एडी-धारा परीक्षण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Electromagnetic method of non-destructive testing of conductive materials}}
{{Short description|Electromagnetic method of non-destructive testing of conductive materials}}
भंवर धारा परीक्षण (सामान्यतः भंवर धारा परीक्षण और ईसीटी के रूप में भी देखा जाता है) अविनाशी परीक्षणों (NDT) में उपयोग किए जाने वाले कई [[विद्युत चुम्बकीय परीक्षण]] विधियों में से एक है, जो [[प्रवाहकीय]] सामग्रियों में बहिस्थल और अधस्तल की त्रुटियों को ज्ञात करने और उनकी पहचान करने के लिए विद्युत चुम्बकीय प्रेरण का उपयोग करते है।
भंवर धारा परीक्षण (सामान्यतः भंवर धारा परीक्षण और ईसीटी के रूप में भी देखा जाता है), अविनाशी परीक्षणों (NDT) में उपयोग किए जाने वाले कई [[विद्युत चुम्बकीय परीक्षण]] विधियों में से एक है, जो [[प्रवाहकीय]] सामग्रियों में बहिस्थल और अधस्तल की त्रुटियों का पता लगाने और उनकी पहचान करने के लिए विद्युत चुम्बकीय प्रेरण का उपयोग करते है।


== इतिहास ==
== इतिहास ==
भंवर धारा परीक्षण (ECT) परीक्षण के लिए एक प्रविधि के रूप में इसके मूलांश [[विद्युत]] चुंबकत्व में पाई जाती हैं। भंवर धाराओं को प्रथम बार 1824 में फ्रांकोइस अरागो द्वारा प्रेक्षित किया गया था, परन्तु फ्रांसीसी भौतिक विज्ञानी लियोन फौकॉल्ट को 1855 में उनकी खोज करने का श्रेय दिया जाता है। ईसीटी बड़े पैमाने पर अंग्रेजी वैज्ञानिक [[माइकल फैराडे]] की 1831 में विद्युत चुम्बकीय प्रेरण की खोज के परिणामस्वरूप प्रारम्भ हुई। फैराडे ने पाया कि जब एक बंद पथ जिसके माध्यम से धारा प्रसारित हो सकती है और एक समय-भिन्न चुंबकीय क्षेत्र एक परिचालक (या इसके विपरीत) से गुजरता है, इस परिचालक के माध्यम से एक [[विद्युत प्रवाह|विद्युत धारा]] प्रवाहित होती है।
भंवर धारा परीक्षण (ECT) परीक्षण के लिए एक प्रविधि के रूप में इसके मूलांश [[विद्युत]] चुंबकत्व में पाई जाते हैं। भंवर धाराओं को प्रथम बार 1824 में फ्रांकोइस अरागो द्वारा प्रेक्षित किया गया था, परन्तु फ्रांसीसी भौतिक विज्ञानी लियोन फौकॉल्ट को 1855 में उनकी खोज करने का श्रेय दिया जाता है। ईसीटी बड़े पैमाने पर अंग्रेजी वैज्ञानिक [[माइकल फैराडे]] की 1831 में विद्युत चुम्बकीय प्रेरण की खोज के परिणामस्वरूप प्रारम्भ हुई। फैराडे ने पाया कि जब एक बंद पथ जिसके माध्यम से धारा प्रसारित हो सकती है और एक समय-भिन्न चुंबकीय क्षेत्र एक परिचालक (या इसके विपरीत) से गुजरता है, इस परिचालक के माध्यम से एक [[विद्युत प्रवाह|विद्युत धारा]] प्रवाहित होती है।


