डंडेलिन गोले: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
डंडेलिन के गोले की खोज 1822 में हुई थी।<ref name="Taylor" /><ref>{{cite journal |last1=Dandelin |first1=G. |title=Mémoire sur quelques propriétés remarquables de la focale parabolique |journal=Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Bruxelles |date=1822 |volume=2 |pages=171–200 |url=https://www.biodiversitylibrary.org/item/101263#page/349/mode/1up |trans-title=Memoir on some remarkable properties of the parabolic ''focale'' [i.e., oblique [[strophoid]]]|language=French}}</ref> इसका नाम [[फ्रांस]] के गणितज्ञ [[जर्मिनल पियरे डंडेलिन]] के सम्मान में रखा गया है, यद्यपि [[एडोल्फ क्वेटलेट]] को कभी-कभी आंशिक श्रेय भी दिया जाता है।<ref>Kendig, Keith.  ''Conics'', [https://books.google.com/books?hl=en&lr=&id=TeWCKNsSy6wC&oi=fnd&pg=PA1&ots=jirU6NOR6_&sig=5Se2go8Hxmbmr1FL78ftRZz456o#PPA86,M1 p. 86 (proof for ellipse)] and [https://books.google.com/books?hl=en&lr=&id=TeWCKNsSy6wC&oi=fnd&pg=PA1&ots=jirU6NOR6_&sig=5Se2go8Hxmbmr1FL78ftRZz456o#PPA141,M1 p. 141 (for hyperbola)] (Cambridge University Press, 2005).</ref><ref>Quetelet, Adolphe (1819) [https://books.google.com/books?id=x2pJAAAAcAAJ&pg=PP1#v=onepage&q&f=false "Dissertatio mathematica inauguralis de quibusdam locis geometricis nec non de curva focali"] (Inaugural mathematical dissertation on some geometric loci and also focal curves), doctoral thesis (University of Ghent ("Gand"), Belgium). (in Latin)</ref><ref>{{cite journal |last1=Godeaux |first1=L. |title=Le mathématicien Adolphe Quetelet (1796-1874) |journal=Ciel et Terre |date=1928 |volume=44 |pages=60–64 |url=http://adsbit.harvard.edu//full/1928C%26T....44...60G/0000060.000.html |language=French}}</ref>  
डंडेलिन के गोले की खोज 1822 में हुई थी।<ref name="Taylor" /><ref>{{cite journal |last1=Dandelin |first1=G. |title=Mémoire sur quelques propriétés remarquables de la focale parabolique |journal=Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Bruxelles |date=1822 |volume=2 |pages=171–200 |url=https://www.biodiversitylibrary.org/item/101263#page/349/mode/1up |trans-title=Memoir on some remarkable properties of the parabolic ''focale'' [i.e., oblique [[strophoid]]]|language=French}}</ref> इसका नाम [[फ्रांस]] के गणितज्ञ [[जर्मिनल पियरे डंडेलिन]] के सम्मान में रखा गया है, यद्यपि [[एडोल्फ क्वेटलेट]] को कभी-कभी आंशिक श्रेय भी दिया जाता है।<ref>Kendig, Keith.  ''Conics'', [https://books.google.com/books?hl=en&lr=&id=TeWCKNsSy6wC&oi=fnd&pg=PA1&ots=jirU6NOR6_&sig=5Se2go8Hxmbmr1FL78ftRZz456o#PPA86,M1 p. 86 (proof for ellipse)] and [https://books.google.com/books?hl=en&lr=&id=TeWCKNsSy6wC&oi=fnd&pg=PA1&ots=jirU6NOR6_&sig=5Se2go8Hxmbmr1FL78ftRZz456o#PPA141,M1 p. 141 (for hyperbola)] (Cambridge University Press, 2005).</ref><ref>Quetelet, Adolphe (1819) [https://books.google.com/books?id=x2pJAAAAcAAJ&pg=PP1#v=onepage&q&f=false "Dissertatio mathematica inauguralis de quibusdam locis geometricis nec non de curva focali"] (Inaugural mathematical dissertation on some geometric loci and also focal curves), doctoral thesis (University of Ghent ("Gand"), Belgium). (in Latin)</ref><ref>{{cite journal |last1=Godeaux |first1=L. |title=Le mathématicien Adolphe Quetelet (1796-1874) |journal=Ciel et Terre |date=1928 |volume=44 |pages=60–64 |url=http://adsbit.harvard.edu//full/1928C%26T....44...60G/0000060.000.html |language=French}}</ref>  


