मानक रैखिक ठोस प्रतिमान: Difference between revisions

From Vigyanwiki
No edit summary
Line 24: Line 24:


=== मैक्सवेल प्रतिनिधित्व ===
=== मैक्सवेल प्रतिनिधित्व ===
[[Image:SLS.svg|thumb|300px|right|मानक रैखिक ठोस मॉडल, मैक्सवेल प्रतिनिधित्व]]इस मॉडल में समानांतर में दो प्रणाली होते हैं। पहले, जिसे मैक्सवेल आर्म कहा जाता है, में स्प्रिंग (<math>E = E_2</math>) और डैशपॉट (विस्कोसिटी <math>\eta</math>) शृंखला में।<ref name=Roylance/>दूसरी प्रणाली में केवल एक वसंत होता है (<math>E = E_1</math>).
[[Image:SLS.svg|thumb|300px|right|मानक रैखिक ठोस मॉडल, मैक्सवेल प्रतिनिधित्व]]इस मॉडल में समानांतर में दो प्रणाली होते हैं। पहले, जिसे मैक्सवेल आर्म के रूप में संदर्भित पहला, श्रंखला में स्प्रिंग (<math>E = E_2</math>) और डैशपॉट (श्यानता <math>\eta</math>) होता है।<ref name=Roylance/>दूसरी प्रणाली में सिर्फ


ये रिश्ते समग्र प्रणाली और मैक्सवेल शाखा में विभिन्न तनावों और तनावों को जोड़ने में मदद करते हैं:<math>\sigma_{tot} = \sigma_{m} + \sigma_{S_1}</math>
(<math>E = E_1</math>) स्प्रिंग होता है।
 
ये संबंध समग्र प्रणाली और मैक्सवेल शाखा में विभिन्न विकृतियों और विकृतियों को जोड़ने में मदद करते हैं:<math>\sigma_{tot} = \sigma_{m} + \sigma_{S_1}</math>


<math>\varepsilon_{tot} = \varepsilon_{m} = \varepsilon_{S_1}</math>
<math>\varepsilon_{tot} = \varepsilon_{m} = \varepsilon_{S_1}</math>
Line 32: Line 34:
<math>\sigma_{m} = \sigma_{D} = \sigma_{S_2}</math>
<math>\sigma_{m} = \sigma_{D} = \sigma_{S_2}</math>


<math>\varepsilon_{m} = \varepsilon_{D} + \varepsilon_{S_2}</math>जहां सबस्क्रिप्ट <math>m</math>, <math>D</math>, <math>S_1</math> और <math>S_2 </math> क्रमशः मैक्सवेल, डैशपॉट, स्प्रिंग वन और स्प्रिंग टू को देखें।
<math>\varepsilon_{m} = \varepsilon_{D} + \varepsilon_{S_2}</math>जहां व्याख्या <math>m</math>, <math>D</math>, <math>S_1</math> और <math>S_2 </math> क्रमशः मैक्सवेल, डैशपॉट, स्प्रिंग 1 और स्प्रिंग 2 को देखना अनिवार्य है।


वसंत और डैशपॉट तत्वों के लिए इन संबंधों, उनके समय के डेरिवेटिव और उपरोक्त तनाव-तनाव संबंधों का उपयोग करके, सिस्टम को निम्नानुसार मॉडल किया जा सकता है:
स्प्रिंग और डैशपॉट तत्वों के लिए इन संबंधों, उनके समय के अवकलन और उपरोक्त प्रतिबल-विकृति संबंधों का उपयोग करके, प्रणाली को निम्नानुसार मॉडल किया जा सकता है:


:<math> \frac {d\varepsilon(t)} {dt} =  \frac { \frac {E_2} {\eta} \left ( \frac {\eta} {E_2}\frac {d\sigma(t)} {dt} + \sigma(t)  - E_1 \varepsilon(t) \right )}{E_1 + E_2} </math>    <ref name=KJVV>Krystyn J. Van Vliet, MIT course 3.032 Lecture, October 23, 2006 http://stellar.mit.edu/S/course/3/fa06/3.032/index.html</ref>
:<math> \frac {d\varepsilon(t)} {dt} =  \frac { \frac {E_2} {\eta} \left ( \frac {\eta} {E_2}\frac {d\sigma(t)} {dt} + \sigma(t)  - E_1 \varepsilon(t) \right )}{E_1 + E_2} </math>    <ref name="KJVV">Krystyn J. Van Vliet, MIT course 3.032 Lecture, October 23, 2006 http://stellar.mit.edu/S/course/3/fa06/3.032/index.html</ref>
समीकरण को इस रूप में भी व्यक्त किया जा सकता है:
समीकरण को इस रूप में भी व्यक्त किया जा सकता है:


:<math>\sigma(t) + \frac {\eta} {E_2} \frac{d\sigma(t)}{dt} = E_1 \varepsilon(t) + \frac {\eta (E_1 + E_2)} {E_2} \frac{d\varepsilon(t)}{dt}</math>
:<math>\sigma(t) + \frac {\eta} {E_2} \frac{d\sigma(t)}{dt} = E_1 \varepsilon(t) + \frac {\eta (E_1 + E_2)} {E_2} \frac{d\varepsilon(t)}{dt}</math>
या, डॉट नोटेशन में:
या, बिंदु संकेतन में:


:<math>\sigma + \frac {\eta} {E_2} \dot {\sigma} = E_1 \varepsilon + \frac {\eta (E_1 + E_2)} {E_2} \dot {\varepsilon}</math>
:<math>\sigma + \frac {\eta} {E_2} \dot {\sigma} = E_1 \varepsilon + \frac {\eta (E_1 + E_2)} {E_2} \dot {\varepsilon}</math>
विश्राम का समय, <math> \tau </math>, प्रत्येक सामग्री के लिए अलग है और के बराबर है
विश्रांति काल, <math> \tau </math>, प्रत्येक सामग्री के लिए अलग है और के बराबर है
:<math> \tau = \frac {\eta} {E_2} </math>
:<math> \tau = \frac {\eta} {E_2} </math>




=== केल्विन-वोइग प्रतिनिधित्व ===
=== केल्विन-वोइग प्रतिनिधित्व ===
[[Image:SLS2.svg|thumb|300px|right|मानक रैखिक ठोस मॉडल, केल्विन प्रतिनिधित्व]]इस मॉडल में श्रृंखला में दो सिस्टम होते हैं। पहले, जिसे केल्विन आर्म कहा जाता है, में एक स्प्रिंग (<math>E = E_2</math>) और डैशपॉट (विस्कोसिटी <math>\eta</math>) समानांतर में। दूसरी प्रणाली में केवल एक वसंत होता है (<math>E = E_1</math>).
[[Image:SLS2.svg|thumb|300px|right|मानक रैखिक ठोस मॉडल, केल्विन प्रतिनिधित्व]]इस मॉडल में श्रृंखला में दो प्रणाली होते हैं। पहले, जिसे केल्विन आर्म कहा जाता है, में एक स्प्रिंग (<math>E = E_2</math>) और डैशपॉट (विस्कोसिटी <math>\eta</math>) समानांतर में। दूसरी प्रणाली में केवल एक वसंत होता है (<math>E = E_1</math>).