1879 में, एक अन्य अंग्रेजी में जन्मे वैज्ञानिक, [[डेविड एडवर्ड ह्यूजेस]] ने प्रदर्शित किया कि कैसे विभिन्न चालकता और पारगम्यता की धातुओं के संपर्क में रखे जाने पर [[विद्युत चुम्बकीय कुंडल]] के गुण परिवर्तित हो जाते हैं, जिसे धातुकर्म प्रवरण परीक्षणों पर अनुप्रयुक्त किया गया था।<ref>Ivor Hughes. [http://davidedwardhughes.com/David_Edward_Hughes.pdf "[[The AWA Review]]: Professor David Edward Hughes"], 2009, retrieved July 1, 2015</ref>
1879 में, एक अन्य अंग्रेजी में जन्मे वैज्ञानिक, [[डेविड एडवर्ड ह्यूजेस]] ने प्रदर्शित किया कि कैसे विभिन्न चालकता और पारगम्यता की धातुओं के संपर्क में रखे जाने पर [[विद्युत चुम्बकीय कुंडल]] के गुण परिवर्तित हो जाते हैं, जिसे धातुकर्म प्रवरण परीक्षणों पर अनुप्रयुक्त किया गया था।<ref>Ivor Hughes. [http://davidedwardhughes.com/David_Edward_Hughes.pdf "[[The AWA Review]]: Professor David Edward Hughes"], 2009, retrieved July 1, 2015</ref>
Line 17: Line 17:


== ईसीटी सिद्धांत ==
== ईसीटी सिद्धांत ==
[[File:Technology scheme eddy current eng.png|alt=Visualization of Eddy Currens Induction|thumb|भंवर धाराओं प्रेरण का दृश्य<ref>{{Cite web|url=https://www.suragus.com/en/technology/eddy-current/|title=SURAGUS Technology of Eddy Current Testing}}</ref>]]अपने सबसे मूलभूत रूप में - एकल-तत्व ईसीटी जांच - प्रवाहकीय तार की एक कुण्डली वैकल्पिक विद्युत प्रवाह से उतेजित होती है। यह कुण्डली तार अपने चारों ओर एक वैकल्पिक [[चुंबकीय क्षेत्र]] उत्पन्न करता है। चुंबकीय क्षेत्र उसी आवृत्ति पर दोलन करता है जिस आवृत्ति पर कुंडली में प्रवाहित धारा प्रवाहित होती है। जब कुंडली एक प्रवाहकीय सामग्री के पास पहुंचता है, तो कुंडली में विपरीत धाराएं सामग्री - भंवर धाराओं में प्रेरित होती हैं।
[[File:Technology scheme eddy current eng.png|alt=Visualization of Eddy Currens Induction|thumb|भंवर धाराओं प्रेरण का दृश्य।<ref>{{Cite web|url=https://www.suragus.com/en/technology/eddy-current/|title=SURAGUS Technology of Eddy Current Testing}}</ref>]]अपने सबसे मूलभूत रूप में - एकल-तत्व ईसीटी जांच - प्रवाहकीय तार की एक कुण्डली वैकल्पिक विद्युत प्रवाह से उतेजित होती है। यह कुण्डली तार अपने चारों ओर एक वैकल्पिक [[चुंबकीय क्षेत्र]] उत्पन्न करता है। चुंबकीय क्षेत्र उसी आवृत्ति पर दोलन करता है जिस आवृत्ति पर कुंडली में प्रवाहित धारा प्रवाहित होती है। जब कुंडली एक प्रवाहकीय सामग्री के पास पहुंचता है, तो कुंडली में विपरीत धाराएं सामग्री - भंवर धाराओं में प्रेरित होती हैं।


