लिथोट्रॉफ़: Difference between revisions

From Vigyanwiki
No edit summary
Line 13: Line 13:


=== केमोलिथोट्रॉफ़्स ===
=== केमोलिथोट्रॉफ़्स ===
केमोलिथोट्रोफ अपनी ऊर्जा उत्पादन प्रतिक्रियाओं में अकार्बनिक कम यौगिकों का उपयोग करने में सक्षम है। इस प्रक्रिया में एटीपी संश्लेषण के साथ मिलकर अकार्बनिक यौगिकों का ऑक्सीकरण शामिल है। अधिकांश केमोलिथोट्रॉफ़्स केमोलिथोआटोट्रॉफ़्स हैं, जो केल्विन चक्र के माध्यम से कार्बन डाइऑक्साइड (CO2) को ठीक करने में सक्षम हैं, एक चयापचय मार्ग जिसमें CO2 ग्लूकोज में परिवर्तित हो जाती है। जीवों के इस समूह में सल्फर ऑक्सीडाइज़र, नाइट्राइजिंग बैक्टीरिया, आयरन ऑक्सीडाइज़र और हाइड्रोजन ऑक्सीडाइज़र शामिल हैं।
केमोलिथोट्रोफ अपनी ऊर्जा उत्पादन प्रतिक्रियाओं में अकार्बनिक कम यौगिकों का उपयोग करने में सक्षम है।<ref name="astrobio">{{cite book|title=एस्ट्रोबायोलॉजी में पूरा कोर्स|editor-last1=Horneck|editor-first1=Gerda|editor-last2=Rettberg|editor-first2=Petra|publisher=Wiley-VCH|location=Weinheim, Germany|isbn=978-3-527-40660-9|url=http://www.fis.puc.cl/~jalfaro/astrobiologia/apoyo/3527406603%20-%20-%20Complete%20Course%20in%20Astrobiology%20(Physics%20Textbook)%20%5B2007%5D.pdf|access-date=13 September 2020|date=2007}}</ref> <ref name="NYT-20160912" />इस प्रक्रिया में एटीपी संश्लेषण के साथ मिलकर अकार्बनिक यौगिकों का ऑक्सीकरण शामिल है। अधिकांश केमोलिथोट्रॉफ़्स केमोलिथोआटोट्रॉफ़्स हैं, जो [[केल्विन चक्र]] के माध्यम से [[कार्बन डाईऑक्साइड]] (CO2) को ठीक करने में सक्षम हैं, एक चयापचय मार्ग जिसमें CO2 ग्लूकोज में परिवर्तित हो जाती है।<ref name="kuenen">{{cite book |last=Kuenen |first=G.|editor-first1=J.|editor-last1=Lengeler|editor-first2=G.|editor-last2=Drews|editor-first3=H.|editor-last3=Schlegel|title=प्रोकैरियोट्स की जीवविज्ञान|year=2009|publisher=John Wiley & Sons| page= 242| chapter=Oxidation of Inorganic Compounds by Chemolithotrophs|chapter-url=https://books.google.com/books?id=vXbJa4X5oHsC&q=%22the+majority+of+the+chemolithoautotrophs+employ+the+Calvin+cycle%22&pg=PA241| isbn=9781444313307}}</ref> जीवों के इस समूह में सल्फर ऑक्सीडाइज़र, नाइट्राइजिंग बैक्टीरिया, आयरन ऑक्सीडाइज़र और हाइड्रोजन ऑक्सीडाइज़र शामिल हैं।


एक केमोलिथोट्रॉफ़ अपनी ऊर्जा-उत्पादक प्रतिक्रियाओं में अकार्बनिक कम यौगिकों का उपयोग करने में सक्षम है।<ref name="astrobio">{{cite book|title=एस्ट्रोबायोलॉजी में पूरा कोर्स|editor-last1=Horneck|editor-first1=Gerda|editor-last2=Rettberg|editor-first2=Petra|publisher=Wiley-VCH|location=Weinheim, Germany|isbn=978-3-527-40660-9|url=http://www.fis.puc.cl/~jalfaro/astrobiologia/apoyo/3527406603%20-%20-%20Complete%20Course%20in%20Astrobiology%20(Physics%20Textbook)%20%5B2007%5D.pdf|access-date=13 September 2020|date=2007}}</ref>{{rp|155}}<ref name="NYT-20160912" />इस प्रक्रिया में एटीपी संश्लेषण से जुड़े अकार्बनिक यौगिकों का ऑक्सीकरण शामिल है। अधिकांश केमोलिथोट्रॉफ़ [[प्राथमिक पोषण समूह]] हैं, जो [[कार्बन डाईऑक्साइड]] को ठीक करने में सक्षम हैं (CO<sub>2</sub>) [[केल्विन चक्र]] के माध्यम से, एक चयापचय मार्ग जिसमें CO<sub>2</sub> [[ग्लूकोज]] में परिवर्तित हो जाता है।<ref name="kuenen">{{cite book |last=Kuenen |first=G.|editor-first1=J.|editor-last1=Lengeler|editor-first2=G.|editor-last2=Drews|editor-first3=H.|editor-last3=Schlegel|title=प्रोकैरियोट्स की जीवविज्ञान|year=2009|publisher=John Wiley & Sons| page= 242| chapter=Oxidation of Inorganic Compounds by Chemolithotrophs|chapter-url=https://books.google.com/books?id=vXbJa4X5oHsC&q=%22the+majority+of+the+chemolithoautotrophs+employ+the+Calvin+cycle%22&pg=PA241| isbn=9781444313307}}</ref> [[जीवों]] के इस समूह में सल्फर ऑक्सीडाइज़र, [[नाइट्रिफाइंग बैक्टीरिया]], आयरन ऑक्सीडाइज़र और हाइड्रोजन ऑक्सीडाइज़र शामिल हैं।
[[जीवों]] के इस समूह में सल्फर ऑक्सीडाइज़र, [[नाइट्रिफाइंग बैक्टीरिया]], आयरन ऑक्सीडाइज़र और हाइड्रोजन ऑक्सीडाइज़र शामिल हैं।