डंडेलिन के गोले का उपयोग पेरगा के एपोलोनियस को ज्ञात दो [[प्राचीन ग्रीस|शास्त्रीय]] प्रमेयों के सुरुचिपूर्ण आधुनिक प्रमाण देने के लिए किया जा सकता है। पहला प्रमेय यह है कि एक बंद शंक्वाकार खंड (यानी एक दीर्घवृत्त) बिंदुओं का बिंदुपथ (गणित) है जिससे कि दो निश्चित बिंदुओं (फोसी) की दूरियों का योग स्थिर है। दूसरा प्रमेय यह है कि किसी भी शंक्वाकार खंड के लिए, एक निश्चित बिंदु (केंद्रबिन्दु) से दूरी एक निश्चित रेखा (नियंता (शंकु खंड)) से दूरी के समानुपाती होती है, समानुपाती के स्थिरांक को [[विलक्षणता (गणित)|उत्केन्द्रता (गणित)]] कहा जाता है।<ref name="Heath" />   
डंडेलिन के गोले का उपयोग पेरगा के एपोलोनियस को ज्ञात दो [[प्राचीन ग्रीस|शास्त्रीय]] प्रमेयों के सुरुचिपूर्ण आधुनिक प्रमाण देने के लिए किया जा सकता है। पहला प्रमेय यह है कि एक बंद शंक्वाकार खंड (यानी एक दीर्घवृत्त) बिंदुओं का बिंदुपथ (गणित) है जिससे कि दो निश्चित बिंदुओं (केंद्रबिन्दु) की दूरियों का योग स्थिर है। दूसरा प्रमेय यह है कि किसी भी शंक्वाकार खंड के लिए, एक निश्चित बिंदु (केंद्रबिन्दु) से दूरी एक निश्चित रेखा (नियंता (शंकु खंड)) से दूरी के समानुपाती होती है, समानुपाती के स्थिरांक को [[विलक्षणता (गणित)|उत्केन्द्रता (गणित)]] कहा जाता है।<ref name="Heath" />   


शंकु खंड में प्रत्येक केंद्रबिन्दु के लिए एक डंडेलिन गोला होता है। दीर्घवृत्त में शंकु के एक ही [[Nappe (बहुविकल्पी)|आवरण (बहुविकल्पी)]] को स्पर्श करने वाले दो डंडेलिन गोले होते हैं, जबकि [[ अतिशयोक्ति |अतिपरवलय]] में दो डंडेलिन क्षेत्र होते हैं जो विपरीत आवरण को छूते हैं। एक [[परवलय]] में केवल एक डंडेलिन गोला होता है।
शंकु खंड में प्रत्येक केंद्रबिन्दु के लिए एक डंडेलिन गोला होता है। दीर्घवृत्त में शंकु के एक ही [[Nappe (बहुविकल्पी)|आवरण (बहुविकल्पी)]] को स्पर्श करने वाले दो डंडेलिन गोले होते हैं, जबकि [[ अतिशयोक्ति |अतिपरवलय]] में दो डंडेलिन क्षेत्र होते हैं जो विपरीत आवरण को छूते हैं। एक [[परवलय]] में मात्र एक डंडेलिन गोला होता है।


== प्रमाण कि प्रतिच्छेदन वक्र में केंद्रबिन्दु के लिए दूरियों का निरंतर योग होता है ==
== प्रमाण कि प्रतिच्छेदन वक्र में केंद्रबिन्दु के लिए दूरियों का निरंतर योग होता है ==
दृष्टांत पर विचार करें, शीर्ष पर सर्वोच्च S के साथ शंकु का चित्रण। समतल e वक्र C (नीले आतंरिक भाग वाला) में शंकु को काटता है। निम्नलिखित प्रमाण से पता चलेगा कि वक्र C दीर्घवृत्त है।
शीर्ष पर सर्वोच्च S के साथ शंकु का चित्रण, दृष्टांत पर विचार करें। समतल e वक्र C (नीले आतंरिक भाग वाला) में शंकु को प्रतिच्छेद करता है। निम्नलिखित प्रमाण से पता चलेगा कि वक्र C दीर्घवृत्त है।