परीक्षण वस्तु की विद्युत चालकता और चुंबकीय पारगम्यता में भिन्नता और त्रुटियों की उपस्थिति भंवर की धारा में परिवर्तन और चरण और आयाम में एक समान परिवर्तन का कारण बनती है जिसे कुंडली में प्रतिबाधा परिवर्तन को मापकर ज्ञात किया जा सकता है, जो एक पिशुन संकेत है जो त्रुटियों के विषय में है।<ref>Joseph M. Buckley. [http://www.joe.buckley.net/papers/eddyc.pdf "An Introduction to Eddy Current Testing Theory and Technology"], retrieved July 1, 2015</ref> यह मानक (दोसाकृति कुंडली) ईसीटी का आधार है। भंवर धारा परीक्षण प्रक्रिया में एनडीटी उपकरण समूहों का उपयोग किया जा सकता है।<ref>https://customers.phtool.com/custom-reference-standards/eddy-current-bolt-hole-standards/</ref>
परीक्षण वस्तु की विद्युत चालकता और चुंबकीय पारगम्यता में भिन्नता और त्रुटियों की उपस्थिति भंवर की धारा में परिवर्तन और चरण और आयाम में एक समान परिवर्तन का कारण बनती है जिसे कुंडली में प्रतिबाधा परिवर्तन को मापकर पता लगाया जा सकता है, जो एक पिशुन संकेत है जो त्रुटियों के विषय में है।<ref>Joseph M. Buckley. [http://www.joe.buckley.net/papers/eddyc.pdf "An Introduction to Eddy Current Testing Theory and Technology"], retrieved July 1, 2015</ref> यह मानक (दोसाकृति कुंडली) ईसीटी का आधार है। भंवर धारा परीक्षण प्रक्रिया में एनडीटी उपकरण समूहों का उपयोग किया जा सकता है।<ref>https://customers.phtool.com/custom-reference-standards/eddy-current-bolt-hole-standards/</ref>


ईसीटी में अनुप्रयोगों की एक विस्तृत श्रृंखला है। चूंकि ईसीटी प्रकृति में विद्युत है, यह प्रवाहकीय सामग्री तक सीमित है। भंवर धाराएं और वेधन गभीरता ([[त्वचा की गहराई|उपरिस्तर गभीरता]]) उत्पन्न करने की भौतिक सीमाएं भी हैं।<ref>Terry Hennigar and Mike Wright. "Eddy Current Testing Technology", 1st edition, 2012</ref>
ईसीटी में अनुप्रयोगों की एक विस्तृत श्रृंखला है। चूंकि ईसीटी प्रकृति में विद्युत है, यह प्रवाहकीय सामग्री तक सीमित है। भंवर धाराएं और वेधन गभीरता ([[त्वचा की गहराई|उपरिस्तर गभीरता]]) उत्पन्न करने की भौतिक सीमाएं भी हैं।<ref>Terry Hennigar and Mike Wright. "Eddy Current Testing Technology", 1st edition, 2012</ref>
Line 29: Line 29:
भंवर धारा परीक्षण के दो प्रमुख अनुप्रयोग सतही निरीक्षण और नलिका निरीक्षण हैं। वांतरिक्ष उद्योगों में भूतल निरीक्षण का व्यापक रूप से उपयोग किया जाता है, परन्तु [[पेट्रोकेमिकल उद्योग|पेट्रोरसायन उद्योगों]] में भी इसका उपयोग किया जाता है। प्रविधि बहुत संवेदनशील है और संकुचित त्रुटियों का पता लगा सकती है। भूतल निरीक्षण लोह चुंबकीय और गैर-लोह चुंबकीय सामग्री दोनों पर किया जा सकता है।<ref>{{Cite journal|title = हीट एक्सचेंजर टयूबिंग के लिए एनडीटी तकनीकों का चयन|last = Birring|first = Anmol|date = March 2001|journal = Materials Evaluation}}</ref><ref>{{Cite journal|title = पेट्रोकेमिकल उद्योग में एड़ी वर्तमान परीक्षण|last = Birring|first = Anmol|date = November 2003|journal = Materials Evaluation}}</ref>
भंवर धारा परीक्षण के दो प्रमुख अनुप्रयोग सतही निरीक्षण और नलिका निरीक्षण हैं। वांतरिक्ष उद्योगों में भूतल निरीक्षण का व्यापक रूप से उपयोग किया जाता है, परन्तु [[पेट्रोकेमिकल उद्योग|पेट्रोरसायन उद्योगों]] में भी इसका उपयोग किया जाता है। प्रविधि बहुत संवेदनशील है और संकुचित त्रुटियों का पता लगा सकती है। भूतल निरीक्षण लोह चुंबकीय और गैर-लोह चुंबकीय सामग्री दोनों पर किया जा सकता है।<ref>{{Cite journal|title = हीट एक्सचेंजर टयूबिंग के लिए एनडीटी तकनीकों का चयन|last = Birring|first = Anmol|date = March 2001|journal = Materials Evaluation}}</ref><ref>{{Cite journal|title = पेट्रोकेमिकल उद्योग में एड़ी वर्तमान परीक्षण|last = Birring|first = Anmol|date = November 2003|journal = Materials Evaluation}}</ref>