केमोलिथोट्रोफी शब्द अकार्बनिक यौगिकों के ऑक्सीकरण से एक सेल के ऊर्जा के अधिग्रहण को संदर्भित करता है, जिसे इलेक्ट्रॉन दाताओं के रूप में भी जाना जाता है। माना जाता है कि चयापचय का यह रूप केवल [[प्रोकैर्योसाइटों]] में होता है और पहली बार यूक्रेनी सूक्ष्म जीवविज्ञानी [[सर्गेई विनोग्रैडस्की]] द्वारा इसकी विशेषता थी।<ref>{{cite encyclopedia|encyclopedia=Encyclopedia of Astrobiology|title=केमोलिथोट्रॉफ़|last=Amils|first=Ricardo|year=2011|pages=289–291|editor-first1=Muriel|editor-last1=Gargaud|editor-first2=Ricardo|editor-last2=Amils|editor-first3=José Cernicharo|editor-last3=Quintanilla|editor-first4=Henderson James II|editor-last4=Cleaves|editor-first5=William M.|editor-last5=Irvine|editor-first6=Daniele L.|editor-last6=Pinti|editor-first7=Michel|editor-last7=Viso|edition=2011|doi=10.1007/978-3-642-11274-4_273|publisher=Springer|location=Berlin, Heidelberg|isbn=978-3-642-11271-3}}</ref>
केमोलिथोट्रोफी शब्द अकार्बनिक यौगिकों के ऑक्सीकरण से एक सेल के ऊर्जा के अधिग्रहण को संदर्भित करता है, जिसे इलेक्ट्रॉन दाताओं के रूप में भी जाना जाता है। माना जाता है कि चयापचय का यह रूप केवल [[प्रोकैर्योसाइटों]] में होता है और पहली बार यूक्रेनी सूक्ष्म जीवविज्ञानी [[सर्गेई विनोग्रैडस्की]] द्वारा इसकी विशेषता थी।<ref>{{cite encyclopedia|encyclopedia=Encyclopedia of Astrobiology|title=केमोलिथोट्रॉफ़|last=Amils|first=Ricardo|year=2011|pages=289–291|editor-first1=Muriel|editor-last1=Gargaud|editor-first2=Ricardo|editor-last2=Amils|editor-first3=José Cernicharo|editor-last3=Quintanilla|editor-first4=Henderson James II|editor-last4=Cleaves|editor-first5=William M.|editor-last5=Irvine|editor-first6=Daniele L.|editor-last6=Pinti|editor-first7=Michel|editor-last7=Viso|edition=2011|doi=10.1007/978-3-642-11274-4_273|publisher=Springer|location=Berlin, Heidelberg|isbn=978-3-642-11271-3}}</ref>

Revision as of 00:00, 5 April 2023

लिथोट्रॉफ़ जीवों का एक विविध समूह है जो सेलुलर श्वसन या अवायवीय श्वसन के माध्यम से जैवसंश्लेषण (जैसे, कार्बन निर्धारण) या ऊर्जा संरक्षण (यानी, एडेनोसाइन ट्रायफ़ोस्फेट उत्पादन) में उपयोग के लिए कम करने वाले समकक्षों को प्राप्त करने के लिए एक अकार्बनिक सब्सट्रेट (आमतौर पर खनिज मूल के) का उपयोग करते हैं।[1] जबकि व्यापक अर्थों में लिथोट्रॉफ़्स में पौधों की तरह फोटोलिथोट्रोफ़्स शामिल हैं, केमोलिथोट्रॉफ़ विशेष रूप से सूक्ष्मजीव हैं; कोई ज्ञात मैक्रोफौना में अकार्बनिक यौगिकों को इलेक्ट्रॉन स्रोतों के रूप में उपयोग करने की क्षमता नहीं हैI मैक्रोफौना और लिथोट्रोफ्स सहजीवी संबंध बना सकते हैं, इस स्तिथि में लिथोट्रोफ्स को "प्रोकैरियोटिक सिम्बियन" कहा जाता है। इसका एक उदाहरण विशाल ट्यूब कृमि या प्लास्टिड्स में केमोलिथोट्रोफिक बैक्टीरिया है, जो पौधों की कोशिकाओं के भीतर ऑर्गेनेल हैं जो कि फोटोलिथोग्राफिक साइनोबैक्टीरिया जैसे जीवों से विकसित हो सकते हैं। केमोलिथोट्रॉफ़ डोमेन बैक्टीरिया और आर्किया से संबंधित हैं। "लिथोट्रॉफ़" शब्द ग्रीक शब्दों 'लिथोस' (रॉक) और 'ट्रॉफ़' (उपभोक्ता) से बनाया गया था, जिसका अर्थ है "रॉक के खाने वाले"। परन्तु सभी लिथोऑटोट्रॉफ़ चरमोत्कर्ष नहीं हैं।

जीवन के अंतिम सार्वभौमिक आम पूर्वज को केमोलिथोट्रॉफ़ (प्रोकैरियोट्स में इसकी उपस्थिति के कारण) माना जाता है।[2] लिथोट्रॉफ़ से भिन्न एक ऑर्गोट्रोफ़ है, एक जीव जो कार्बनिक यौगिकों के अपचय से अपने कम करने वाले एजेंटों को प्राप्त करता है।

इतिहास

इस शब्द का सुझाव वर्ष 1946 में लवॉफ और उनके सहयोगियों द्वारा दिया गया था।[3]