दो भूरे डंडेलिन गोले, G<sub>1</sub> और G<sub>2</sub>, समतल और शंकु दोनों पर स्पर्शरेखा रखी जाती है: G<sub>1</sub> विमान के ऊपर, G<sub>2</sub> नीचे। प्रत्येक गोला शंकु को एक वृत्त (सफेद रंग) के साथ स्पर्श करता है, <math>k_1</math> और <math>k_2</math>।
दो भूरे डंडेलिन गोले, G<sub>1</sub> और G<sub>2</sub>, समतल और शंकु दोनों के लिए स्पर्शरेखा रखा गया है: G<sub>1</sub> समतल के ऊपर, G<sub>2</sub> नीचे। प्रत्येक गोला शंकु को एक वृत्त (सफेद रंग) के साथ स्पर्श करता है, <math>k_1</math> और <math>k_2</math>।


G<sub>1</sub> के साथ विमान की स्पर्शरेखा के बिंदु को F<sub>1</sub> द्वारा निरूपित करें, और इसी तरह G<sub>2</sub> और F<sub>2</sub> के लिए। मान लीजिए P वक्र C पर एक विशिष्ट बिंदु है।
G<sub>1</sub> के साथ समतल की स्पर्शरेखा के बिंदु को F<sub>1</sub> द्वारा निरूपित करें, और इसी तरह G<sub>2</sub> और F<sub>2</sub> के लिए। मान लीजिए P वक्र C पर एक विशिष्ट बिंदु है।


सिद्ध करना है: जब बिंदु P प्रतिच्छेदन वक्र C के साथ चलता है तो दूरियों का योग <math> d(P,F_1) + d(P,F_2)</math> स्थिर रहता है।  (यह C की दीर्घवृत्त होने की एक परिभाषा है, <math>F_1</math> और <math>F_2</math> इसके केंद्रबिन्दु होने के साथ।)
सिद्ध करना है: जब बिंदु P प्रतिच्छेदन वक्र C के साथ चलता है तो दूरियों का योग <math> d(P,F_1) + d(P,F_2)</math> स्थिर रहता है।  (यह C की दीर्घवृत्त होने की एक परिभाषा है, <math>F_1</math> और <math>F_2</math> इसके केंद्रबिन्दु होने के साथ।)
*शंकु के P और [[शीर्ष (ज्यामिति)]] S से गुजरने वाली रेखा रेखा दो वृत्तों को क्रमश: P<sub>1</sub> और P<sub>2</sub> बिंदुओं पर G<sub>1</sub> और G<sub>2</sub> को स्पर्श करते हुए प्रतिच्छेद करती है।
*शंकु के P और [[शीर्ष (ज्यामिति)]] S से गुजरने वाली रेखा दो वृत्तों को क्रमश प्रतिच्छेद करती है: P<sub>1</sub> और P<sub>2</sub> बिंदुओं पर G<sub>1</sub> और G<sub>2</sub> को स्पर्श करते हुए।
* जैसे ही P वक्र के चारों ओर घूमता है, P<sub>1</sub> और P<sub>2</sub> दो वृत्तों के साथ चलते हैं, और उनकी दूरी d(P<sub>1</sub>, P<sub>2</sub>) स्थिर रहती है।
* जैसे ही P वक्र के चारों ओर घूमता है, P<sub>1</sub> और P<sub>2</sub> दो वृत्तों के साथ चलते हैं, और उनकी दूरी d(P<sub>1</sub>, P<sub>2</sub>) स्थिर रहती है।
*P से F<sub>1</sub> की दूरी P से P<sub>1</sub> की दूरी के समान है, क्योंकि रेखा खंड PF<sub>1</sub> और PP<sub>1</sub> दोनों एक ही गोले G<sub>1</sub> के स्पर्श रेखाएँ हैं।  
*P से F<sub>1</sub> की दूरी P से P<sub>1</sub> की दूरी के समान है, क्योंकि रेखा खंड PF<sub>1</sub> और PP<sub>1</sub> दोनों एक ही गोले G<sub>1</sub> के स्पर्श रेखाएँ हैं।  
*एक सममित तर्क से, P से F<sub>2</sub> की दूरी P से P<sub>2</sub> की दूरी के समान है।
*एक सममित तर्क से, P से F<sub>2</sub> की दूरी P से P<sub>2</sub> की दूरी के समान है।
*नतीजतन, हम  <math> d(P,F_1) + d(P,F_2) \ =\ d(P,P_1) + d(P,P_2) \ =\ d(P_1,P_2) </math> के रूप में दूरियों के योग की गणना करते हैं, जो P के वक्र के साथ चलने पर स्थिर है।
*इसके परिणाम स्वरूप, हम  <math> d(P,F_1) + d(P,F_2) \ =\ d(P,P_1) + d(P,P_2) \ =\ d(P_1,P_2) </math> के रूप में दूरियों के योग की गणना करते हैं, जो P के वक्र के साथ चलने पर स्थिर है।