नलिका निरीक्षण सामान्यतः गैर-लोह चुंबकीय नलिका तक सीमित होती है और इसे पारंपरिक भंवर धारा परीक्षण के रूप में जाना जाता है। पारंपरिक ईसीटी का उपयोग परमाणु संयंत्रों में भाप जनित्र नलिका और पेट्रोरसायन उद्योगों में ताप विनिमयक नलिका के निरीक्षण के लिए किया जाता है। प्रविधि गर्तको के अनुसन्धान और आकार देने के लिए बहुत संवेदनशील है। प्राचीर क्षति या क्षरण का अनुसन्धान किया जा सकता है परन्तु आकार यथार्थ नहीं है।
नलिका निरीक्षण सामान्यतः गैर-लोह चुंबकीय नलिका तक सीमित होती है और इसे पारंपरिक भंवर धारा परीक्षण के रूप में जाना जाता है। पारंपरिक ईसीटी का उपयोग परमाणु संयंत्रों में भाप जनित्र नलिका और पेट्रोरसायन उद्योगों में ताप विनिमयक नलिका के निरीक्षण के लिए किया जाता है। प्रविधि गर्तको के अनुसन्धान और आकार देने के लिए बहुत संवेदनशील है। प्राचीर क्षति या क्षरण का पता लगाया जा सकता है परन्तु आकार यथार्थ नहीं है।


आंशिक रूप से चुंबकीय सामग्रियों के लिए पारंपरिक ईसीटी की भिन्नता पूर्ण संतृप्ति ईसीटी है। इस प्रविधि में, चुंबकीय क्षेत्र को अनुप्रयुक्त करके पारगम्यता भिन्नताओं को संदमित कर दिया जाता है। संतृप्ति जांच में पारंपरिक भंवर धारा कुंडली और चुंबक होते हैं। इस निरीक्षण का उपयोग आंशिक रूप से लोह चुंबकीय सामग्री जैसे निकल मिश्र धातु, डुप्लेक्स मिश्र धातु और पतली-लोह चुंबकीय सामग्री जैसे फेरिटिक क्रोमियम मॉलिब्डेनम जंगरोधी इस्पात पर किया जाता है। एक संतृप्ति भंवर धारा प्रविधि का अनुप्रयोग, सामग्री की पारगम्यता, नली की मोटाई और व्यास पर निर्भर करता है।<ref>H M Sadek. [http://www.ndt.net/article/insight/papers/insi_48_3_181.pdf "NDE technologies for the examination of heat exchangers and boiler tubes – principles, advantages and limitations"], Insight vol. 48 no. 3, March 2006, retrieved July 1, 2015</ref>
आंशिक रूप से चुंबकीय सामग्रियों के लिए पारंपरिक ईसीटी की भिन्नता पूर्ण संतृप्ति ईसीटी है। इस प्रविधि में, चुंबकीय क्षेत्र को अनुप्रयुक्त करके पारगम्यता भिन्नताओं को संदमित कर दिया जाता है। संतृप्ति जांच में पारंपरिक भंवर धारा कुंडली और चुंबक होते हैं। इस निरीक्षण का उपयोग आंशिक रूप से लोह चुंबकीय सामग्री जैसे निकल मिश्र धातु, डुप्लेक्स मिश्र धातु और पतली-लोह चुंबकीय सामग्री जैसे फेरिटिक क्रोमियम मॉलिब्डेनम जंगरोधी इस्पात पर किया जाता है। एक संतृप्ति भंवर धारा प्रविधि का अनुप्रयोग, सामग्री की पारगम्यता, नली की मोटाई और व्यास पर निर्भर करता है।<ref>H M Sadek. [http://www.ndt.net/article/insight/papers/insi_48_3_181.pdf "NDE technologies for the examination of heat exchangers and boiler tubes – principles, advantages and limitations"], Insight vol. 48 no. 3, March 2006, retrieved July 1, 2015</ref>
Line 66: Line 66:
=== लोरेन्ट्स बल भंवर धारा परीक्षण ===
=== लोरेन्ट्स बल भंवर धारा परीक्षण ===


