प्रांटल संख्या: Difference between revisions

From Vigyanwiki
Line 41: Line 41:




== शारीरिक व्याख्या ==
== भौतिक व्याख्या ==
प्रान्तल संख्या के छोटे मान, {{math|Pr ≪ 1}}, इसका मतलब है कि थर्मल डिफ्यूसिविटी हावी है। जबकि बड़े मूल्यों के साथ, {{math|Pr ≫ 1}}, संवेग विसारकता व्यवहार पर हावी है।
प्रांड्टल संख्या के छोटे मान, {{math|Pr ≪ 1}}, का अर्थ है कि तापीय विसरणशीलता हावी है। जबकि बड़े मानो के साथ, {{math|Pr ≫ 1}}, संवेग विसरणशीलता व्यवहार पर हावी है।
उदाहरण के लिए, तरल पारा के लिए सूचीबद्ध मूल्य इंगित करता है कि संवहन की तुलना में ऊष्मा चालन अधिक महत्वपूर्ण है, इसलिए तापीय विसारकता प्रमुख है।
उदाहरण के लिए, तरल पारा के लिए सूचीबद्ध मूल्य इंगित करता है कि संवहन की तुलना में ऊष्मा चालन अधिक महत्वपूर्ण है, इसलिए तापीय विसारकता प्रमुख है।
हालांकि, इंजन तेल के लिए, शुद्ध चालन की तुलना में एक क्षेत्र से [[ऊर्जा]] स्थानांतरित करने में संवहन बहुत प्रभावी होता है, इसलिए संवेग प्रसार प्रबल होता है।<ref>{{Cite book|last=Çengel|first=Yunus A.|title=Heat transfer : a practical approach|date=2003|publisher=McGraw-Hill|isbn=0072458933|edition=2nd|location=Boston|oclc=50192222}}</ref>
हालांकि, इंजन तेल के लिए, शुद्ध चालन की तुलना में एक क्षेत्र से [[ऊर्जा]] स्थानांतरित करने में संवहन बहुत प्रभावी होता है, इसलिए संवेग प्रसार प्रबल होता है।<ref>{{Cite book|last=Çengel|first=Yunus A.|title=Heat transfer : a practical approach|date=2003|publisher=McGraw-Hill|isbn=0072458933|edition=2nd|location=Boston|oclc=50192222}}</ref>

Revision as of 08:08, 30 March 2023

प्रांटल संख्या (Pr) या प्रांटल समूह एक विमाहीन संख्या है, जिसका नाम जर्मन भौतिकविज्ञानी लुडविग प्रांटल के नाम पर रखा गया है, जिसे ऊष्मीय विसरणशीलता के लिए संवेग विसरणशीलता के अनुपात के रूप में परिभाषित किया गया है।[1] प्रांटल संख्या इस प्रकार दी गई है:

कहाँ:

ध्यान दें कि जबकि रेनॉल्ड्स संख्या और ग्राशोफ़ संख्या एक मापनी चर के साथ पादांकित हैं, प्रांटल संख्या में ऐसा कोई लंबाई पैमाना नहीं है और यह केवल द्रव और द्रव अवस्था पर निर्भर है। प्रांटल संख्या अक्सर संपत्ति तालिकाओं में अन्य गुणों जैसे कि श्यानता और तापीय चालकता के साथ पाई जाती है।

प्रांटल संख्या के द्रव्यमान अंतरण के अनुरूप श्मिट संख्या है, प्रांटल संख्या और श्मिट संख्या का अनुपात लूइस संख्या है।

प्रायोगिक मान

विशिष्ट मान

तापमान और दबाव की एक विस्तृत श्रृंखला में अधिकांश गैसों के लिए, Pr लगभग स्थिर है। इसलिए, इसका उपयोग उच्च तापमान पर गैसों की तापीय चालकता निर्धारित करने के लिए किया जा सकता है, जहां संवहन धाराओं के गठन के कारण प्रयोगात्मक रूप से मापना कठिन होता है।[1]

Prके लिए विशिष्ट मान हैं:

  • 975 K पर पिघले हुए पोटेशियम के लिए 0.003[1]* पारा के लिए लगभग 0.015
  • 975 K पर पिघले हुए लिथियम के लिए 0.065[1]* उत्कृष्ट गैसों या हाइड्रोजन के साथ उत्कृष्ट गैसों के मिश्रण के लिए लगभग 0.16–0.7
  • ऑक्सीजन के लिए 0.63 [1]* हवा और कई अन्य गैसों के लिए लगभग 0.71
  • 1.38 गैसीय अमोनिया के लिए[1]*R-12 प्रशीतक के लिए 4 से 5 के बीच
  • जल के लिए लगभग 7.56 (18 °C पर)
  • समुद्री जल के लिए 13.4 और 7.2 (क्रमशः 0 °C और 20 °C पर)
  • एन-ब्यूटेनॉल के लिए 50[1]* इंजन तेल के लिए 100 से 40,000 के बीच
  • ग्लिसरॉल के लिए 1000[1]* बहुलक पिघलने के लिए 10,000[1]* पृथ्वी के आवरण के लिए लगभग 1×1025।