यह पेरगा के एपोलोनियस के प्रमेय का एक अलग प्रमाण देता है।<ref name="Heath" />
यह पेरगा के एपोलोनियस के प्रमेय का एक अलग प्रमाण देता है।<ref name="Heath" />


यदि हम एक दीर्घवृत्त को परिभाषित करते हैं जिसका अर्थ बिंदु P का स्थान है जैसे कि d(F<sub>1</sub>, P) + d (F<sub>2</sub>, P) = एक स्थिरांक, तो उपरोक्त तर्क यह प्रमाणित करता है कि प्रतिच्छेदन वक्र C वास्तव में एक दीर्घवृत्त है। यह कि शंकु के साथ समतल का प्रतिच्छेदन F<sub>1</sub> और F<sub>2</sub> से होकर जाने वाली रेखा के लंब समद्विभाजक के सापेक्ष सममित है, यह विरोधाभासी हो सकता है, लेकिन यह तर्क इसे स्पष्ट करता है।
यदि हम दीर्घवृत्त को परिभाषित करते हैं जिससे हम P के बिंदु के बिंदुपथ कि माध्यिका निकल सके जिससे कि d(F<sub>1</sub>, P) + d (F<sub>2</sub>, P) = एक स्थिरांक हो, तो उपरोक्त तर्क यह प्रमाणित करता है कि प्रतिच्छेदन वक्र C वास्तव में एक दीर्घवृत्त है। यह कि शंकु के साथ समतल का प्रतिच्छेदन F<sub>1</sub> और F<sub>2</sub> से होकर जाने वाली रेखा के लंब समद्विभाजक के सापेक्ष सममित है, यह विरोधाभासी हो सकता है, लेकिन यह तर्क इसे स्पष्ट करता है।


[[File:Zylinder-dandelin.svg|thumb|सिलेंडर]]इस तर्क के अनुकूलन अतिपरवलय और परवलय के लिए शंकु के साथ समतल के प्रतिच्छेदन के रूप में काम करते हैं। एक अन्य अनुकूलन दीर्घवृत्त के लिए काम करता है जिसे एक समवृत्ताकार [[सिलेंडर (ज्यामिति)]] के साथ समतल के प्रतिच्छेद के रूप में संपादित किया जाता है।
[[File:Zylinder-dandelin.svg|thumb|सिलेंडर]]इस तर्क के अनुकूलन अतिपरवलय और परवलय के लिए शंकु के साथ समतल के प्रतिच्छेदन के रूप में काम करते हैं। एक अन्य अनुकूलन दीर्घवृत्त के लिए काम करता है जिसे एक समवृत्ताकार [[सिलेंडर (ज्यामिति)]] के साथ समतल के प्रतिच्छेद के रूप में संपादित किया जाता है।