ये रिश्ते समग्र प्रणाली और केल्विन भुजा में विभिन्न तनावों और तनावों को जोड़ने में मदद करते हैं:<math>\sigma_{tot} = \sigma_{k} = \sigma_{S_1}</math>
ये रिश्ते समग्र प्रणाली और केल्विन भुजा में विभिन्न तनावों और तनावों को जोड़ने में मदद करते हैं:<math>\sigma_{tot} = \sigma_{k} = \sigma_{S_1}</math>

Revision as of 13:29, 29 March 2023

मानक रैखिक ठोस (एसएलएस), जिसे जेनर मॉडल के रूप में भी जाना जाता है, क्रमशः प्रत्यास्थ और श्यान घटकों का प्रतिनिधित्व करने के लिए स्प्रिंग्स और डैशपॉट के रैखिक संयोजन का उपयोग करके श्यान प्रत्यास्थ द्रव्य के व्यवहार को मॉडलिंग करने की विधि है। अधिकांशतः, सरल मैक्सवेल द्रव्य और केल्विन-वोइग द्रव्य है | केल्विन-वोइगट मॉडल का उपयोग किया जाता है। चूँकि, ये मॉडल अधिकांशतः अपर्याप्त प्रमाणित होते हैं; मैक्सवेल मॉडल क्रीप या पुनः सही होने का वर्णन नहीं करता है, और केल्विन-वोइगट मॉडल प्रतिबल विश्रांति का वर्णन नहीं करता है। एसएलएस सबसे सरल मॉडल है जो दोनों घटनाओं के बारे में बताता है।

परिभाषा

विकृति से गुजरने वाली सामग्री को अधिकांशतः यांत्रिक घटकों के साथ तैयार किया जाता है, जैसे स्प्रिंग (डिवाइस) भौतिकी (पुनस्थार्पनात्मक बल घटक) और डैशपोट्स (अवमन्दन घटक) है।

स्प्रिंग और डैम्पर (अवमन्दक) को श्रृंखला में जोड़ने से मैक्सवेल सामग्री का मॉडल प्राप्त होता है जबकि स्प्रिंग और अवमन्दक को समानांतर में जोड़ने से केल्विन-वोइग सामग्री का मॉडल प्राप्त होता है।[1] मैक्सवेल और केल्विन-वोइग मॉडल के विपरीत, एसएलएस थोड़ा अत्यधिक जटिल है, जिसमें श्रृंखला और समानांतर दोनों में तत्व सम्मिलित हैं। स्प्रिंग, जो विस्कोलेस्टिक सामग्री के प्रत्यास्थ घटक का प्रतिनिधित्व करते हैं, हुक के नियम का पालन करते हैं:

जहां σ अनुप्रयुक्त प्रतिबल है, E पदार्थ का यांग गुणांक है, और ε विकृति है। स्प्रिंग मॉडल की प्रतिक्रिया के प्रत्यास्थ घटकों का प्रतिनिधित्व करता है।[1]

डैशपॉट श्यान प्रत्यास्थ सामग्री के चिपचिपे घटक का प्रतिनिधित्व करते हैं। इन तत्वों में, विकृति के परिवर्तन की समय दर के साथ क्रियान्वित विकृति भिन्न होता है:

जहां η डैशपॉट घटक की श्यानता है।

मॉडल को हल करना

इस प्रणाली को मॉडल करने के लिए, निम्नलिखित भौतिक संबंध प्रतीत होता है:

समानांतर घटकों के लिए: , और .[1]

श्रृंखला घटकों के लिए: , और .[1]


मैक्सवेल प्रतिनिधित्व

मानक रैखिक ठोस मॉडल, मैक्सवेल प्रतिनिधित्व

इस मॉडल में समानांतर में दो प्रणाली होते हैं। पहले, जिसे मैक्सवेल आर्म के रूप में संदर्भित पहला, श्रंखला में स्प्रिंग () और डैशपॉट (श्यानता ) होता है।[1]दूसरी प्रणाली में सिर्फ

() स्प्रिंग होता है।

ये संबंध समग्र प्रणाली और मैक्सवेल शाखा में विभिन्न विकृतियों और विकृतियों को जोड़ने में मदद करते हैं:

जहां व्याख्या , , और क्रमशः मैक्सवेल, डैशपॉट, स्प्रिंग 1 और स्प्रिंग 2 को देखना अनिवार्य है।

