शॉक्ले डायोड समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:


:<math>I_\text{D}=I_\text{S} \left( e^\frac{V_\text{D}}{n V_\text{T}} - 1 \right)</math>
:<math>I_\text{D}=I_\text{S} \left( e^\frac{V_\text{D}}{n V_\text{T}} - 1 \right)</math>
कहाँ
जहां
:<math>I_\text{D}</math> डायोड करंट है,
:<math>I_\text{D}</math> डायोड धारा है,
:<math>I_\text{S}</math> [[रिवर्स-बायस संतृप्ति वर्तमान|रिवर्स-संतृप्ति वर्तमान]] (या स्केल करंट) है,
:<math>I_\text{S}</math>पश्च अभिनति [[रिवर्स-बायस संतृप्ति वर्तमान|संतृपित धारा]] (या मापन धारा ) है,
:<math>V_\text{D}</math> डायोड भर में वोल्टेज है,
:<math>V_\text{D}</math> डायोड भर में वोल्टेज है,
:<math>V_\text{T}</math> [[थर्मल वोल्टेज]] है, और
:<math>V_\text{T}</math> [[थर्मल वोल्टेज]] है, और
Line 22: Line 22:
रिवर्स संतृप्ति वर्तमान <math>I_\text{S}</math> किसी दिए गए उपकरण के लिए स्थिर नहीं है, लेकिन तापमान के साथ बदलता रहता है; की तुलना में आमतौर पर अधिक महत्वपूर्ण है <math>V_\text{T}</math> ताकि <math>V_\text{D}</math> आम तौर पर घट जाती है<math>T</math>बढ़ती है।
रिवर्स संतृप्ति वर्तमान <math>I_\text{S}</math> किसी दिए गए उपकरण के लिए स्थिर नहीं है, लेकिन तापमान के साथ बदलता रहता है; की तुलना में आमतौर पर अधिक महत्वपूर्ण है <math>V_\text{T}</math> ताकि <math>V_\text{D}</math> आम तौर पर घट जाती है<math>T</math>बढ़ती है।


रिवर्स के तहत, डायोड समीकरण का एक्सपोनेंशियल फ़ंक्शन शब्द 0 के करीब है, इसलिए वर्तमान कुछ हद तक स्थिर है <math>-I_\text{S}</math> रिवर्स करंट वैल्यू (मोटे तौर पर सिलिकॉन डायोड के लिए एक [[picoampere]] या जर्मेनियम डायोड के लिए एक [[microamper]],<ref>{{Cite web |last=McAllister |first=Willy |date=2022-11-14 |title=डायोड समीकरण|url=https://spinningnumbers.org/a/diode-equation.html |access-date=2023-01-17 |website=Spinning Numbers |language=en}}</ref> हालांकि यह स्पष्ट रूप से आकार का एक कार्य है)।
रिवर्स के तहत, डायोड समीकरण का एक्सपोनेंशियल फ़ंक्शन शब्द 0 के करीब है, इसलिए वर्तमान कुछ हद तक स्थिर है <math>-I_\text{S}</math> रिवर्स धारावैल्यू (मोटे तौर पर सिलिकॉन डायोड के लिए एक [[picoampere]] या जर्मेनियम डायोड के लिए एक [[microamper]],<ref>{{Cite web |last=McAllister |first=Willy |date=2022-11-14 |title=डायोड समीकरण|url=https://spinningnumbers.org/a/diode-equation.html |access-date=2023-01-17 |website=Spinning Numbers |language=en}}</ref> हालांकि यह स्पष्ट रूप से आकार का एक कार्य है)।