== केंद्रबिन्दु-नियंता गुण का प्रमाण ==
== केंद्रबिन्दु-नियंता गुण का प्रमाण ==
डंडेलिन के निर्माण का उपयोग करके एक शांकव खंड का नियंता पाया जा सकता है। डंडेलिन का प्रत्येक गोला शंकु को वृत्त पर  प्रतिच्छेद करता है; इन दोनों वृत्तों को अपने-अपने तलों को परिभाषित करने दें। शंक्वाकार खंड के तल के साथ इन दो समानांतर विमानों का प्रतिच्छेद दो समानांतर रेखाएँ होंगी; ये रेखाएँ शांकव परिच्छेद की निदेशिकाएँ हैं। यद्यपि, एक अनुवृत्त में एकमात्र डंडेलिन क्षेत्र होता है, और इस प्रकार मात्र एक नियंता होता है।
डंडेलिन के निर्माण का उपयोग करके एक शांकव खंड का नियंता पाया जा सकता है। डंडेलिन का प्रत्येक गोला शंकु को वृत्त पर  प्रतिच्छेद करता है; इन दोनों वृत्तों को अपने-अपने तलों को परिभाषित करने दें। शंक्वाकार खंड के तल के साथ इन दो समानांतर समतलों का प्रतिच्छेद दो समानांतर रेखाएँ होंगी; ये रेखाएँ शांकव परिच्छेद की निदेशिकाएँ हैं। यद्यपि, एक अनुवृत्त में एकमात्र डंडेलिन क्षेत्र होता है, और इस प्रकार मात्र एक नियंता होता है।


डंडेलिन के गोले का उपयोग करके, यह प्रमाणित किया जा सकता है कि कोई भी शंक्वाकार खंड बिंदुओं का बिंदुपथ है जिसके लिए एक बिंदु (केंद्रबिन्दु) से दूरी नियंता से दूरी के समानुपाती होती है।<ref>Brannan, A. et al.  ''Geometry'', [https://books.google.com/books?id=q49lhAzXTFEC&pg=PA5&dq=dandelin+and+directrix&as_brr=3&ei=if3fSc2tGZ3CMoGTzLEN#PPA19,M1 page 19] (Cambridge University Press, 1999).</ref> [[अलेक्जेंड्रिया के पप्पस]] जैसे प्राचीन यूनानी गणितज्ञ इस गुण के बारे में जानते थे, लेकिन डैंडेलिन क्षेत्र प्रमाण की सुविधा प्रदान करते हैं।<ref name="Heath">Heath, Thomas.  ''A History of Greek Mathematics'',  [https://books.google.com/books?id=7DDQAAAAMAAJ&pg=PA119&lpg=PA119&dq=focus-directrix+property&source=bl&ots=f73ypoeqO6&sig=tToUEkaGhF-JaajlrSGPvvWEq4Q&hl=en&ei=KODgSYGPAde6nAeclfmzCQ&sa=X&oi=book_result&ct=result&resnum=2 page 119 (focus-directrix property)], [https://books.google.com/books?id=7DDQAAAAMAAJ&pg=PA119&lpg=PA119&dq=focus-directrix+property&source=bl&ots=f73ypoeqO6&sig=tToUEkaGhF-JaajlrSGPvvWEq4Q&hl=en&ei=KODgSYGPAde6nAeclfmzCQ&sa=X&oi=book_result&ct=result&resnum=2#PPA542,M1 page 542 (sum of distances to foci property)] (Clarendon Press, 1921).</ref>
डंडेलिन के गोले का उपयोग करके, यह प्रमाणित किया जा सकता है कि कोई भी शंक्वाकार खंड बिंदुओं का बिंदुपथ है जिसके लिए एक बिंदु (केंद्रबिन्दु) से दूरी नियंता से दूरी के समानुपाती होती है।<ref>Brannan, A. et al.  ''Geometry'', [https://books.google.com/books?id=q49lhAzXTFEC&pg=PA5&dq=dandelin+and+directrix&as_brr=3&ei=if3fSc2tGZ3CMoGTzLEN#PPA19,M1 page 19] (Cambridge University Press, 1999).</ref> [[अलेक्जेंड्रिया के पप्पस]] जैसे प्राचीन यूनानी गणितज्ञ इस गुण के बारे में जानते थे, लेकिन डैंडेलिन क्षेत्र प्रमाण की सुविधा प्रदान करते हैं।<ref name="Heath">Heath, Thomas.  ''A History of Greek Mathematics'',  [https://books.google.com/books?id=7DDQAAAAMAAJ&pg=PA119&lpg=PA119&dq=focus-directrix+property&source=bl&ots=f73ypoeqO6&sig=tToUEkaGhF-JaajlrSGPvvWEq4Q&hl=en&ei=KODgSYGPAde6nAeclfmzCQ&sa=X&oi=book_result&ct=result&resnum=2 page 119 (focus-directrix property)], [https://books.google.com/books?id=7DDQAAAAMAAJ&pg=PA119&lpg=PA119&dq=focus-directrix+property&source=bl&ots=f73ypoeqO6&sig=tToUEkaGhF-JaajlrSGPvvWEq4Q&hl=en&ei=KODgSYGPAde6nAeclfmzCQ&sa=X&oi=book_result&ct=result&resnum=2#PPA542,M1 page 542 (sum of distances to foci property)] (Clarendon Press, 1921).</ref>