जैव रसायन

लिथोट्रोफ्स कम अकार्बनिक यौगिक (इलेक्ट्रॉन दाताओं) का उपभोग करते हैं।

केमोलिथोट्रॉफ़्स

केमोलिथोट्रोफ अपनी ऊर्जा उत्पादन प्रतिक्रियाओं में अकार्बनिक कम यौगिकों का उपयोग करने में सक्षम है।[4] [5]इस प्रक्रिया में एटीपी संश्लेषण के साथ मिलकर अकार्बनिक यौगिकों का ऑक्सीकरण शामिल है। अधिकांश केमोलिथोट्रॉफ़्स केमोलिथोआटोट्रॉफ़्स हैं, जो केल्विन चक्र के माध्यम से कार्बन डाईऑक्साइड (CO2) को ठीक करने में सक्षम हैं, एक चयापचय मार्ग जिसमें CO2 ग्लूकोज में परिवर्तित हो जाती है।[6] जीवों के इस समूह में सल्फर ऑक्सीडाइज़र, नाइट्राइजिंग बैक्टीरिया, आयरन ऑक्सीडाइज़र और हाइड्रोजन ऑक्सीडाइज़र शामिल हैं।

जीवों के इस समूह में सल्फर ऑक्सीडाइज़र, नाइट्रिफाइंग बैक्टीरिया, आयरन ऑक्सीडाइज़र और हाइड्रोजन ऑक्सीडाइज़र शामिल हैं।

केमोलिथोट्रोफी शब्द अकार्बनिक यौगिकों के ऑक्सीकरण से एक सेल के ऊर्जा के अधिग्रहण को संदर्भित करता है, जिसे इलेक्ट्रॉन दाताओं के रूप में भी जाना जाता है। माना जाता है कि चयापचय का यह रूप केवल प्रोकैर्योसाइटों में होता है और पहली बार यूक्रेनी सूक्ष्म जीवविज्ञानी सर्गेई विनोग्रैडस्की द्वारा इसकी विशेषता थी।[7]


केमोलिथोट्रोफ्स का आवास

इन जीवाणुओं का जीवित रहना उनके पर्यावरण की भौतिक-रासायनिक स्थितियों पर निर्भर करता है। हालांकि वे अकार्बनिक सब्सट्रेट की गुणवत्ता जैसे कुछ कारकों के प्रति संवेदनशील हैं, वे दुनिया में कुछ सबसे दुर्गम परिस्थितियों में पनपने में सक्षम हैं, जैसे तापमान 110 डिग्री सेल्सियस से ऊपर और 2 पीएच से नीचे।[8] केमोलिथोट्रोपिक जीवन के लिए सबसे महत्वपूर्ण आवश्यकता अकार्बनिक यौगिकों का प्रचुर स्रोत है,[9] जो CO को ठीक करने के लिए एक उपयुक्त इलेक्ट्रॉन दाता प्रदान करते हैं2 और उस ऊर्जा का उत्पादन करते हैं जिसकी सूक्ष्मजीव को जीवित रहने के लिए आवश्यकता होती है। चूँकि रसायन संश्लेषण सूर्य के प्रकाश की अनुपस्थिति में हो सकता है, ये जीव ज्यादातर हाइड्रोथर्मल वेंट और अकार्बनिक सब्सट्रेट से भरपूर अन्य स्थानों के आसपास पाए जाते हैं।

अकार्बनिक ऑक्सीकरण से प्राप्त ऊर्जा सब्सट्रेट और प्रतिक्रिया के आधार पर भिन्न होती है। उदाहरण के लिए, ½O द्वारा हाइड्रोजन सल्फाइड का तात्विक गंधक में ऑक्सीकरण2 3/2 O द्वारा सल्फेट (150 किलो कैलोरी/मोल या 627 kJ/mol) में मौलिक सल्फर के ऑक्सीकरण की तुलना में बहुत कम ऊर्जा (50 कैलोरी/मोल (यूनिट) या 210 जूल/मोल) पैदा करता है।2,[10]. अधिकांश लिथोट्रोफ कार्बन डाइऑक्साइड को केल्विन चक्र के माध्यम से ठीक करते हैं, जो एक ऊर्जावान रूप से महंगी प्रक्रिया है।[6] कुछ कम-ऊर्जा सबस्ट्रेट्स के लिए, जैसे कि लोहा, कोशिकाओं को बड़ी मात्रा में अकार्बनिक सब्सट्रेट के माध्यम से कम मात्रा में ऊर्जा को सुरक्षित करने के लिए खींचना चाहिए। यह उनकी चयापचय प्रक्रिया को कई जगहों पर अक्षम बना देता है और उन्हें पनपने से रोकता है।[11]


चयापचय प्रक्रिया का अवलोकन

इन सूक्ष्मजीवों द्वारा ऊर्जा उत्पन्न करने के लिए उपयोग किए जा सकने वाले अकार्बनिक सबस्ट्रेट्स के प्रकारों में काफी भिन्नता है। सल्फर कई अकार्बनिक सब्सट्रेट्स में से एक है जिसका उपयोग लिथोट्रॉफ़ द्वारा उपयोग की जाने वाली विशिष्ट जैव रासायनिक प्रक्रिया के आधार पर विभिन्न कम रूपों में किया जा सकता है।[12] केमोलिथोट्रॉफ़्स जो सबसे अच्छी तरह से प्रलेखित हैं, एरोबिक श्वासयंत्र हैं, जिसका अर्थ है कि वे अपनी चयापचय प्रक्रिया में ऑक्सीजन का उपयोग करते हैं। इन सूक्ष्मजीवों की सूची जो अवायवीय श्वसन को नियोजित करती है, हालांकि बढ़ रही है। इस चयापचय प्रक्रिया के केंद्र में एक इलेक्ट्रॉन परिवहन प्रणाली है जो कि केमोरोगोनोट्रॉफ़्स के समान है। इन दो सूक्ष्मजीवों के बीच प्रमुख अंतर यह है कि केमोलिथोट्रॉफ़्स सीधे इलेक्ट्रॉन परिवहन श्रृंखला को इलेक्ट्रॉन प्रदान करते हैं, जबकि केमोरोगोनोट्रोफ़्स को कम कार्बनिक यौगिकों को ऑक्सीकरण करके अपनी स्वयं की सेलुलर कम करने वाली शक्ति उत्पन्न करनी चाहिए। केमोलिथोट्रोफ सीधे अकार्बनिक सब्सट्रेट से या रिवर्स इलेक्ट्रॉन ट्रांसपोर्ट रिएक्शन से अपनी कम करने की शक्ति प्राप्त करके इसे बायपास करते हैं।[13] कुछ विशिष्ट केमोलिथोट्रोफिक बैक्टीरिया सॉक्स सिस्टम के विभिन्न डेरिवेटिव का उपयोग करते हैं; सल्फर ऑक्सीकरण के लिए विशिष्ट एक केंद्रीय मार्ग।[12]यह प्राचीन और अनोखा मार्ग उस शक्ति को दर्शाता है जो कि केमोलिथोट्रॉफ़्स सल्फर जैसे अकार्बनिक सबस्ट्रेट्स से उपयोग करने के लिए विकसित हुए हैं।