मॉडरेट फ़ॉरवर्ड वोल्टेज के लिए एक्सपोनेंशियल 1 से बहुत बड़ा हो जाता है, क्योंकि थर्मल वोल्टेज तुलना में बहुत छोटा होता है। <math>-1</math> h> डायोड समीकरण में तब नगण्य है, इसलिए आगे डायोड करंट अनुमानित होगा:
मॉडरेट फ़ॉरवर्ड वोल्टेज के लिए एक्सपोनेंशियल 1 से बहुत बड़ा हो जाता है, क्योंकि थर्मल वोल्टेज तुलना में बहुत छोटा होता है। <math>-1</math> h> डायोड समीकरण में तब नगण्य है, इसलिए आगे डायोड धाराअनुमानित होगा:


:<math>I_\text{S} \; e^\frac{V_\text{D}}{n V_\text{T}} \, .</math>
:<math>I_\text{S} \; e^\frac{V_\text{D}}{n V_\text{T}} \, .</math>
Line 54: Line 54:
* जंक्शन पर छिद्रों के अर्ध-फर्मी स्तर और जंक्शन पर इलेक्ट्रॉनों के बीच का अंतर
* जंक्शन पर छिद्रों के अर्ध-फर्मी स्तर और जंक्शन पर इलेक्ट्रॉनों के बीच का अंतर
* जंक्शन से एन टर्मिनल तक इलेक्ट्रॉनों के अर्ध-फर्मी स्तर की गिरावट।
* जंक्शन से एन टर्मिनल तक इलेक्ट्रॉनों के अर्ध-फर्मी स्तर की गिरावट।
वह दिखाता है कि इनमें से पहले और तीसरे को वर्तमान के प्रतिरोध समय के रूप में व्यक्त किया जा सकता है: <math>I_\text{D} R_1 .</math> दूसरे के रूप में, जंक्शन पर अर्ध-फर्मी स्तरों के बीच का अंतर, वह कहता है कि हम इस अंतर से डायोड के माध्यम से बहने वाली धारा का अनुमान लगा सकते हैं। वह बताते हैं कि p टर्मिनल पर करंट सभी छिद्र हैं, जबकि n टर्मिनल पर यह सभी इलेक्ट्रॉन हैं, और इन दोनों का योग निरंतर कुल करंट है। तो कुल करंट डायोड के एक तरफ से दूसरी तरफ होल करंट में कमी के बराबर है। यह कमी इलेक्ट्रॉन-छिद्र युग्मों की पीढ़ी पर इलेक्ट्रॉन-छिद्र युग्मों के पुनर्संयोजन की अधिकता के कारण है। पुनर्संयोजन की दर पीढ़ी की दर के बराबर होती है जब संतुलन पर होता है, अर्थात जब दो अर्ध-फर्मी स्तर समान होते हैं। लेकिन जब अर्ध-फर्मी स्तर बराबर नहीं होते हैं, तो पुनर्संयोजन दर होती है <math>e^{ ( \phi_\text{p} - \phi_\text{n} ) / V_\text{T} }</math> पीढ़ी की दर गुना। हम तब मानते हैं कि अधिकांश अतिरिक्त पुनर्संयोजन (या होल करंट में कमी) एक छेद प्रसार लंबाई से जाने वाली परत में होता है <math>L_\text{p}</math> एन सामग्री और एक इलेक्ट्रॉन प्रसार लंबाई में <math>L_\text{n}</math> पी सामग्री में, और यह कि अर्ध-फर्मी स्तरों के बीच का अंतर इस परत में स्थिर है <math>V_\text{J} .</math> तब हम पाते हैं कि कुल करंट, या होल करंट में गिरावट है
वह दिखाता है कि इनमें से पहले और तीसरे को वर्तमान के प्रतिरोध समय के रूप में व्यक्त किया जा सकता है: <math>I_\text{D} R_1 .</math> दूसरे के रूप में, जंक्शन पर अर्ध-फर्मी स्तरों के बीच का अंतर, वह कहता है कि हम इस अंतर से डायोड के माध्यम से बहने वाली धारा का अनुमान लगा सकते हैं। वह बताते हैं कि p टर्मिनल पर धारासभी छिद्र हैं, जबकि n टर्मिनल पर यह सभी इलेक्ट्रॉन हैं, और इन दोनों का योग निरंतर कुल धाराहै। तो कुल धाराडायोड के एक तरफ से दूसरी तरफ होल धारामें कमी के बराबर है। यह कमी इलेक्ट्रॉन-छिद्र युग्मों की पीढ़ी पर इलेक्ट्रॉन-छिद्र युग्मों के पुनर्संयोजन की अधिकता के कारण है। पुनर्संयोजन की दर पीढ़ी की दर के बराबर होती है जब संतुलन पर होता है, अर्थात जब दो अर्ध-फर्मी स्तर समान होते हैं। लेकिन जब अर्ध-फर्मी स्तर बराबर नहीं होते हैं, तो पुनर्संयोजन दर होती है <math>e^{ ( \phi_\text{p} - \phi_\text{n} ) / V_\text{T} }</math> पीढ़ी की दर गुना। हम तब मानते हैं कि अधिकांश अतिरिक्त पुनर्संयोजन (या होल धारामें कमी) एक छेद प्रसार लंबाई से जाने वाली परत में होता है <math>L_\text{p}</math> एन सामग्री और एक इलेक्ट्रॉन प्रसार लंबाई में <math>L_\text{n}</math> पी सामग्री में, और यह कि अर्ध-फर्मी स्तरों के बीच का अंतर इस परत में स्थिर है <math>V_\text{J} .</math> तब हम पाते हैं कि कुल करंट, या होल धारामें गिरावट है
:<math>I_\text{D} = I_\text{S} \left(e^\frac{V_\text{J}}{V_\text{T}} - 1 \right)</math>
:<math>I_\text{D} = I_\text{S} \left(e^\frac{V_\text{J}}{V_\text{T}} - 1 \right)</math>
कहाँ
कहाँ