एक अलग, यद्यपि शारीरिक रूप से निकट से संबंधित चुनौती विद्युत रूप से ठोस सामग्री का संचालन करने में गहरी खामियों और असमानताओं का पता लगाना है।
एक अलग, यद्यपि शारीरिक रूप से निकटता से संबंधित निर्देशार्थोठोस सामग्री के विद्युत संचालन में नितांत त्रुटियों और असमानताओं का संसूचन करना है।
  [[File:LET.png|right|thumb|चित्र 1: एलईटी कार्य सिद्धांत। से अनुकूलित <ref name="Zec2013">M. Zec et al., Fast Technique for Lorentz Force Calculations in Nondestructive Testing Applications, COMPUMAG 2013, Budapest, Hungary</ref>]]भंवर धारा परीक्षण के पारंपरिक संस्करण में एक वैकल्पिक (AC) चुंबकीय क्षेत्र का उपयोग जांच की जाने वाली सामग्री के भीतर भंवर धाराओं को प्रेरित करने के लिए किया जाता है। यदि सामग्री में एक त्रुटि होती है जो विद्युत चालकता के गैर-समान वितरण का स्थानिक वितरण करता है, तो भंवर धाराओं का मार्ग क्षुब्ध हो जाता है और एसी चुंबकीय क्षेत्र उत्पन्न करने वाली कुंडली की प्रतिबाधा संशोधित होती है। इस कुंडली के प्रतिबाधा को मापकर, एक त्रुटि का अनुसन्धान किया जा सकता है। चूंकि भंवर धाराएं एक एसी चुंबकीय क्षेत्र द्वारा उत्पन्न होती हैं, सामग्री के अघस्तल क्षेत्र में उनका प्रवेश उपरिस्तर प्रभाव से सीमित होता है। भंवर धारा परीक्षण के पारंपरिक संस्करण की प्रयोज्यता इसलिए सामग्री की सतह के तत्काल आसपास के विश्लेषण, सामान्यतः एक मिलीमीटर के क्रम तक सीमित है। कम आवृत्ति वाले कुंडली और अतिचालक चुंबकीय क्षेत्र संवेदक का उपयोग करके इस मूलभूत सीमा को अभिभूत करने के प्रयासों के कारण व्यापक अनुप्रयोग नहीं हुए हैं।
  [[File:LET.png|right|thumb|चित्र 1: एलईटी कार्य सिद्धांत से अनुकूलित हैं।<ref name="Zec2013">M. Zec et al., Fast Technique for Lorentz Force Calculations in Nondestructive Testing Applications, COMPUMAG 2013, Budapest, Hungary</ref>]]भंवर धारा परीक्षण के पारंपरिक संस्करण में एक वैकल्पिक (AC) चुंबकीय क्षेत्र का उपयोग जांच की जाने वाली सामग्री के भीतर भंवर धाराओं को प्रेरित करने के लिए किया जाता है। यदि सामग्री में एक त्रुटि होती है जो विद्युत चालकता के गैर-समान वितरण का स्थानिक वितरण करता है, तो भंवर धाराओं का मार्ग क्षुब्ध हो जाता है और एसी चुंबकीय क्षेत्र उत्पन्न करने वाली कुंडली की प्रतिबाधा संशोधित होती है। इस कुंडली के प्रतिबाधा को मापकर, एक त्रुटि का पता लगाया जा सकता है। चूंकि भंवर धाराएं एक एसी चुंबकीय क्षेत्र द्वारा उत्पन्न होती हैं, सामग्री के अघस्तल क्षेत्र में उनका प्रवेश उपरिस्तर प्रभाव से सीमित होता है। भंवर धारा परीक्षण के पारंपरिक संस्करण की प्रयोज्यता इसलिए सामग्री की सतह के तत्काल आसपास के विश्लेषण, सामान्यतः एक मिलीमीटर के क्रम तक सीमित है। कम आवृत्ति वाले कुंडली और अतिचालक चुंबकीय क्षेत्र संवेदक का उपयोग करके इस मूलभूत सीमा को अभिभूत करने के प्रयासों के कारण व्यापक अनुप्रयोग नहीं हुए हैं।