Revision as of 16:47, 29 March 2023

डंडेलिन के गोले हल्के पीले रंग के तल को छू रहे हैं जो शंकु को प्रतिच्छेद करता है।

ज्यामिति में, डंडेलिन के गोले एक या दो गोले होते हैं जो समतल (ज्यामिति) और शंकु (ज्यामिति) जो समतल को प्रतिच्छेद करते हैं दोनों के स्पर्शरेखा होते हैं। शंकु और समतल का प्रतिच्छेदन एक शंक्वाकार खंड है, और जिस बिंदु पर कोई भी गोला समतल को स्पर्श करता है, वह शंकु खंड का केंद्रबिन्दु (ज्यामिति) होता है, इसलिए डेंडेलिन के गोले को कभी-कभी केन्द्रीय क्षेत्र भी कहा जाता है।[1]

डंडेलिन के गोले की खोज 1822 में हुई थी।[1][2] इसका नाम फ्रांस के गणितज्ञ जर्मिनल पियरे डंडेलिन के सम्मान में रखा गया है, यद्यपि एडोल्फ क्वेटलेट को कभी-कभी आंशिक श्रेय भी दिया जाता है।[3][4][5]

डंडेलिन के गोले का उपयोग पेरगा के एपोलोनियस को ज्ञात दो शास्त्रीय प्रमेयों के सुरुचिपूर्ण आधुनिक प्रमाण देने के लिए किया जा सकता है। पहला प्रमेय यह है कि एक बंद शंक्वाकार खंड (यानी एक दीर्घवृत्त) बिंदुओं का बिंदुपथ (गणित) है जिससे कि दो निश्चित बिंदुओं (केंद्रबिन्दु) की दूरियों का योग स्थिर है। दूसरा प्रमेय यह है कि किसी भी शंक्वाकार खंड के लिए, एक निश्चित बिंदु (केंद्रबिन्दु) से दूरी एक निश्चित रेखा (नियंता (शंकु खंड)) से दूरी के समानुपाती होती है, समानुपाती के स्थिरांक को उत्केन्द्रता (गणित) कहा जाता है।[6]

शंकु खंड में प्रत्येक केंद्रबिन्दु के लिए एक डंडेलिन गोला होता है। दीर्घवृत्त में शंकु के एक ही आवरण (बहुविकल्पी) को स्पर्श करने वाले दो डंडेलिन गोले होते हैं, जबकि अतिपरवलय में दो डंडेलिन क्षेत्र होते हैं जो विपरीत आवरण को छूते हैं। एक परवलय में मात्र एक डंडेलिन गोला होता है।