वायु और जल की प्रांड्टल संख्या की गणना का सूत्र

1 बार के दबाव वाली वायु के लिए, −100°C और +500°C के बीच तापमान परास में प्रांड्टल संख्या की गणना नीचे दिए गए सूत्र का उपयोग करके की जा सकती है।[2] तापमान का उपयोग इकाई डिग्री सेल्सियस में किया जाना है। विचलन रचना मानो से अधिकतम 0.1% हैं।


नीचे दिए गए सूत्र का उपयोग करके 0 डिग्री सेल्सियस और 90 डिग्री सेल्सियस के बीच तापमान परास में जल (1 बार) के लिए प्रांड्टल संख्या निर्धारित की जा सकती है।[3] तापमान का उपयोग इकाई डिग्री सेल्सियस में किया जाना है। विचलन रचना मानो से अधिकतम 1% हैं।


भौतिक व्याख्या

प्रांड्टल संख्या के छोटे मान, Pr ≪ 1, का अर्थ है कि तापीय विसरणशीलता हावी है। जबकि बड़े मानो के साथ, Pr ≫ 1, संवेग विसरणशीलता व्यवहार पर हावी है। उदाहरण के लिए, तरल पारा के लिए सूचीबद्ध मूल्य इंगित करता है कि संवहन की तुलना में ऊष्मा चालन अधिक महत्वपूर्ण है, इसलिए तापीय विसारकता प्रमुख है। हालांकि, इंजन तेल के लिए, शुद्ध चालन की तुलना में एक क्षेत्र से ऊर्जा स्थानांतरित करने में संवहन बहुत प्रभावी होता है, इसलिए संवेग प्रसार प्रबल होता है।[4] गैसों की प्रान्त संख्या लगभग 1 है, जो इंगित करता है कि संवेग और ऊष्मा दोनों द्रव के माध्यम से लगभग समान दर से विलुप्त होते हैं। तरल धातुओं में ऊष्मा बहुत जल्दी फैलती है (Pr ≪ 1) और बहुत धीरे-धीरे तेलों में (Pr ≫ 1) संवेग के सापेक्ष। नतीजतन थर्मल सीमा परत की मोटाई और आकार तरल धातुओं के लिए बहुत मोटा होता है और सीमा परत की मोटाई के सापेक्ष तेलों के लिए बहुत पतला होता है।

गर्मी हस्तांतरण की समस्याओं में, प्रांटल संख्या गति और थर्मल सीमा परतों की सापेक्ष मोटाई को नियंत्रित करती है। कब Pr छोटा है, इसका मतलब है कि वेग (गति) की तुलना में गर्मी जल्दी फैलती है। इसका अर्थ है कि तरल धातुओं के लिए तापीय सीमा परत वेग सीमा परत की तुलना में बहुत अधिक मोटी होती है।

लैमिनार बाउंड्री लेयर्स में, एक फ्लैट प्लेट पर थर्मल से मोमेंटम बाउंड्री लेयर मोटाई का अनुपात किसके द्वारा अच्छी तरह से अनुमानित है[5]

कहाँ थर्मल सीमा परत मोटाई है और संवेग सीमा परत मोटाई है।

एक फ्लैट प्लेट पर असंपीड्य प्रवाह के लिए, दो न्यूसेल्ट संख्या सहसंबंध असम्बद्ध रूप से सही हैं:[6]

कहाँ रेनॉल्ड्स संख्या है। नॉर्म (गणित) की अवधारणा का उपयोग करके इन दो स्पर्शोन्मुख समाधानों को एक साथ मिश्रित किया जा सकता है:[7]


यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Coulson, J. M.; Richardson, J. F. (1999). केमिकल इंजीनियरिंग वॉल्यूम 1 (6th ed.). Elsevier. ISBN 978-0-7506-4444-0.
  2. tec-science (2020-05-10). "प्रान्तल संख्या". tec-science (in English). Retrieved 2020-06-25.
  3. tec-science (2020-05-10). "प्रान्तल संख्या". tec-science (in English). Retrieved 2020-06-25.
  4. Çengel, Yunus A. (2003). Heat transfer : a practical approach (2nd ed.). Boston: McGraw-Hill. ISBN 0072458933. OCLC 50192222.
  5. Lienhard IV, John Henry; Lienhard V, John Henry (2017). एक हीट ट्रांसफर टेक्स्टबुक (4th ed.). Cambridge, MA: Phlogiston Press.
  6. Lienhard IV, John Henry; Lienhard V, John Henry (2017). एक हीट ट्रांसफर टेक्स्टबुक (4th ed.). Cambridge, MA: Phlogiston Press.
  7. Lienhard IV, John Henry; Lienhard V, John Henry (2017). एक हीट ट्रांसफर टेक्स्टबुक (4th ed.). Cambridge, MA: Phlogiston Press.



सामान्य संदर्भ

  • White, F. M. (2006). चिपचिपा द्रव प्रवाह (3rd. ed.). New York: McGraw-Hill. ISBN 0-07-240231-8.

श्रेणी: संवहन श्रेणी:द्रव यांत्रिकी की आयाम रहित संख्या श्रेणी:ऊष्मागतिकी की आयाम रहित संख्या श्रेणी:द्रव गतिकी