स्प्रिंग और डैशपॉट तत्वों के लिए इन संबंधों, उनके समय के अवकलन और उपरोक्त प्रतिबल-विकृति संबंधों का उपयोग करके, प्रणाली को निम्नानुसार मॉडल किया जा सकता है:

[2]

समीकरण को इस रूप में भी व्यक्त किया जा सकता है:

या, बिंदु संकेतन में:

विश्रांति काल, , प्रत्येक सामग्री के लिए अलग है और के बराबर है


केल्विन-वोइग प्रतिनिधित्व

मानक रैखिक ठोस मॉडल, केल्विन प्रतिनिधित्व

इस मॉडल में श्रृंखला में दो प्रणाली होते हैं। पहले, जिसे केल्विन आर्म कहा जाता है, में एक स्प्रिंग () और डैशपॉट (विस्कोसिटी ) समानांतर में। दूसरी प्रणाली में केवल एक वसंत होता है ().

ये रिश्ते समग्र प्रणाली और केल्विन भुजा में विभिन्न तनावों और तनावों को जोड़ने में मदद करते हैं:

जहां सबस्क्रिप्ट , , ,और क्रमशः केल्विन, डैशपॉट, स्प्रिंग वन और स्प्रिंग टू को देखें।

वसंत और डैशपॉट तत्वों के लिए इन संबंधों, उनके समय के डेरिवेटिव और उपरोक्त तनाव-तनाव संबंधों का उपयोग करके, सिस्टम को निम्नानुसार मॉडल किया जा सकता है:

या, डॉट नोटेशन में:

मंदता समय, , प्रत्येक सामग्री के लिए अलग है और के बराबर है


मॉडल विशेषताएँ

तीन और चार तत्व मॉडल के लिए रेंगना और तनाव में छूट की तुलना

मानक रैखिक ठोस मॉडल मैक्सवेल और केल्विन-वोइगट मॉडल के कथनों को जोड़ता है जिससे की भरण स्थितियों के दिए गए समूह के अंतर्गत प्रणाली के समग्र व्यवहार का सही वर्णन किया जा सकता है। तात्कालिक विकृति पर क्रियान्वित सामग्री के व्यवहार को प्रतिक्रिया के तात्कालिक घटक के रूप में दर्शाया गया है। विकृति के तात्कालिक विमोचन के परिणामस्वरूप भी विकृति में निरंतर कमी आती है, जैसा कि अपेक्षित है। समय-निर्भर विकृति वक्र का आकार उस प्रकार के समीकरण के लिए सही है जो समय के साथ मॉडल के व्यवहार को दर्शाता है, यह इस बात पर निर्भर करता है कि मॉडल कैसे भरा गया है।

चूँकि इस मॉडल का उपयोग विकृति वक्र के सामान्य आकार के साथ-साथ लंबे समय और तात्कालिक भार के लिए व्यवहार की सही अनुमान लगाने के लिए किया जा सकता है, मॉडल में संख्यात्मक रूप से सही प्रकार से मॉडल सामग्री प्रणालियों की क्षमता का अभाव है।

मानक रैखिक ठोस मॉडल के समतुल्य द्रव मॉडल में केल्विन-वोइगट मॉडल के साथ श्रृंखला में डैशपॉट सम्मिलित है और इसे जेफ़रीज़ मॉडल कहा जाता है। [3]

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 David Roylance, "Engineering Viscoelasticity" (October 24, 2001) http://ocw.mit.edu/courses/materials-science-and-engineering/3-11-mechanics-of-materials-fall-1999/modules/MIT3_11F99_visco.pdf
  2. Krystyn J. Van Vliet, MIT course 3.032 Lecture, October 23, 2006 http://stellar.mit.edu/S/course/3/fa06/3.032/index.html
  3. Joseph, Daniel D. (2013-11-27). Viscoelastic तरल पदार्थ की द्रव गतिशीलता (in English). Springer Science & Business Media. ISBN 9781461244622.