परिबद्ध समारोह: Difference between revisions
m (10 revisions imported from alpha:परिबद्ध_समारोह) |
No edit summary |
||
Line 36: | Line 36: | ||
{{Reflist}} | {{Reflist}} | ||
{{DEFAULTSORT:Bounded Function}} | {{DEFAULTSORT:Bounded Function}} | ||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:Created On 17/03/2023|Bounded Function]] | |||
[[Category: | [[Category:Lua-based templates|Bounded Function]] | ||
[[Category:Created On 17/03/2023]] | [[Category:Machine Translated Page|Bounded Function]] | ||
[[Category:Vigyan Ready]] | [[Category:Pages with script errors|Bounded Function]] | ||
[[Category:Short description with empty Wikidata description|Bounded Function]] | |||
[[Category:Templates Vigyan Ready|Bounded Function]] | |||
[[Category:Templates that add a tracking category|Bounded Function]] | |||
[[Category:Templates that generate short descriptions|Bounded Function]] | |||
[[Category:Templates using TemplateData|Bounded Function]] | |||
[[Category:कार्यों के प्रकार|Bounded Function]] | |||
[[Category:जटिल विश्लेषण|Bounded Function]] | |||
[[Category:वास्तविक विश्लेषण|Bounded Function]] |
Latest revision as of 16:18, 13 April 2023
गणित में, किसी समुच्चय (गणित) X पर वास्तविक संख्या या जटिल मानों के साथ परिभाषित फलन f को परिबद्ध कहा जाता है यदि इसके मानों का समुच्चय परिबद्ध हो। दूसरे शब्दों में, वास्तविक संख्या M का अस्तित्व है जैसे कि
x में सभी X[1] के लिए कार्य जो बाध्य नहीं है, उसे 'असीमित' कहा जाता है।
यदि f वास्तविक-मूल्यवान है और f(x) ≤ A, X में सभी x के लिए है, तो फलन को A द्वारा 'ऊपर (से)' कहा जाता है। यदि f(x) ≥ B, X में सभी x के लिए, तो फलन को B द्वारा 'बाउंड (नीचे)' कहा जाता है। वास्तविक-मूल्यवान फलन बाध्य होता है यदि और केवल अगर यह ऊपर और नीचे से घिरा हुआ है।[1]
महत्वपूर्ण विशेष स्थितियों में बंधा हुआ क्रम है, जहां 'X' को प्राकृतिक संख्याओं का समुच्चय N माना जाता है। इस प्रकार अनुक्रम f = (a0, a1, a2, ...) बाध्य है अगर वास्तविक संख्या M उपस्थित है जैसे कि
प्रत्येक प्राकृतिक संख्या n के लिए। सभी बंधे हुए अनुक्रमों का समुच्चय अनुक्रम स्थान बनाता है।
परिबद्धता की परिभाषा को f : X → Y के कार्यों के लिए सामान्यीकृत किया जा सकता है, जो अधिक सामान्य स्थान Y में मान लेता है, यह आवश्यक है। कि छवि f(X) Y में बंधा हुआ समुच्चय है।
संबंधित धारणाएँ
बाउंडनेस से कमजोर स्थानीय बाउंडनेस है। बंधे हुए कार्यों का परिवार समान सीमा हो सकता है।
परिबद्ध संचालिका T : X → Y इस पृष्ठ की परिभाषा के अर्थ में बाउंडेड फलन नहीं है (जब तक कि T = 0 न हो), लेकिन इसमें 'परिरक्षण बाउंडनेस' का कमज़ोर गुण है: बाउंडेड समुच्चय M ⊆ X को बाउंडेड समुच्चय T( M) ⊆ Y। इस परिभाषा को किसी भी फलन f : X → Y तक बढ़ाया जा सकता है यदि X और Y परिबद्ध समुच्चय की अवधारणा की अनुमति देते हैं। ग्राफ को देखकर भी सीमा निर्धारित की जा सकती है।
