शॉक्ले डायोड समीकरण: Difference between revisions
No edit summary |
(→सीमाएं) |
||
Line 80: | Line 80: | ||
ध्यान दें कि, शॉक्ले विधि के विपरीत, धारा अनंत तक जाती है क्योंकि वोल्टेज अन्तराल वोल्टेज {{mvar|hν<sub>g</sub>/q}} पर जाता है। यह निश्चित रूप से पुनर्संयोजन की अनंत मात्रा प्रदान करने के लिए एक अनंत मोटाई की आवश्यकता होगी। | ध्यान दें कि, शॉक्ले विधि के विपरीत, धारा अनंत तक जाती है क्योंकि वोल्टेज अन्तराल वोल्टेज {{mvar|hν<sub>g</sub>/q}} पर जाता है। यह निश्चित रूप से पुनर्संयोजन की अनंत मात्रा प्रदान करने के लिए एक अनंत मोटाई की आवश्यकता होगी। | ||
इस समीकरण को हाल ही में 2डी पदार्थ-आधारित शॉट्की डायोड एक | इस समीकरण को हाल ही में 2डी पदार्थ-आधारित शॉट्की डायोड के लिए एक हाल ही के प्रतिमान का उपयोग करके धारा I_s में नए तापमान स्केलिंग के लिए संशोधित किया गया था<ref> | ||
{{cite journal | {{cite journal | ||
| author1=Y. S. Ang, H. Y. Yang and L. K. Ang | | author1=Y. S. Ang, H. Y. Yang and L. K. Ang |
Revision as of 09:11, 21 March 2023
शॉक्ले डायोड समीकरण या डायोड विधि, जिसका नाम बेल लैब्स के ट्रांजिस्टर सह-आविष्कारक विलियम शॉक्ले के नाम पर रखा गया है, मध्यम स्थिर धारा अग्र अभिनत या पश्च अभिनति में अर्धचालक डायोड के घातीय धारा--वोल्टेज (I-V) संबंध को प्रतिरूप करता है:
जहां
- डायोड धारा है,
- पश्च अभिनति संतृपित धारा (या मापन धारा ) है,
- डायोड भर में वोल्टेज है,
- थर्मल वोल्टेज है, और
- आदर्श घटक है, जिसे गुणता घटक या उत्सर्जन गुणांक के रूप में भी जाना जाता है।
आदर्श घटक होने पर समीकरण को शॉक्ले आदर्श डायोड समीकरण कहा जाता है इस प्रकार 1 के बराबर है कभी-कभी छोड़ा जाता है। निर्माण प्रक्रिया और अर्धचालक पदार्थ की सूची के आधार पर आदर्श घटक आमतौर पर 1 से 2 (हालांकि कुछ स्थिति में अधिक हो सकता है) से भिन्न होता है। वास्तविक ट्रांजिस्टर में देखे गए अपूर्ण संयोजन के लिए आदर्श घटक जोड़ा गया था, मुख्य रूप से संवाहक पुनर्संयोजन के कारण चार्ज संवाहक कमी क्षेत्र को पार करते हैं।
थर्मल वोल्टेज 300 K (27 °C; 80 °F) पर लगभग 25.852 mV है। स्वेच्छ तापमान पर, यह एक ज्ञात स्थिरांक है:
जहां
- बोल्ट्समान नियतांक है,
- पी-एन संयोजन का पूर्ण तापमान है,और
- मूल आवेश(इलेक्ट्रॉन के विद्युत आवेश का परिमाण) है।
पश्च संतृप्ति धारा किसी दिए गए उपकरण के लिए स्थिर नहीं है, लेकिन तापमान के साथ बदलता रहता है; की तुलना में आमतौर पर अधिक महत्वपूर्ण है ताकि आम तौर पर घटता है बढ़ता है।
पश्च अभिनति के तहत, डायोड समीकरण का घातांकी पद 0 के करीब है, इसलिए धारा कुछ समय तक स्थिर है पश्च धारा मान (लगभग सिलिकॉन डायोड के लिए एक पिकोएम्पेयर या जर्मेनियम डायोड के लिए एक पिकोएम्पेयर,[1] हालांकि यह स्पष्ट रूप से आकार का एक कार्य है)।
सामान्य अग्र अभिनति वोल्टेज के लिए घातांक 1 से बहुत बड़ा हो जाता है, क्योंकि थर्मल वोल्टेज तुलना में बहुत छोटा होता है। डायोड समीकरण में तब नगण्य है, इसलिए आगे डायोड धारा अनुमानित होगी:
डायोड प्रतिरूपण पर लेख में सर्किट समस्याओं में डायोड समीकरण का उपयोग दिखाया गया है।
सीमाएं
आंतरिक प्रतिरोध उच्च अग्र अभिनति पर एक वास्तविक डायोड के I-V वक्र को समतल करने का कारण बनता है। शॉकले समीकरण इसे प्रतिमान नहीं करता है, लेकिन श्रेणी में एक प्रतिरोध जोड़ना होगा।