केमोलिथोट्रॉफ़्स में, यौगिकों - इलेक्ट्रॉन दाताओं - को कोशिका (जीव विज्ञान) में ऑक्सीकृत किया जाता है, और इलेक्ट्रॉनों को श्वसन श्रृंखलाओं में प्रसारित किया जाता है, अंततः एडेनोसिन ट्राइफॉस्फेट का उत्पादन होता है। इलेक्ट्रॉन स्वीकर्ता ऑक्सीजन (एरोबिक जीव बैक्टीरिया में) हो सकता है, लेकिन विभिन्न प्रकार के अन्य इलेक्ट्रॉन स्वीकर्ता, कार्बनिक यौगिक और अकार्बनिक भी विभिन्न प्रजातियों द्वारा उपयोग किए जाते हैं। नाइट्रिफाइंग बैक्टीरिया, नाइट्रोबैक्टर जैसे एरोबिक बैक्टीरिया, नाइट्राइट को नाइट्रेट में ऑक्सीकरण करने के लिए ऑक्सीजन का उपयोग करते हैं।[14] कुछ लिथोट्रॉफ़ कार्बन डाइऑक्साइड से रासायनिक संश्लेषण नामक एक प्रक्रिया में कार्बनिक यौगिकों का उत्पादन करते हैं, जैसा कि पौधे प्रकाश संश्लेषण में करते हैं। कार्बन डाइऑक्साइड स्थिरीकरण को चलाने के लिए पौधे सूर्य के प्रकाश से ऊर्जा का उपयोग करते हैं, लेकिन रसायन विज्ञान सूर्य के प्रकाश की अनुपस्थिति में हो सकता है (जैसे, एक हाइपोथर्मल वेंट के आसपास)। पारिस्थितिक तंत्र हाइड्रोथर्मल वेंट में और उसके आसपास स्थापित होते हैं क्योंकि अकार्बनिक पदार्थों की प्रचुरता, अर्थात् हाइड्रोजन, समुद्र तल के नीचे जेब में मैग्मा के माध्यम से लगातार आपूर्ति की जाती है।[15] अन्य लिथोट्रॉफ़ अपनी कुछ या सभी ऊर्जा आवश्यकताओं के लिए प्रत्यक्ष रूप से अकार्बनिक पदार्थों, जैसे, लौह लोहा, हाइड्रोजन सल्फाइड, मौलिक सल्फर, थायोसल्फेट, या अमोनिया का उपयोग करने में सक्षम हैं।[16][17][18][19][20] यहां केमोलिथोट्रोफिक मार्गों के कुछ उदाहरण दिए गए हैं, जिनमें से कोई भी इलेक्ट्रॉन स्वीकर्ता के रूप में ऑक्सीजन या नाइट्रेट का उपयोग कर सकता है:

Name Examples Source of electrons Respiration electron acceptor
Iron bacteria Acidithiobacillus ferrooxidans Fe2+ (ferrous iron) → Fe3+ (ferric iron) + e[21] O
2
(oxygen) + 4H+ + 4e→ 2H
2
O [21]
Nitrosifying bacteria Nitrosomonas NH3 (ammonia) + 2H
2
O →

NO
2
(nitrite) + 7H+ + 6e [22]

O
2
(oxygen) + 4H+ + 4e → 2H
2
O [22]
Nitrifying bacteria Nitrobacter NO
2
(nitrite) + H
2
O → NO
3
(nitrate) + 2H+ + 2e[23]
O
2
(oxygen) + 4H+ + 4e → 2H
2
O [23]
Chemotrophic purple sulfur bacteria Halothiobacillaceae S2−
(sulfide) → S0
(sulfur) + 2e
O
2
(oxygen) + 4H+ + 4e→ 2H
2
O
Sulfur-oxidizing bacteria Chemotrophic Rhodobacteraceae
and Thiotrichaceae
S0
(sulfur) + 4H
2
O → SO2−
4
(sulfate) + 8H+ + 6e
O
2
(oxygen) + 4H+ + 4e→ 2H
2
O
Aerobic hydrogen bacteria Cupriavidus metallidurans H2 (hydrogen) → 2H+ + 2e [24] O
2
(oxygen) + 4H+ + 4e→ 2H
2
O [24]
Anammox bacteria Planctomycetota NH+
4
(ammonium)

→ 1/2N2 (nitrogen) + 4H+ + 3e[25]

NO
2
(nitrite) + 4H+ + 3e

1/2N2 (nitrogen) + 2H
2
O [25]

Thiobacillus denitrificans Thiobacillus denitrificans S0
(sulfur) + 4H
2
O → SO2−
4
+ 8H+ + 6e[26]
NO
3
(nitrate) + 6H+ + 5e