एक हालिया प्रविधि, जिसे लोरेन्ट्स बल भंवरधारा परीक्षण (एलईटी) कहा जाता है,<ref name="Zec2013"/><ref>Uhlig, R. P., Zec, M., Brauer, H. and Thess, A. 2012 "Lorentz Force Eddy Current Testing:a Prototype Model". Journal of Nondestructive Evaluation, 31, 357–372</ref> डीसी चुंबकीय क्षेत्र और सापेक्ष गति को अनुप्रयुक्त करने के फायदों का शोषण करता है जो विद्युत प्रवाहकीय सामग्री का गहरा और अपेक्षाकृत तेज़ परीक्षण प्रदान करता है। सिद्धांत रूप में, एलईटी पारंपरिक भंवर धारा परीक्षण के एक संशोधन का प्रतिनिधित्व करता है जिससे यह दो पहलुओं में भिन्न होता है, अर्थात् (i) कैसे भंवर धाराओं को प्रेरित किया जाता है और (ii) उनके गड़बड़ी का पता कैसे लगाया जाता है। एलईटी में परीक्षण के तहत परिचालक और एक स्थायी चुंबक के मध्य सापेक्ष गति प्रदान करके भंवर धाराएं उत्पन्न होती हैं (चित्र देखें)। यदि चुंबक किसी दोष से गुजर रहा है, तो उस पर कार्य करने वाला लोरेन्ट्स बल एक विकृति दिखाता है जिसका पता लगाना LET कार्य सिद्धांत की कुंजी है। यदि वस्तु दोषों से मुक्त है, तो परिणामी लोरेन्ट्स बल स्थिर रहता है।
एक नवीन प्रविधि, जिसे लोरेन्ट्स बल भंवर धारा परीक्षण (LET) कहा जाता है,<ref name="Zec2013"/><ref>Uhlig, R. P., Zec, M., Brauer, H. and Thess, A. 2012 "Lorentz Force Eddy Current Testing:a Prototype Model". Journal of Nondestructive Evaluation, 31, 357–372</ref> डीसी चुंबकीय क्षेत्र और सापेक्ष गति को अनुप्रयुक्त करने के लाभों का समुपयोजन करती है जो विद्युत प्रवाहकीय सामग्री का गहन और अपेक्षाकृत तीव्र परीक्षण प्रदान करता है। सैद्धान्तिक रूप से, एलईटी पारंपरिक भंवर धारा परीक्षण के एक संशोधन का प्रतिनिधित्व करता है जिससे यह दो दृष्टिकोणों में भिन्न होता है, अर्थात् (i) कैसे भंवर धाराओं को प्रेरित किया जाता है और (ii) उनके अस्तव्यस्तता का पता कैसे लगाया जाता है। एलईटी में परीक्षण के अंतर्गत परिचालक और एक स्थायी चुंबक के मध्य सापेक्ष गति प्रदान करके भंवर धाराएं उत्पन्न होती हैं (चित्र देखें)। यदि चुंबक किसी त्रुटि से गुजर रहा है, तो उस पर कार्य करने वाला लोरेन्ट्स बल एक विकृति दर्शाता है जिसका संसूचन एलईटी कार्य सिद्धांत की कुंजी है। यदि वस्तु त्रुटियों से मुक्त है, तो परिणामी लोरेन्ट्स बल स्थिर रहता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 12:49, 6 April 2023

