे के बीच कैननिकल आइसोमेट्री
<math display=block>\|f\|_{X^{\prime}} ~:=~ \sup_{\|x\| \leq 1, x \in X} |f(x)| \quad \text{ for every } f \in X^{\prime}.</math> दोहरे और विरोधी दोहरे के बीच कैननिकल आइसोमेट्री



Revision as of 11:06, 23 March 2023

गणित में, फलन दो समिश्र सदिश स्पेस के बीच प्रतिरैखिक या संयुग्म-रैखिक कहा जाता है यदि

सभी सदिशों और प्रत्येक सम्मिश्र संख्या के लिए होता है जहाँ, के समिश्र संयुग्मन को दर्शाता है।

प्रतिरेखीय प्रतिचित्रण, रेखीय प्रतिचित्रण का विरोध करता है, जो योगात्मक प्रतिचित्र होते हैं जो संयुग्मी एकरूपता के बदले में सजातीय मानचित्र होते हैं। यदि सदिश समष्टि वास्तविक है तो प्रतिरैखिकता, रैखिकता के समान होता है।

काल-विपर्यय और स्पिनर अवकलन के अध्ययन में क्वांटम यांत्रिकी में प्रतिरेखीय प्रतिचित्रण का प्रयोग होता है, जहां सूचकांकों के ऊपर लगाए गए बिन्दुओ द्वारा आधारभूत सदिश और ज्यामितीय वस्तुओं के घटकों पर बार को बदला जाता हैं। समिश्र संख्या आंतरिक उत्पाद रिक्त स्थान और हिल्बर्ट रिक्त स्थान के साथ कार्य करते समय अदिश प्रतिरैखिक प्रतिचित्रण मान प्रायः उत्पन्न होते हैं।

परिभाषाएँ और विशेषताएँ

एक फलन रैखिक या संयुग्मी रैखिक तब कहा जाता है, यदि यह योगात्मक और सजातीय संयुग्मित होता है। एक प्रतिरैखिक फलनो में सदिश स्थान पर एक अदिश-मान प्रतिरेखीय मानचित्र है।

एक फलन योगात्मक होता है यदि

जबकि यह संयुग्मी सजातीय कहलाता है यदि

इसके विपरीत, एक रेखीय मानचित्र एक ऐसा कार्य है जो योगात्मक और सजातीय है, जहाँ सजातीय कहा जाता है यदि

एक प्रतिचित्रण माप रैखिक मानचित्र के संदर्भ में समान रूप से वर्णित किया जा सकता है से रिक्त समिश्र संयुग्म सदिश के लिए ।  


उदाहरण

दोहरा प्रतिचित्रण मानचित्र

एक समिश्र सदिश को प्रथम स्थान दिया गया है, जिससे हम एक दोहरा प्रतिचित्रण मानचित्र बना सकते हैं जो एक प्रतिचित्रण मानचित्र है

एक अवयव के लिए को
कुछ निश्चित वास्तविक संख्याओं के लिए प्रयुक्त होता है। हम इसे किसी भी परिमित आयामी समिश्र सदिश स्थान तक बढ़ा सकते हैं, जहाँ यदि हम मानक आधार लिखते हैं और प्रत्येक मानक आधार तत्व के रूप में
फिर एक विरोधी रेखीय समिश्र मानचित्र स्वरूप का
के लिए होता हैं।  


दोहरे वास्तविक रैखिक के साथ दोहरे प्रतिरैखिक का समरूपता  

एक जटिल सदिश स्थान का दोहरा प्रतिरैखिक[1]पृष्ठ 36 homc(V, C)

एक विशेष उदाहरण है क्योंकि यह अंतर्निहित वास्तविक सदिश स्थान के दोहरे वास्तविकता के लिए समरूप है यह एक एंटी-लीनियर मैप भेजने वाले मानचित्र द्वारा दिया गया है

को
दूसरी दिशा में, विपरीत मानचित्र है जो एक वास्तविक दोहरे सदिश को भेजता है
को
वांछित मानचित्र देता हैं।