1/2N2 (nitrogen) + 3H
2
O [26]

Sulfate-reducing bacteria: Hydrogen bacteria Desulfovibrio paquesii H2 (hydrogen) → 2H+ + 2e[24] SO2−
4
+ 8H+ + 6eS0
+ 4H
2
O [24]
Sulfate-reducing bacteria: Phosphite bacteria Desulfotignum phosphitoxidans PO3−
3
(phosphite) + H
2
O →

PO3−
4
(phosphate) + 2H+ + 2e

SO2−
4
(sulfate) + 8H+ + 6e

S0
(sulfur) + 4H
2
O

Methanogens Archaea H2 (hydrogen) → 2H+ + 2e CO2 + 8H+ + 8eCH4 (methane) + 2H
2
O
Carboxydotrophic bacteria Carboxydothermus hydrogenoformans CO (carbon monoxide) + H
2
O → CO2 + 2H+ + 2e
2H+ + 2eH
2
(hydrogen)


फोटोलिथोट्रोफ्स

फोटोलिथोट्रॉफ़्स जैसे कि पौधे प्रकाश से ऊर्जा प्राप्त करते हैं और इसलिए अकार्बनिक इलेक्ट्रॉन दाताओं जैसे पानी का उपयोग केवल बायोसिंथेटिक प्रतिक्रियाओं (जैसे, लिथोऑटोट्रॉफ़्स में कार्बन डाइऑक्साइड निर्धारण) को बढ़ावा देने के लिए करते हैं।

लिथोएथेरोट्रॉफ़्स बनाम लिथोऑटोट्रॉफ़्स

लिथोट्रोफिक बैक्टीरिया, निश्चित रूप से, उनके कोशिकाओं के संश्लेषण के लिए कार्बन स्रोत के रूप में उनके अकार्बनिक ऊर्जा स्रोत का उपयोग नहीं कर सकते हैं। वे तीन विकल्पों में से एक चुनते हैं:

  • लिथोहेटरोट्रॉफ़्स में कार्बन डाइऑक्साइड को ठीक करने की क्षमता नहीं होती है और उन्हें अलग करने और उनके कार्बन का उपयोग करने के लिए अतिरिक्त कार्बनिक यौगिकों का उपभोग करना चाहिए। केवल कुछ बैक्टीरिया पूरी तरह से लिथोहेटरोट्रोफिक हैं।
  • लिथोऑटोट्रॉफ़ कार्बन स्रोत के रूप में हवा से कार्बन डाइऑक्साइड का उपयोग करने में सक्षम हैं, उसी तरह जैसे पौधे करते हैं।
  • मिक्सोट्रोफ्स अपने कार्बन डाइऑक्साइड निर्धारण स्रोत (ऑटोट्रॉफी और हेटरोट्रॉफी के बीच मिश्रण) के पूरक के लिए जैविक सामग्री का उपयोग करेंगे। कई लिथोट्रॉफ़्स को उनके सी-चयापचय के संबंध में मिक्सोट्रॉफ़िक के रूप में पहचाना जाता है।

केमोलिथोट्रॉफ़्स बनाम फोटोलिथोट्रोफ़्स

इस विभाजन के अतिरिक्त, लिथोट्रॉफ़ प्रारंभिक ऊर्जा स्रोत में भिन्न होते हैं जो एटीपी उत्पादन शुरू करता है:

  • केमोलिथोट्रॉफ़ एरोबिक या एनारोबिक श्वसन के लिए उपर्युक्त अकार्बनिक यौगिकों का उपयोग करते हैं। इन यौगिकों के ऑक्सीकरण द्वारा उत्पादित ऊर्जा एटीपी उत्पादन के लिए पर्याप्त होती है। अकार्बनिक दाताओं से प्राप्त कुछ इलेक्ट्रॉनों को भी जैवसंश्लेषण में प्रवाहित करने की आवश्यकता होती है। अधिकतर, इन कम करने वाले समकक्षों को रूपों और रेडॉक्स क्षमता की आवश्यकता (ज्यादातर एनएडीएच या एनएडीपीएच) में बदलने के लिए अतिरिक्त ऊर्जा का निवेश करना पड़ता है, जो रिवर्स इलेक्ट्रॉन स्थानांतरण प्रतिक्रियाओं से होता है।
  • Photolithotrophs अपने ऊर्जा स्रोत के रूप में प्रकाश का उपयोग करते हैं। ये जीव प्रकाश संश्लेषण हैं; फोटोलिथोट्रोफिक बैक्टीरिया के उदाहरण बैंगनी बैक्टीरिया (जैसे, क्रोमैटियासी), हरे बैक्टीरिया (क्लोरोबिएसी और क्लोरोफ्लेक्सोटा), और साइनोबैक्टीरीया हैं। बैंगनी और हरे बैक्टीरिया सल्फाइड, सल्फर, सल्फाइट, आयरन या हाइड्रोजन को ऑक्सीकृत करते हैं। सायनोबैक्टीरिया और पौधे पानी से कम करने वाले समकक्षों को निकालते हैं, यानी वे पानी को ऑक्सीजन में ऑक्सीकृत करते हैं। इलेक्ट्रॉन दाताओं से प्राप्त इलेक्ट्रॉनों का उपयोग एटीपी उत्पादन के लिए नहीं किया जाता है (जब तक प्रकाश है); उनका उपयोग बायोसिंथेटिक प्रतिक्रियाओं में किया जाता है। कुछ फोटोलिथोट्रॉफ़्स अंधेरे में केमोलिथोट्रॉफ़िक चयापचय में स्थानांतरित हो जाते हैं।