उदाहरण
- ज्या फलन sin : R → R तब से परिबद्ध है सभी के लिए .[1][2]
- फलन , −1 और 1 को छोड़कर सभी वास्तविक x के लिए परिभाषित है, असीमित है। जैसे-जैसे x -1 या 1 की ओर अग्रसर होता है, इस फलन के मान परिमाण में बड़े होते जाते हैं। इस फलन को बाउंड किया जा सकता है यदि कोई इसके डोमेन को प्रतिबंधित करता है, उदाहरण के लिए, [2, ∞) या (−∞, −2]।
- फलन , सभी वास्तविक x के लिए परिभाषित, परिबद्ध है, क्योंकि सभी x के लिए
- प्रतिलोम त्रिकोणमितीय फलन चाप स्पर्शज्या को इस प्रकार परिभाषित किया गया है: y = arctan(x) या x = tan(y) सभी वास्तविक संख्याओं x के लिए एकदिष्ट फलन है और - ये परिबद्ध है π/2 <और < π/2 रेडियंस है। [3]
- परिबद्धता प्रमेय द्वारा, बंद अंतराल पर हर निरंतर कार्य, जैसे f : [0, 1] → 'R', परिबद्ध है।[4] अधिक सामान्यतः, कॉम्पैक्ट जगह से मेट्रिक स्पेस में कोई भी निरंतर कार्य बाध्य होता है।
- सभी जटिल-मूल्यवान फलन f : 'C' → 'C' जो संपूर्ण कार्य हैं, लिउविले के प्रमेय (जटिल विश्लेषण) के परिणामस्वरूप या तो असीमित या स्थिर हैं। लिउविल का प्रमेय।[5] विशेष रूप से, जटिल sin : C → C असीमित होना चाहिए क्योंकि यह संपूर्ण है।
- फलन f जो x परिमेय संख्या के लिए 0 और x अपरिमेय संख्या के लिए 1 लेता है (cf. कहीं नहीं निरंतर फलन डिरिचलेट फलन) परिबद्ध है। इस प्रकार, फलन पैथोलॉजिकल (गणित) बाध्य होने के लिए अच्छा होने की आवश्यकता नहीं है। [0, 1] पर परिभाषित सभी सीमित कार्यों का समुच्चय उस अंतराल पर निरंतर कार्यों के समुच्चय से बहुत बड़ा है। इसके अतिरिक्त, निरंतर कार्यों को बाध्य करने की आवश्यकता नहीं है; उदाहरण के लिए, कार्य और द्वारा परिभाषित और दोनों निरंतर हैं, लेकिन कोई भी बाध्य नहीं है।[6] (चुकीं, सतत कार्य को बाध्य होना चाहिए यदि इसका डोमेन बंद और बाध्य दोनों है।[6]
यह भी देखें
- परिबद्ध समुच्चय
- समर्थन (गणित) कॉम्पैक्ट समर्थन
- स्थानीय सीमा
- समान सीमा
संदर्भ
- ↑ 1.0 1.1 1.2 Jeffrey, Alan (1996-06-13). Mathematics for Engineers and Scientists, 5th Edition (in English). CRC Press. ISBN 978-0-412-62150-5.
- ↑ "साइन और कोसाइन फ़ंक्शंस" (PDF). math.dartmouth.edu. Archived (PDF) from the original on 2 February 2013. Retrieved 1 September 2021.
- ↑ Polyanin, Andrei D.; Chernoutsan, Alexei (2010-10-18). गणित, भौतिकी और इंजीनियरिंग विज्ञान की एक संक्षिप्त पुस्तिका (in English). CRC Press. ISBN 978-1-4398-0640-1.
- ↑ Weisstein, Eric W. "चरम मूल्य प्रमेय". mathworld.wolfram.com (in English). Retrieved 2021-09-01.
- ↑ "लिउविल प्रमेय - गणित का विश्वकोश". encyclopediaofmath.org. Retrieved 2021-09-01.
- ↑ 6.0 6.1 Ghorpade, Sudhir R.; Limaye, Balmohan V. (2010-03-20). बहुभिन्नरूपी पथरी और विश्लेषण में एक कोर्स (in English). Springer Science & Business Media. p. 56. ISBN 978-1-4419-1621-1.