Revision as of 18:02, 20 March 2023

डायोड विधि धारा-वोल्टेज वक्र रेखा 25 डिग्री सेल्सियस, 50 डिग्री सेल्सियस और दो आदर्श घटक हैं। समीकरण के घातीय संबंध को व्यक्त करने के लिए मूल सारणी के लिए उपयोग किया जाने वाला लघुगणकीय पैमाना उपयोगी है।

शॉक्ले डायोड समीकरण या डायोड विधि, जिसका नाम बेल लैब्स के ट्रांजिस्टर सह-आविष्कारक विलियम शॉक्ले के नाम पर रखा गया है, मध्यम स्थिर धारा अग्र अभिनत या पश्च अभिनति में अर्धचालक डायोड के घातीय धारा--वोल्टेज (I-V) संबंध को प्रतिरूप करता है:

जहां

डायोड धारा है,
पश्च अभिनति संतृपित धारा (या मापन धारा ) है,
डायोड भर में वोल्टेज है,
थर्मल वोल्टेज है, और
आदर्शता कारक है, जिसे गुणवत्ता कारक या उत्सर्जन गुणांक के रूप में भी जाना जाता है।

आदर्शता कारक होने पर समीकरण को शॉकली आदर्श डायोड समीकरण कहा जाता है इस प्रकार 1 के बराबर है कभी-कभी छोड़ दिया जाता है। निर्माण प्रक्रिया और अर्धचालकसामग्री की सूची के आधार पर आदर्शता कारक आमतौर पर 1 से 2 (हालांकि कुछ मामलों में अधिक हो सकता है) से भिन्न होता है। वास्तविक ट्रांजिस्टर में देखे गए अपूर्ण पी-एन जंक्शन के लिए आदर्शता कारक जोड़ा गया था, मुख्य रूप से वाहक पुनर्संयोजन के कारण चार्ज वाहक कमी क्षेत्र को पार करते हैं।

थर्मल वोल्टेज लगभग 25.852 है{{nbsp}एमवी पर 300 K (27 °C; 80 °F). मनमाना तापमान पर, यह एक ज्ञात स्थिरांक है:

कहाँ

बोल्ट्जमैन स्थिरांक है,
पी-एन जंक्शन का केल्विन पैमाना है, और
प्राथमिक आवेश (इलेक्ट्रॉन के विद्युत आवेश का परिमाण) है।

रिवर्स संतृप्ति वर्तमान किसी दिए गए उपकरण के लिए स्थिर नहीं है, लेकिन तापमान के साथ बदलता रहता है; की तुलना में आमतौर पर अधिक महत्वपूर्ण है ताकि आम तौर पर घट जाती हैबढ़ती है।

रिवर्स के तहत, डायोड समीकरण का एक्सपोनेंशियल फ़ंक्शन शब्द 0 के करीब है, इसलिए वर्तमान कुछ हद तक स्थिर है रिवर्स धारावैल्यू (मोटे तौर पर सिलिकॉन डायोड के लिए एक picoampere या जर्मेनियम डायोड के लिए एक microamper,[1] हालांकि यह स्पष्ट रूप से आकार का एक कार्य है)।

मॉडरेट फ़ॉरवर्ड वोल्टेज के लिए एक्सपोनेंशियल 1 से बहुत बड़ा हो जाता है, क्योंकि थर्मल वोल्टेज तुलना में बहुत छोटा होता है। h> डायोड समीकरण में तब नगण्य है, इसलिए आगे डायोड धाराअनुमानित होगा:

सर्किट समस्याओं में डायोड समीकरण का उपयोग डायोड मॉडलिंग # शॉकली डायोड मॉडल पर लेख में दिखाया गया है।

सीमाएं

आंतरिक प्रतिरोध उच्च अग्र पर एक वास्तविक डायोड के I-V वक्र को समतल करने का कारण बनता है। शॉकले समीकरण इसे मॉडल नहीं करता है, लेकिन श्रृंखला में एक प्रतिरोध जोड़ना होगा।

ब्रेकडाउन वोल्टेज#डायोड और अन्य सेमीकंडक्टर्स (विशेष रूप से जेनर डायोड के लिए दिलचस्प) को शॉकले समीकरण द्वारा मॉडल नहीं किया गया है।

शॉकली समीकरण शोर (इलेक्ट्रॉनिक्स) का मॉडल नहीं करता है (जैसे आंतरिक प्रतिरोध से जॉनसन-निक्विस्ट शोर, या शॉट शोर#बातचीत के प्रभाव)।

शॉकली समीकरण एक निरंतर वर्तमान संबंध है, और इस प्रकार पी-एन डायोड # क्षणिक प्रतिक्रिया | डायोड की क्षणिक प्रतिक्रिया के लिए खाता नहीं है, जिसमें इसके आंतरिक पी-एन डायोड # कैपेसिटेंस और डायोड # रिवर्स-रिकवरी प्रभाव का प्रभाव शामिल है।

व्युत्पत्ति

शॉक्ले ने 1949 में प्रकाशित एक लंबे लेख में पी-एन जंक्शन पर वोल्टेज के लिए एक समीकरण प्राप्त किया।[2] बाद में वह अतिरिक्त धारणाओं के तहत वोल्टेज के एक समारोह के रूप में वर्तमान के लिए एक समान समीकरण देता है, जो कि समीकरण है जिसे हम शॉकली आदर्श डायोड समीकरण कहते हैं।[3] वह इसे एक सैद्धांतिक सुधार सूत्र कहते हैं जो अधिकतम सुधार देता है, जिसमें कार्ल वैगनर, फिजिकल जर्नल '32', पीपी। 641-645 (1931) द्वारा एक पेपर का संदर्भ दिया गया है।

वोल्टेज के लिए अपने समीकरण को प्राप्त करने के लिए, शॉक्ली का तर्क है कि कुल वोल्टेज ड्रॉप को तीन भागों में विभाजित किया जा सकता है:

  • पी टर्मिनल पर लागू वोल्टेज के स्तर से छेद के अर्ध-फर्मी स्तर की गिरावट उस बिंदु पर उसके मूल्य पर जहां डोपिंग तटस्थ है (जिसे हम जंक्शन कह सकते हैं)
  • जंक्शन पर छिद्रों के अर्ध-फर्मी स्तर और जंक्शन पर इलेक्ट्रॉनों के बीच का अंतर
  • जंक्शन से एन टर्मिनल तक इलेक्ट्रॉनों के अर्ध-फर्मी स्तर की गिरावट।

वह दिखाता है कि इनमें से पहले और तीसरे को वर्तमान के प्रतिरोध समय के रूप में व्यक्त किया जा सकता है: दूसरे के रूप में, जंक्शन पर अर्ध-फर्मी स्तरों के बीच का अंतर, वह कहता है कि हम इस अंतर से डायोड के माध्यम से बहने वाली धारा का अनुमान लगा सकते हैं। वह बताते हैं कि p टर्मिनल पर धारासभी छिद्र हैं, जबकि n टर्मिनल पर यह सभी इलेक्ट्रॉन हैं, और इन दोनों का योग निरंतर कुल धाराहै। तो कुल धाराडायोड के एक तरफ से दूसरी तरफ होल धारामें कमी के बराबर है। यह कमी इलेक्ट्रॉन-छिद्र युग्मों की पीढ़ी पर इलेक्ट्रॉन-छिद्र युग्मों के पुनर्संयोजन की अधिकता के कारण है। पुनर्संयोजन की दर पीढ़ी की दर के बराबर होती है जब संतुलन पर होता है, अर्थात जब दो अर्ध-फर्मी स्तर समान होते हैं। लेकिन जब अर्ध-फर्मी स्तर बराबर नहीं होते हैं, तो पुनर्संयोजन दर होती है पीढ़ी की दर गुना। हम तब मानते हैं कि अधिकांश अतिरिक्त पुनर्संयोजन (या होल धारामें कमी) एक छेद प्रसार लंबाई से जाने वाली परत में होता है एन सामग्री और एक इलेक्ट्रॉन प्रसार लंबाई में पी सामग्री में, और यह कि अर्ध-फर्मी स्तरों के बीच का अंतर इस परत में स्थिर है तब हम पाते हैं कि कुल करंट, या होल धारामें गिरावट है

कहाँ

और पीढ़ी दर है। हम के लिए हल कर सकते हैं के अनुसार :

और कुल वोल्टेज ड्रॉप तब है

जब हम यह मान लेते हैं छोटा है, हम प्राप्त करते हैं और शॉकली आदर्श डायोड समीकरण।

उच्च रिवर्स के तहत प्रवाहित होने वाली छोटी धारा तब परत में इलेक्ट्रॉन-छिद्र जोड़े के थर्मल उत्पादन का परिणाम है। इलेक्ट्रॉन फिर एन टर्मिनल और छिद्रों को पी टर्मिनल तक प्रवाहित करते हैं। परत में इलेक्ट्रॉनों और छिद्रों की सांद्रता इतनी कम होती है कि वहाँ पुनर्संयोजन नगण्य होता है।

1950 में, शॉकले और सहकर्मियों ने एक जर्मेनियम डायोड का वर्णन करते हुए एक छोटा लेख प्रकाशित किया जो आदर्श समीकरण का बारीकी से पालन करता था।[4] 1954 में, विलियम गार्डनर पफान और डब्ल्यू. वैन रूस्ब्रोक (जो बेल टेलीफोन प्रयोगशालाओं के भी थे) ने बताया कि हालांकि शॉक्ले का समीकरण कुछ जर्मेनियम जंक्शनों पर लागू था, कई सिलिकॉन जंक्शनों के लिए वर्तमान (प्रशंसनीय फॉरवर्ड के तहत) समानुपाती था साथ A जिसका मान 2 या 3 जितना अधिक हो।[5] यह आदर्शवाद कारक है ऊपर।