प्रमाण कि प्रतिच्छेदन वक्र में केंद्रबिन्दु के लिए दूरियों का निरंतर योग होता है

शीर्ष पर सर्वोच्च S के साथ शंकु का चित्रण, दृष्टांत पर विचार करें। समतल e वक्र C (नीले आतंरिक भाग वाला) में शंकु को प्रतिच्छेद करता है। निम्नलिखित प्रमाण से पता चलेगा कि वक्र C दीर्घवृत्त है।

दो भूरे डंडेलिन गोले, G1 और G2, समतल और शंकु दोनों के लिए स्पर्शरेखा रखा गया है: G1 समतल के ऊपर, G2 नीचे। प्रत्येक गोला शंकु को एक वृत्त (सफेद रंग) के साथ स्पर्श करता है, और

G1 के साथ समतल की स्पर्शरेखा के बिंदु को F1 द्वारा निरूपित करें, और इसी तरह G2 और F2 के लिए। मान लीजिए P वक्र C पर एक विशिष्ट बिंदु है।

सिद्ध करना है: जब बिंदु P प्रतिच्छेदन वक्र C के साथ चलता है तो दूरियों का योग स्थिर रहता है। (यह C की दीर्घवृत्त होने की एक परिभाषा है, और इसके केंद्रबिन्दु होने के साथ।)

  • शंकु के P और शीर्ष (ज्यामिति) S से गुजरने वाली रेखा दो वृत्तों को क्रमश प्रतिच्छेद करती है: P1 और P2 बिंदुओं पर G1 और G2 को स्पर्श करते हुए।
  • जैसे ही P वक्र के चारों ओर घूमता है, P1 और P2 दो वृत्तों के साथ चलते हैं, और उनकी दूरी d(P1, P2) स्थिर रहती है।
  • P से F1 की दूरी P से P1 की दूरी के समान है, क्योंकि रेखा खंड PF1 और PP1 दोनों एक ही गोले G1 के स्पर्श रेखाएँ हैं।
  • एक सममित तर्क से, P से F2 की दूरी P से P2 की दूरी के समान है।
  • इसके परिणाम स्वरूप, हम के रूप में दूरियों के योग की गणना करते हैं, जो P के वक्र के साथ चलने पर स्थिर है।

यह पेरगा के एपोलोनियस के प्रमेय का एक अलग प्रमाण देता है।[6]

यदि हम दीर्घवृत्त को परिभाषित करते हैं जिससे हम P के बिंदु के बिंदुपथ कि माध्यिका निकल सके जिससे कि d(F1, P) + d (F2, P) = एक स्थिरांक हो, तो उपरोक्त तर्क यह प्रमाणित करता है कि प्रतिच्छेदन वक्र C वास्तव में एक दीर्घवृत्त है। यह कि शंकु के साथ समतल का प्रतिच्छेदन F1 और F2 से होकर जाने वाली रेखा के लंब समद्विभाजक के सापेक्ष सममित है, यह विरोधाभासी हो सकता है, लेकिन यह तर्क इसे स्पष्ट करता है।

सिलेंडर

इस तर्क के अनुकूलन अतिपरवलय और परवलय के लिए शंकु के साथ समतल के प्रतिच्छेदन के रूप में काम करते हैं। एक अन्य अनुकूलन दीर्घवृत्त के लिए काम करता है जिसे एक समवृत्ताकार सिलेंडर (ज्यामिति) के साथ समतल के प्रतिच्छेद के रूप में संपादित किया जाता है।

केंद्रबिन्दु-नियंता गुण का प्रमाण

डंडेलिन के निर्माण का उपयोग करके एक शांकव खंड का नियंता पाया जा सकता है। डंडेलिन का प्रत्येक गोला शंकु को वृत्त पर प्रतिच्छेद करता है; इन दोनों वृत्तों को अपने-अपने तलों को परिभाषित करने दें। शंक्वाकार खंड के तल के साथ इन दो समानांतर समतलों का प्रतिच्छेद दो समानांतर रेखाएँ होंगी; ये रेखाएँ शांकव परिच्छेद की निदेशिकाएँ हैं। यद्यपि, एक अनुवृत्त में एकमात्र डंडेलिन क्षेत्र होता है, और इस प्रकार मात्र एक नियंता होता है।