भूवैज्ञानिक महत्व

लिथोट्रॉफ़ कई भूवैज्ञानिक प्रक्रियाओं में भाग लेते हैं, जैसे कि मिट्टी का निर्माण और कार्बन, नाइट्रोजन और अन्य रासायनिक तत्वों के जैव-रासायनिक चक्र। लिथोट्रॉफ़ भी एसिड माइन ड्रेनेज के आधुनिक-दिन के मुद्दे से जुड़े हैं। लिथोट्रॉफ़ विभिन्न प्रकार के वातावरण में मौजूद हो सकते हैं, जिनमें गहरी स्थलीय उपसतह, मिट्टी, खदानें और एंडोलिथ समुदाय शामिल हैं।[27]


मृदा निर्माण

मिट्टी के निर्माण में योगदान देने वाले लिथोट्रॉफ़्स का एक प्राथमिक उदाहरण सायनोबैक्टीरिया है। बैक्टीरिया का यह समूह नाइट्रोजन-फिक्सिंग फोटोलिथोट्रॉफ़ है जो सूरज की रोशनी से ऊर्जा और चट्टानों से अकार्बनिक पोषक तत्वों को कम करने वाले एजेंट के रूप में उपयोग करने में सक्षम है।[27] यह क्षमता देशी, ओलिगोट्रोफिक चट्टानों पर उनके विकास और विकास की अनुमति देती है और अन्य जीवों को उपनिवेश बनाने के लिए उनके कार्बनिक पदार्थों (पोषक तत्वों) के बाद के जमाव में सहायता करती है।[28] औपनिवेशीकरण कार्बनिक यौगिक अपघटन की प्रक्रिया शुरू कर सकता है: मिट्टी की उत्पत्ति के लिए एक प्राथमिक कारक। इस तरह के एक तंत्र को प्रारंभिक विकासवादी प्रक्रियाओं के हिस्से के रूप में जिम्मेदार ठहराया गया है जिसने जैविक पृथ्वी को आकार देने में मदद की।

जैव भू-रासायनिक सायक्लिंग

माइक्रोबियल वातावरण के भीतर तत्वों का जैव-रासायनिक चक्र लिथोट्रॉफ़ का एक अनिवार्य घटक है। उदाहरण के लिए, कार्बन चक्र में, माइक्रोबियल मेटाबॉलिज्म के रूप में वर्गीकृत कुछ बैक्टीरिया होते हैं जो वायुमंडलीय कार्बन डाइऑक्साइड से कार्बनिक कार्बन उत्पन्न करते हैं। कुछ माइक्रोबियल मेटाबोलिज्म बैक्टीरिया भी कार्बनिक कार्बन का उत्पादन कर सकते हैं, कुछ प्रकाश की अनुपस्थिति में भी।[28]पौधों के समान, ये रोगाणु जीवों के उपभोग के लिए ऊर्जा का एक उपयोगी रूप प्रदान करते हैं। इसके विपरीत, ऐसे लिथोट्रॉफ़ होते हैं जिनमें किण्वन की क्षमता होती है, जिससे कार्बनिक कार्बन को दूसरे उपयोगी रूप में परिवर्तित करने की उनकी क्षमता का पता चलता है।[29] लौह चक्र के जैविक पहलू में लिथोट्रॉफ़ एक महत्वपूर्ण भूमिका निभाते हैं। ये जीव लोहे का उपयोग इलेक्ट्रॉन दाता के रूप में कर सकते हैं, Fe(II) -> Fe(III), या एक इलेक्ट्रॉन स्वीकर्ता के रूप में, Fe (III) -> Fe(II)।[30] एक अन्य उदाहरण नाइट्रोजन नियतन है। कई लिथोट्रोफिक बैक्टीरिया नाइट्रोजन निर्धारण नामक प्रक्रिया में अकार्बनिक नाइट्रोजन चक्रनाइट्रोजन) को कार्बनिक नाइट्रोजन (अमोनियम) में कम करने में भूमिका निभाते हैं।[28]इसी तरह, कई लिथोट्रॉफ़िक बैक्टीरिया भी हैं जो अमोनियम को नाइट्रोजन गैस में अनाइट्रीकरण नामक प्रक्रिया में परिवर्तित करते हैं।[27]कार्बन और नाइट्रोजन महत्वपूर्ण पोषक तत्व हैं, जो चयापचय प्रक्रियाओं के लिए आवश्यक हैं, और कभी-कभी सीमित कारक हो सकते हैं जो जीवों के विकास और विकास को प्रभावित करते हैं। इस प्रकार, इन महत्वपूर्ण संसाधनों को प्रदान करने और हटाने दोनों में लिथोट्रॉफ़ प्रमुख खिलाड़ी हैं।

एसिड माइन ड्रेनेज

एसिड माइन ड्रेनेज के रूप में जानी जाने वाली घटना के लिए लिथोट्रॉफ़िक रोगाणु जिम्मेदार हैं। आमतौर पर खनन क्षेत्रों में होने वाली, यह प्रक्रिया पाइराइट्स के सक्रिय चयापचय और अन्य कम सल्फर घटकों को सल्फेट से संबंधित करती है। एक उदाहरण एसिडोफिलिक बैक्टीरियल जीनस, एसिडिथियोबैसिलस | ए है। फेरोक्सिडन्स, जो आयरन (II) सल्फाइड (FeS2) सल्फ्यूरिक एसिड उत्पन्न करने के लिए।[29]इन विशिष्ट लिथोट्रॉफ़्स के अम्लीय उत्पाद में खनन क्षेत्र से जल प्रवाह के माध्यम से निकलने और पर्यावरण में प्रवेश करने की क्षमता है।

एसिड माइन ड्रेनेज नाटकीय रूप से अम्लता (2 - 3 के पीएच मान) और भूजल और धाराओं के रसायन विज्ञान को बदल देता है, और खनन क्षेत्रों के पौधों और जानवरों की आबादी को खतरे में डाल सकता है।[29]एसिड माइन ड्रेनेज के समान गतिविधियाँ, लेकिन बहुत कम पैमाने पर, प्राकृतिक परिस्थितियों में भी पाई जाती हैं जैसे कि ग्लेशियरों के चट्टानी तल, मिट्टी और ताल में, पत्थर के स्मारकों और इमारतों पर और गहरी उपसतह में।