गुण

दो प्रतिरेखीय मानचित्रों के संबंधों की संरचना एक रेखीय मानचित्र है। अर्धरेखीय मानचित्रों का वर्ग प्रतिरेखीय मानचित्रों के वर्ग का सामान्यीकरण करता है।

एंटी-डुअल स्पेस

सदिश समष्टि पर सभी प्रतिरेखीय रूपों का सदिश स्थान को बीजगणितीय दोहरा स्पेस कहा जाता है। यदि संस्थितिक वेक्टर स्पेस है, फिर सभी का वेक्टर स्पेस निरंतर प्रतिरैखिक फंक्शंस ऑन, द्वारा चिह्नित, को निरंतर दोहरा स्पेस या बस दोहरा स्पेस कहा जाता है।[2] यदि कोई विभ्रांति उत्पन्न नहीं हो सकता है।

आदर्श स्थान है तो (निरंतर) विरोधी दोहरे स्थान पर विहित मानदंड द्वारा चिह्नित इसी समीकरण का उपयोग करके परिभाषित किया गया है:[2]

यह सूत्र के सूत्र के समान है dual norm निरंतर दोहरे स्थान पर का जिसके द्वारा परिभाषित किया गया है[2]
दोहरे और विरोधी दोहरे के बीच कैननिकल आइसोमेट्री

जटिल संयुग्म एक कार्यात्मक का भेजकर परिभाषित किया गया है को यह संतुष्ट करता है

हरएक के लिए और हर यह ठीक यही कहता है कि कैनोनिकल एंटीलीनियर विशेषण नक्शा द्वारा परिभाषित किया गया है

साथ ही इसका उलटा भी एंटीलीनियर आइसोमेट्री हैं और इसके परिणामस्वरूप होमियोमोर्फिज्म भी हैं।

अगर तब और यह विहित नक्शा पहचान मानचित्र तक कम हो जाता है।

आंतरिक उत्पाद रिक्त स्थान

अगर एक आंतरिक उत्पाद स्थान है तो दोनों विहित मानदंड और पर समांतरोग्राम कानून को संतुष्ट करता है, जिसका अर्थ है कि ध्रुवीकरण पहचान का उपयोग परिभाषित करने के लिए किया जा सकता है canonical inner product on और आगे भी जिसे यह लेख अंकन द्वारा दर्शाएगा

जहां यह आंतरिक उत्पाद बनाता है और हिल्बर्ट रिक्त स्थान में।

आंतरिक उत्पाद और अपने दूसरे तर्कों में एंटीलीनियर हैं। इसके अलावा, इस आंतरिक उत्पाद द्वारा प्रेरित विहित मानदंड (अर्थात, द्वारा परिभाषित मानदंड ) दोहरे मानदंड के अनुरूप है (अर्थात, जैसा कि यूनिट बॉल पर सुप्रीमम द्वारा ऊपर परिभाषित किया गया है); स्पष्ट रूप से, इसका अर्थ है कि निम्नलिखित प्रत्येक के लिए है

अगर एक आंतरिक उत्पाद स्थान है तो दोहरी जगह पर आंतरिक उत्पाद और विरोधी दोहरी जगह द्वारा क्रमशः निरूपित किया गया और से संबंधित हैं
और


यह भी देखें

उद्धरण

  1. Birkenhake, Christina (2004). जटिल एबेलियन किस्में. Herbert Lange (Second, augmented ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-662-06307-1. OCLC 851380558.
  2. 2.0 2.1 2.2 Trèves 2006, pp. 112–123.


संदर्भ

  • Budinich, P. and Trautman, A. The Spinorial Chessboard. Springer-Verlag, 1988. ISBN 0-387-19078-3. (antilinear maps are discussed in section 3.3).
  • Horn and Johnson, Matrix Analysis, Cambridge University Press, 1985. ISBN 0-521-38632-2. (antilinear maps are discussed in section 4.6).
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.