भंवर धारा परीक्षण (सामान्यतः भंवर धारा परीक्षण और ईसीटी के रूप में भी देखा जाता है), अविनाशी परीक्षणों (NDT) में उपयोग किए जाने वाले कई विद्युत चुम्बकीय परीक्षण विधियों में से एक है, जो प्रवाहकीय सामग्रियों में बहिस्थल और अधस्तल की त्रुटियों का पता लगाने और उनकी पहचान करने के लिए विद्युत चुम्बकीय प्रेरण का उपयोग करते है।

इतिहास

भंवर धारा परीक्षण (ECT) परीक्षण के लिए एक प्रविधि के रूप में इसके मूलांश विद्युत चुंबकत्व में पाई जाते हैं। भंवर धाराओं को प्रथम बार 1824 में फ्रांकोइस अरागो द्वारा प्रेक्षित किया गया था, परन्तु फ्रांसीसी भौतिक विज्ञानी लियोन फौकॉल्ट को 1855 में उनकी खोज करने का श्रेय दिया जाता है। ईसीटी बड़े पैमाने पर अंग्रेजी वैज्ञानिक माइकल फैराडे की 1831 में विद्युत चुम्बकीय प्रेरण की खोज के परिणामस्वरूप प्रारम्भ हुई। फैराडे ने पाया कि जब एक बंद पथ जिसके माध्यम से धारा प्रसारित हो सकती है और एक समय-भिन्न चुंबकीय क्षेत्र एक परिचालक (या इसके विपरीत) से गुजरता है, इस परिचालक के माध्यम से एक विद्युत धारा प्रवाहित होती है।

1879 में, एक अन्य अंग्रेजी में जन्मे वैज्ञानिक, डेविड एडवर्ड ह्यूजेस ने प्रदर्शित किया कि कैसे विभिन्न चालकता और पारगम्यता की धातुओं के संपर्क में रखे जाने पर विद्युत चुम्बकीय कुंडल के गुण परिवर्तित हो जाते हैं, जिसे धातुकर्म प्रवरण परीक्षणों पर अनुप्रयुक्त किया गया था।[1]

जर्मनी में द्वितीय विश्व युद्ध के पर्यन्त औद्योगिक अनुप्रयोगों के लिए एक अविनाशी परीक्षण प्रविधि के रूप में ईसीटी का अधिकांश विकास किया गया था। कैसर-विल्हेम संस्थान (फलतः कैसर विल्हेम सोसायटी) के लिए कार्य करते हुए प्राध्यापक फ्रेडरिक फॉर्स्टर ने औद्योगिक उपयोगों के लिए भंवर धारा प्रविधि को अपनाया, चालकता को मापने वाले उपकरणों को विकसित और मिश्रित लौह घटकों का पृथक् किया। युद्ध के पश्चात, 1948 में, फॉर्स्टर ने एक उद्योग की स्थापना की, जिसे फलतः फ़ॉस्टर समूह कहा जाता है, जहाँ उन्होंने व्यावहारिक ईसीटी उपकरणों के विकास और उनके विपणन में काफी प्रगति की।[2]

भंवर धारा परीक्षण फलतः त्रुटियों को ज्ञात करने के साथ-साथ मोटाई और चालकता माप के लिए व्यापक रूप से उपयोग की जाने वाली और पूर्णतया सुबोध की जाने वाली निरीक्षण प्रविधि है।