व्युत्क्रम भंजन क्षेत्र (विशेष रूप से जेनर डायोड के लिए रुचि का) को शॉकले समीकरण द्वारा प्रतिरूप नहीं किया गया है।
शॉकले समीकरण नाद का नाप नहीं करता है (जैसे आंतरिक प्रतिरोध से जॉनसन-निक्विस्ट नाद, या शॉट रव)।
शॉकले समीकरण एक नियत धारा संबंध है, और इस प्रकार डायोड क्षणिक अनुक्रिया के लिए जिम्मेदार नहीं है,जिसमें इसके आंतरिक संयोजन, विसरण धारिता और प्रतीप पुनः प्राप्ति समय का प्रभाव सम्मिलित है।
व्युत्पन्न
शॉक्ले ने 1949 में प्रकाशित एक लंबे लेख में पी-एन संयोजन पर वोल्टेज के लिए एक समीकरण प्राप्त किया।[2] बाद में वह अतिरिक्त अनुमानो के तहत वोल्टेज के एक फलन के रूप में धारा के लिए एक समान समीकरण देता है, जो कि समीकरण है जिसे हम शॉक्ले आदर्श डायोड समीकरण कहते हैं।[3] वह इसे "अधिकतम सुधार देने वाला एक सैद्धांतिक सुधार सूत्र" कहते हैं, जिसमें कार्ल वैगनर, फिजिकलिस्के ज़िट्सक्रिफ्ट 32 पीपी. 641-645 (1931) द्वारा एक पेपर का संदर्भ दिया गया है।
वोल्टेज के लिए अपने समीकरण को प्राप्त करने के लिए, शॉक्ले का तर्क है कि कुल वोल्टेज घटाव को तीन भागों में विभाजित किया जा सकता है:
- पी टर्मिनल पर लागू वोल्टेज के स्तर से रंध्र के फर्मीसम स्तर की गिरावट उस बिंदु पर होती है जहां डोपिंग तटस्थ है (जिसे हम संयोजन कह सकते हैं)
- संयोजन पर रंध्र के फर्मीसम स्तर और संयोजन पर इलेक्ट्रॉनों के बीच का अंतर
- संयोजन से एन टर्मिनल तक इलेक्ट्रॉनों के फर्मीसम स्तर की गिरावट।
वह दिखाता है कि इनमें से पहले और तीसरे को धारा के प्रतिरोध समय के रूप में व्यक्त किया जा सकता है: दूसरे के रूप में, संयोजन पर फर्मीसम स्तरों के बीच का अंतर, वह कहता है कि हम इस अंतर से डायोड में प्रवाहित होने वाली धारा का अनुमान लगा सकते हैं। वह बताते हैं कि पी टर्मिनल पर धारा सभी रन्ध्र हैं, जबकि एन टर्मिनल पर यह सभी इलेक्ट्रॉन होते हैं, और इन दोनों का योग नियतांक कुल धारा है। तो कुल धारा डायोड के एक तरफ से दूसरी तरफ रन्ध्र धारा में गिरावट बराबर है। यह कमी इलेक्ट्रॉन-रन्ध्र युग्मों की उत्पत्ति पर इलेक्ट्रॉन-रन्ध्र युग्मों के पुनर्संयोजन की अधिकता के कारण है। पुनर्संयोजन की उत्पत्ति श्रेणी अनुपात के बराबर होती है जब संतुलन पर होता है, अर्थात जब दो फर्मीसम स्तर समान होते हैं। लेकिन जब फर्मीसम स्तर बराबर नहीं होते हैं, तो पुनर्संयोजन दर होती है उत्पत्ति की दर गुना। हम तब मानते हैं कि अधिकांश अतिरिक्त पुनर्संयोजन (या रन्ध्र धारा में कमी) एक रन्ध्र प्रसार लंबाई से जाने वाली परत में होता है एन पदार्थ और एक इलेक्ट्रॉन प्रसार लंबाई में पी पदार्थ में, और यह कि फर्मीसम स्तरों के बीच का अंतर इस परत में स्थिर है तब हम पाते हैं कि कुल धारा या रन्ध्र धारा में गिरावट है
जहां
और उत्पत्ति मान है। हम हल कर सकते हैं के अनुसार :
और कुल वोल्टेज घटाव तब है
जब हम यह मान लेते हैं छोटा है, हम प्राप्त करते हैं और शॉकले आदर्श डायोड समीकरण।
उच्च पश्च अभिनति के तहत प्रवाहित होने वाली लघु धारा तब परत में इलेक्ट्रॉन-रन्ध्र जोड़े के तापीय उत्पत्ति का परिणाम है। इलेक्ट्रॉन फिर एन टर्मिनल और रन्ध्र को पी टर्मिनल तक प्रवाहित करते हैं। परत में इलेक्ट्रॉनों और रन्ध्रोेें की सघनता इतनी कम होती है कि वहाँ पुनर्संयोजन नगण्य होता है।