डंडेलिन के गोले का उपयोग करके, यह प्रमाणित किया जा सकता है कि कोई भी शंक्वाकार खंड बिंदुओं का बिंदुपथ है जिसके लिए एक बिंदु (केंद्रबिन्दु) से दूरी नियंता से दूरी के समानुपाती होती है।[7] अलेक्जेंड्रिया के पप्पस जैसे प्राचीन यूनानी गणितज्ञ इस गुण के बारे में जानते थे, लेकिन डैंडेलिन क्षेत्र प्रमाण की सुविधा प्रदान करते हैं।[6]

केंद्रबिन्दु-नियंता गुण को प्रमाणित करने के लिए न तो डंडेलिन और न ही क्वेटलेट ने डैंडेलिन के गोले का उपयोग किया। ऐसा करने वाले पहले व्यक्ति 1829 में पियर्स मोर्टन रहे होंगे,[8]या शायद ह्यूग हैमिल्टन (बिशप) जिन्होंने (1758 में) टिप्पणी की थी कि एक गोला शंकु को एक वृत्त पर स्पर्श करता है जो समतल को परिभाषित करता है जिसका शंकु खंड के तल के साथ प्रतिच्छेदन एक नियता है।[1][9][10][11] केंद्रबिन्दु-नियंता गुण का उपयोग यह प्रमाणित करने के लिए किया जा सकता है कि खगोलीय पिंड सूर्य के चारों ओर शंक्वाकार खंडों में घूमते हैं।[12]


टिप्पणियाँ

  1. 1.0 1.1 1.2 Taylor, Charles. An Introduction to the Ancient and Modern Geometry of Conics, page 196 ("focal spheres"), pages 204–205 (history of discovery) (Deighton, Bell and co., 1881).
  2. Dandelin, G. (1822). "Mémoire sur quelques propriétés remarquables de la focale parabolique" [Memoir on some remarkable properties of the parabolic focale [i.e., oblique strophoid]]. Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Bruxelles (in French). 2: 171–200.{{cite journal}}: CS1 maint: unrecognized language (link)
  3. Kendig, Keith. Conics, p. 86 (proof for ellipse) and p. 141 (for hyperbola) (Cambridge University Press, 2005).
  4. Quetelet, Adolphe (1819) "Dissertatio mathematica inauguralis de quibusdam locis geometricis nec non de curva focali" (Inaugural mathematical dissertation on some geometric loci and also focal curves), doctoral thesis (University of Ghent ("Gand"), Belgium). (in Latin)
  5. Godeaux, L. (1928). "Le mathématicien Adolphe Quetelet (1796-1874)". Ciel et Terre (in French). 44: 60–64.{{cite journal}}: CS1 maint: unrecognized language (link)
  6. 6.0 6.1 6.2 Heath, Thomas. A History of Greek Mathematics, page 119 (focus-directrix property), page 542 (sum of distances to foci property) (Clarendon Press, 1921).
  7. Brannan, A. et al. Geometry, page 19 (Cambridge University Press, 1999).
  8. Numericana's Biographies: Morton, Pierce
  9. Morton, Pierce. Geometry, Plane, Solid, and Spherical, in Six Books, page 228 (Baldwin and Cradock, 1830).
  10. Morton, Pierce (1830). "एक शंकु खंड के फोकस पर". Transactions of the Cambridge Philosophical Society. 3: 185–190.
  11. Hamilton, Hugh (1758). शांकव वर्गों पर ज्यामितीय ग्रंथ। जिसमें शंकु की प्रकृति से ही वर्गों के स्नेह का अनुमान बड़ी आसानी से लगाया जा सकता है। एक नया तरीका। [On conic sections. A geometric treatise. In which, from the nature of the cone itself, relations of sections are most easily deduced. By a new method.] (in Latin). London, England: William Johnston. pp. 122–125.{{cite book}}: CS1 maint: unrecognized language (link) Liber (book) II, Propositio (proposition) XXXVII (37).
  12. Hyman, Andrew. "A Simple Cartesian Treatment of Planetary Motion", European Journal of Physics, Vol. 14, page 145 (1993).


बाहरी संबंध