ज्योतिष विज्ञान

यह सुझाव दिया गया है कि जैवखनिजीकरण अलौकिक जीवन के महत्वपूर्ण संकेतक हो सकते हैं और इस प्रकार मंगल ग्रह पर पिछले या वर्तमान जीवन की खोज में महत्वपूर्ण भूमिका निभा सकते हैं।[5] इसके अलावा, कार्बनिक यौगिकों (खनिज) (जैव हस्ताक्षर) जो अक्सर बायोमिनरल से जुड़े होते हैं, माना जाता है कि प्री-बायोटिक और बायोटिक सामग्री प्रतिक्रियाओं दोनों में महत्वपूर्ण भूमिका निभाते हैं।[31] 24 जनवरी 2014 को, नासा ने बताया कि क्यूरियोसिटी (नदी) और अपॉर्चुनिटी (रोवर) मार्स रोवर द्वारा मंगल पर वर्तमान अध्ययन अब प्राचीन जीवन के साक्ष्य की खोज करेगा, जिसमें स्वपोषी ़िक, केमोट्रोफ़िक और/या लिथोट्रॉफ़ #केमोलिथोट्रॉफ़्स पर आधारित जीवमंडल शामिल है। सूक्ष्मजीव, साथ ही साथ प्राचीन जल, जिसमें [[सरोवर का मैदान]]|फ्लुवियो-लेकस्ट्राइन वातावरण (प्राचीन नदियों या झीलों से संबंधित मैदानी) शामिल हैं, जो कि ग्रहीय आवास हो सकते हैं।[32][33][34][35] मंगल ग्रह पर ग्रहों के रहने की क्षमता, तपस्या (जीवाश्म से संबंधित), और जैविक कार्बन के साक्ष्य की खोज अब नासा का प्राथमिक उद्देश्य है।[32][33]