1981 में, एलेक्सिस डी वोस और हरमन पॉवेल्स ने दिखाया कि एक जंक्शन के क्वांटम यांत्रिकी का अधिक सावधानीपूर्वक विश्लेषण, कुछ मान्यताओं के तहत, एक वर्तमान बनाम वोल्टेज की विशेषता देता है

जिसमें A जंक्शन का क्रॉस-सेक्शनल क्षेत्र है और Fi बैंड-गैप ऊर्जा पर ऊर्जा के साथ प्रति यूनिट क्षेत्र में आने वाले फोटोन की संख्या है, प्रति यूनिट समय, और Fo(V) आउटगोइंग फोटॉन है, जिसके द्वारा दिया गया है[6]

आउटगोइंग फ्लक्स को 2 गुणा करने के कारक की आवश्यकता होती है क्योंकि फोटॉन दोनों तरफ से उत्सर्जित होते हैं, लेकिन आने वाले फ्लक्स को केवल एक तरफ से आने वाला माना जाता है। हालांकि रोशनी के तहत फोटोवोल्टिक कोशिकाओं के लिए विश्लेषण किया गया था, यह तब भी लागू होता है जब रोशनी केवल पृष्ठभूमि थर्मल विकिरण होती है, बशर्ते 2 का कारक इस आने वाले प्रवाह के लिए भी उपयोग किया जाता है। विश्लेषण सामान्य रूप से आदर्श डायोड के लिए अधिक कठोर अभिव्यक्ति देता है, सिवाय इसके कि यह मानता है कि सेल पर्याप्त मोटी है कि यह फोटॉन के इस प्रवाह का उत्पादन कर सकती है। जब रोशनी सिर्फ पृष्ठभूमि थर्मल विकिरण होती है, तो विशेषता होती है

ध्यान दें कि, शॉकली कानून के विपरीत, वर्तमान अनंत तक जाता है क्योंकि वोल्टेज गैप वोल्टेज में जाता है g/q. यह निश्चित रूप से पुनर्संयोजन की अनंत मात्रा प्रदान करने के लिए एक अनंत मोटाई की आवश्यकता होगी।

इस समीकरण को हाल ही में एक हालिया मॉडल का उपयोग करके संशोधित वर्तमान I_s में नए तापमान स्केलिंग के लिए संशोधित किया गया था[7] 2D सामग्री आधारित Schottky डायोड के लिए।

संदर्भ

  1. McAllister, Willy (2022-11-14). "डायोड समीकरण". Spinning Numbers (in English). Retrieved 2023-01-17.
  2. William Shockley (Jul 1949). "The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors". The Bell System Technical Journal. 28 (3): 435–489. doi:10.1002/j.1538-7305.1949.tb03645.x.. Equation 3.13 on page 454.
  3. Ibid. p. 456.
  4. F.S. Goucher; et al. (Dec 1950). "जर्मेनियम p-n जंक्शन के लिए सिद्धांत और प्रयोग". Physical Review. 81. doi:10.1103/PhysRev.81.637.2.
  5. W. G. Pfann; W. van Roosbroek (Nov 1954). "Radioactive and Photoelectric p‐n Junction Power Sources". Journal of Applied Physics. 25 (11): 1422–1434. Bibcode:1954JAP....25.1422P. doi:10.1063/1.1721579.
  6. A. De Vos and H. Pauwels (1981). "On the Thermodynamic Limit of Photovoltaic Energy Conversion". Appl. Phys. 25 (2): 119–125. Bibcode:1981ApPhy..25..119D. doi:10.1007/BF00901283. S2CID 119693148.. Appendix.
  7. Y. S. Ang, H. Y. Yang and L. K. Ang (August 2018). "Universal scaling in nanoscale lateral Schottky heterostructures". Phys. Rev. Lett. 121: 056802.