1950 में, शॉकले और सहकर्मियों ने एक जर्मेनियम डायोड का वर्णन करते हुए एक संक्षिप्त लेख प्रकाशित किया जो आदर्श समीकरण का बारीकी से पालन करता था।[4] 1954 में, बिल पफैन और डब्ल्यू. वैन रूस्ब्रोक (जो बेल टेलीफोन प्रयोगशालाओं के भी थे) ने बताया कि हालांकि शॉक्ले का समीकरण कुछ जर्मेनियम संयोजनों पर लागू था, कई सिलिकॉन संयोजनों के लिए धारा (पर्याप्त अग्र अभिनति के तहत) समानुपाती थी जिसमें A का मान 2 या 3 के बराबर है।[5] यह n के ऊपर आदर्श घटक है।
1981 में, एलेक्सिस डी वोस और हरमन पॉवेल्स ने दिखाया कि कुछ धारणाओं के तहत संयोजन के क्वांटम यांत्रिकी का अधिक सावधानीपूर्वक विश्लेषण धारा बनाम वोल्टेज की विशेषता देता है
जहां A संयोजन का अनुप्रस्थ काट क्षेत्र है और Fi बैंड अंतराल ऊर्जा पर ऊर्जा के साथ प्रति एकांक क्षेत्र में आने वाले फोटोन की संख्या है और Fo(V) निर्गामी फोटॉन है, द्वारा दिया गया है[6]
निर्गामी प्रवाह को 2 गुणा करने के घटक की आवश्यकता होती है क्योंकि फोटॉन दोनों तरफ से उत्सर्जित होते हैं, लेकिन आने वाले प्रवाह को केवल एक तरफ से आने वाला माना जाता है। हालांकि प्रकाशन के तहत प्रकाशवोल्टीय सेल के लिए विश्लेषण किया गया था, यह तब भी लागू होता है जब प्रकाशन केवल पृष्ठभूमि तापीय विकिरण होती है, बशर्ते 2 का घटक इस आने वाले प्रवाह के लिए भी उपयोग किया जाता है। विश्लेषण आम तौर पर आदर्श डायोड के लिए अधिक कठोर व्यंजक देता है, सिवाय इसके कि यह मानता है कि सेल पर्याप्त मोटी है कि यह फोटॉन के इस प्रवाह की उत्पत्ति कर सकती है। जब प्रकाशन सिर्फ पृष्ठभूमि तापीय विकिरण होता है, तो विशेषता होती है
ध्यान दें कि, शॉक्ले विधि के विपरीत, धारा अनंत तक जाती है क्योंकि वोल्टेज अन्तराल वोल्टेज hνg/q पर जाता है। यह निश्चित रूप से पुनर्संयोजन की अनंत मात्रा प्रदान करने के लिए एक अनंत मोटाई की आवश्यकता होगी।
इस समीकरण को हाल ही में 2डी पदार्थ-आधारित शॉट्की डायोड के लिए एक हाल ही के प्रतिमान का उपयोग करके धारा I_s में नए तापमान स्केलिंग के लिए संशोधित किया गया था[7] 2D सामग्री आधारित Schottky डायोड के लिए।
संदर्भ
- ↑ McAllister, Willy (2022-11-14). "डायोड समीकरण". Spinning Numbers (in English). Retrieved 2023-01-17.
- ↑ William Shockley (Jul 1949). "The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors". The Bell System Technical Journal. 28 (3): 435–489. doi:10.1002/j.1538-7305.1949.tb03645.x.. Equation 3.13 on page 454.
- ↑ Ibid. p. 456.
- ↑ F.S. Goucher; et al. (Dec 1950). "जर्मेनियम p-n जंक्शन के लिए सिद्धांत और प्रयोग". Physical Review. 81. doi:10.1103/PhysRev.81.637.2.
- ↑ W. G. Pfann; W. van Roosbroek (Nov 1954). "Radioactive and Photoelectric p‐n Junction Power Sources". Journal of Applied Physics. 25 (11): 1422–1434. Bibcode:1954JAP....25.1422P. doi:10.1063/1.1721579.
- ↑ A. De Vos and H. Pauwels (1981). "On the Thermodynamic Limit of Photovoltaic Energy Conversion". Appl. Phys. 25 (2): 119–125. Bibcode:1981ApPhy..25..119D. doi:10.1007/BF00901283. S2CID 119693148.. Appendix.
- ↑ Y. S. Ang, H. Y. Yang and L. K. Ang (August 2018). "Universal scaling in nanoscale lateral Schottky heterostructures". Phys. Rev. Lett. 121: 056802.