यह भी देखें

संदर्भ

  1. Zwolinski, Michele D. "Lithotroph Archived 2013-08-24 at the Wayback Machine." Weber State University. p. 1-2.
  2. Baidouri, F. E., Venditti, C., Suzuki, S., Meade, A., & Humphries, S. (2020). Phenotypic reconstruction of the last universal common ancestor reveals a complex cell. https://doi.org/10.1101/2020.08.20.260398
  3. Lwoff, A., C.B. van Niel, P.J. Ryan, and E.L. Tatum (1946). Nomenclature of nutritional types of microorganisms. Cold Spring Harbor Symposia on Quantitative Biology (5th edn.), Vol. XI, The Biological Laboratory, Cold Spring Harbor, NY, pp. 302–303, [1].
  4. Horneck, Gerda; Rettberg, Petra, eds. (2007). एस्ट्रोबायोलॉजी में पूरा कोर्स (PDF). Weinheim, Germany: Wiley-VCH. ISBN 978-3-527-40660-9. Retrieved 13 September 2020.
  5. 5.0 5.1 Chang, Kenneth (September 12, 2016). "पृथ्वी की गहराई में मंगल ग्रह पर जीवन के दर्शन". New York Times. Retrieved 2016-09-12.
  6. 6.0 6.1 Kuenen, G. (2009). "Oxidation of Inorganic Compounds by Chemolithotrophs". In Lengeler, J.; Drews, G.; Schlegel, H. (eds.). प्रोकैरियोट्स की जीवविज्ञान. John Wiley & Sons. p. 242. ISBN 9781444313307.
  7. Amils, Ricardo (2011). "केमोलिथोट्रॉफ़". In Gargaud, Muriel; Amils, Ricardo; Quintanilla, José Cernicharo; Cleaves, Henderson James II; Irvine, William M.; Pinti, Daniele L.; Viso, Michel (eds.). Encyclopedia of Astrobiology (2011 ed.). Berlin, Heidelberg: Springer. pp. 289–291. doi:10.1007/978-3-642-11274-4_273. ISBN 978-3-642-11271-3.
  8. Kuenen, G. (2009). "Oxidation of Inorganic Compounds by Chemolithotrophs". In Lengeler, J.; Drews, G.; Schlegel, H. (eds.). प्रोकैरियोट्स की जीवविज्ञान. John Wiley & Sons. p. 243. ISBN 9781444313307.
  9. "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2013-08-26. Retrieved 2013-05-15.
  10. Ogunseitan, Oladele (2008). Microbial Diversity: Form and Function in Prokaryotes. John Wiley & Sons. p. 169. ISBN 9781405144483.
  11. Lengeler, Joseph W; Drews, Gerhart; Schlegel, Hans G (2009-07-10). प्रोकैरियोट्स की जीवविज्ञान. ISBN 9781444313307.
  12. 12.0 12.1 Ghosh, W; Dam, B (2009). "टैक्सोनॉमिक और पारिस्थितिक रूप से विविध बैक्टीरिया और आर्किया द्वारा लिथोट्रोफिक सल्फर ऑक्सीकरण की जैव रसायन और आणविक जीव विज्ञान". National Centre for Biotechnology Information. 33 (6): 999–1043. doi:10.1111/j.1574-6976.2009.00187.x. PMID 19645821.
  13. "केल्विन चक्र". Archived from the original on 2013-05-04. Retrieved 2013-05-15.
  14. Paustian, Timothy. "लिथोट्रोफिक बैक्टीरिया - रॉक ईटर्स". Lecturer. University of Wisconsin-Madison. Retrieved 6 October 2017.
  15. Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Morgan, David; Raff, Martin; Roberts, Keith; Walter, Peter (Nov 20, 2014). कोशिका का आणविक जीवविज्ञान (Sixth ed.). Garland Science. pp. 11–12.
  16. Jorge G. Ibanez; Margarita Hernandez-Esparza; Carmen Doria-Serrano; Mono Mohan Singh (2007). Environmental Chemistry: Fundamentals. Springer. p. 156. ISBN 978-0-387-26061-7.
  17. Kuenen, G. (2009). "Oxidation of Inorganic Compounds by Chemolithotrophs". In Lengeler, J.; Drews, G.; Schlegel, H. (eds.). प्रोकैरियोट्स की जीवविज्ञान. John Wiley & Sons. p. 249. ISBN 9781444313307.
  18. Lengeler, Joseph W.; Drews, Gerhart; Schlegel, Hans Günter (1999). प्रोकैरियोट्स की जीवविज्ञान. Georg Thieme Verlag. p. 249. ISBN 978-3-13-108411-8.
  19. Reddy, K. Ramesh; DeLaune, Ronald D. (2008). Biogeochemistry of Wetlands: Science and Applications. CRC Press. p. 466. ISBN 978-1-56670-678-0.
  20. Canfield, Donald E.; Kristensen, Erik; Thamdrup, Bo (2005). जलीय भूसूक्ष्म जीव विज्ञान. p. 285. doi:10.1016/S0065-2881(05)48017-7. ISBN 978-0-12-026147-5. PMID 15797449. {{cite book}}: |journal= ignored (help)
  21. 21.0 21.1 Meruane G, Vargas T (2003). "Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2.5–7.0" (PDF). Hydrometallurgy. 71 (1): 149–58. doi:10.1016/S0304-386X(03)00151-8.
  22. 22.0 22.1 Zwolinski, Michele D. "Lithotroph Archived 2013-08-24 at the Wayback Machine." Weber State University. p. 7.
  23. 23.0 23.1 "Nitrifying bacteria." PowerShow. p. 12.
  24. 24.0 24.1 24.2 24.3 Libert M, Esnault L, Jullien M, Bildstein O (2010). "Molecular hydrogen: an energy source for bacterial activity in nuclear waste disposal" (PDF). Physics and Chemistry of the Earth. Archived from the original (PDF) on 2014-07-27.
  25. 25.0 25.1 Kartal B, Kuypers MM, Lavik G, Schalk J, Op den Camp HJ, Jetten MS, Strous M (2007). "Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium". Environmental Microbiology. 9 (3): 635–42. doi:10.1111/j.1462-2920.2006.01183.x. PMID 17298364.
  26. 26.0 26.1 Zwolinski, Michele D. "Lithotroph Archived 2013-08-24 at the Wayback Machine." Weber State University. p. 3.
  27. 27.0 27.1 27.2 Evans, J. Heritage; E. G. V.; Killington, R. A. (1999). कार्रवाई में माइक्रोबायोलॉजी (Repr ed.). Cambridge [u.a.]: Cambridge Univ. Press. ISBN 9780521621113.{{cite book}}: CS1 maint: multiple names: authors list (link)
  28. 28.0 28.1 28.2 eds, François Buscot, Ajit Varma (2005). उत्पत्ति और कार्यों में मिट्टी की भूमिका में सूक्ष्मजीव. Soil Biology. Vol. 3. Berlin: Springer. doi:10.1007/b137872. ISBN 978-3-540-26609-9.{{cite book}}: CS1 maint: multiple names: authors list (link)
  29. 29.0 29.1 29.2 Paul, Eldor A. (2014-11-14). मृदा सूक्ष्म जीव विज्ञान, पारिस्थितिकी और जैव रसायन. Academic Press, 2014. p. 598. ISBN 9780123914118.
  30. Kappler, Andreas; Straub, Kristina L. (2005-01-01). "आयरन की जियोमाइक्रोबायोलॉजिकल साइकिलिंग". Reviews in Mineralogy and Geochemistry (in English). 59 (1): 85–108. Bibcode:2005RvMG...59...85K. doi:10.2138/rmg.2005.59.5. ISSN 1529-6466.
  31. Steele, Andrew; Beaty, David, eds. (September 26, 2006). "Final report of the MEPAG Astrobiology Field Laboratory Science Steering Group (AFL-SSG)". एस्ट्रोबायोलॉजी फील्ड प्रयोगशाला (.doc). U.S.A.: Mars Exploration Program Analysis Group (MEPAG) - NASA. p. 72.
  32. 32.0 32.1 Grotzinger, John P. (January 24, 2014). "विशेष अंक का परिचय - रहने की क्षमता, तपस्या, और मंगल ग्रह पर जैविक कार्बन की खोज". Science. 343 (6169): 386–387. Bibcode:2014Sci...343..386G. doi:10.1126/science.1249944. PMID 24458635.
  33. 33.0 33.1 Various (January 24, 2014). "विशेष अंक - सामग्री की तालिका - मंगल ग्रह के आवास की खोज". Science. 343 (6169): 345–452. Retrieved 2014-01-24.{{cite journal}}: CS1 maint: uses authors parameter (link)
  34. Various (January 24, 2014). "विशेष संग्रह - क्यूरियोसिटी - मंगल ग्रह के निवास स्थान की खोज". Science. Retrieved 2014-01-24.{{cite journal}}: CS1 maint: uses authors parameter (link)
  35. Grotzinger, J.P. et al. (January 24, 2014). "येलोनाइफ़ बे, गेल क्रेटर, मंगल पर एक रहने योग्य फ़्लूवियो-लेकस्ट्रीन पर्यावरण". Science. 343 (6169): 1242777. Bibcode:2014Sci...343A.386G. CiteSeerX 10.1.1.455.3973. doi:10.1126/science.1242777. PMID 24324272. S2CID 52836398.{{cite journal}}: CS1 maint: uses authors parameter (link)


बाहरी संबंध

Template:Photolithotrophic bacteria

Template:Feeding