2012 में वैश्विक एनडीटी उपकरण विक्रय में तुषार और सलिवैन विश्लेषण ने $ 220 मिलियन में चुंबकीय और विद्युत चुम्बकीय एनडीटी उपकरण विक्रय का अनुमान लगाया, जिसमें पारंपरिक भंवर धारा, चुंबकीय कण निरीक्षण, भंवर धारा सरणी और दूरस्थ क्षेत्र परीक्षण सम्मिलित हैं। फील्ड परीक्षण। यह विक्रय 2016 तक 7.5% चक्रवृद्धि वार्षिक वृद्धि दर से लगभग $315 मिलियन तक बढ़ने का अनुमान है।[2]



ईसीटी सिद्धांत

Visualization of Eddy Currens Induction
भंवर धाराओं प्रेरण का दृश्य।[3]

अपने सबसे मूलभूत रूप में - एकल-तत्व ईसीटी जांच - प्रवाहकीय तार की एक कुण्डली वैकल्पिक विद्युत प्रवाह से उतेजित होती है। यह कुण्डली तार अपने चारों ओर एक वैकल्पिक चुंबकीय क्षेत्र उत्पन्न करता है। चुंबकीय क्षेत्र उसी आवृत्ति पर दोलन करता है जिस आवृत्ति पर कुंडली में प्रवाहित धारा प्रवाहित होती है। जब कुंडली एक प्रवाहकीय सामग्री के पास पहुंचता है, तो कुंडली में विपरीत धाराएं सामग्री - भंवर धाराओं में प्रेरित होती हैं।

परीक्षण वस्तु की विद्युत चालकता और चुंबकीय पारगम्यता में भिन्नता और त्रुटियों की उपस्थिति भंवर की धारा में परिवर्तन और चरण और आयाम में एक समान परिवर्तन का कारण बनती है जिसे कुंडली में प्रतिबाधा परिवर्तन को मापकर पता लगाया जा सकता है, जो एक पिशुन संकेत है जो त्रुटियों के विषय में है।[4] यह मानक (दोसाकृति कुंडली) ईसीटी का आधार है। भंवर धारा परीक्षण प्रक्रिया में एनडीटी उपकरण समूहों का उपयोग किया जा सकता है।[5]

ईसीटी में अनुप्रयोगों की एक विस्तृत श्रृंखला है। चूंकि ईसीटी प्रकृति में विद्युत है, यह प्रवाहकीय सामग्री तक सीमित है। भंवर धाराएं और वेधन गभीरता (उपरिस्तर गभीरता) उत्पन्न करने की भौतिक सीमाएं भी हैं।[6]


अनुप्रयोग

भंवर धारा परीक्षण के दो प्रमुख अनुप्रयोग सतही निरीक्षण और नलिका निरीक्षण हैं। वांतरिक्ष उद्योगों में भूतल निरीक्षण का व्यापक रूप से उपयोग किया जाता है, परन्तु पेट्रोरसायन उद्योगों में भी इसका उपयोग किया जाता है। प्रविधि बहुत संवेदनशील है और संकुचित त्रुटियों का पता लगा सकती है। भूतल निरीक्षण लोह चुंबकीय और गैर-लोह चुंबकीय सामग्री दोनों पर किया जा सकता है।[7][8]

नलिका निरीक्षण सामान्यतः गैर-लोह चुंबकीय नलिका तक सीमित होती है और इसे पारंपरिक भंवर धारा परीक्षण के रूप में जाना जाता है। पारंपरिक ईसीटी का उपयोग परमाणु संयंत्रों में भाप जनित्र नलिका और पेट्रोरसायन उद्योगों में ताप विनिमयक नलिका के निरीक्षण के लिए किया जाता है। प्रविधि गर्तको के अनुसन्धान और आकार देने के लिए बहुत संवेदनशील है। प्राचीर क्षति या क्षरण का पता लगाया जा सकता है परन्तु आकार यथार्थ नहीं है।

आंशिक रूप से चुंबकीय सामग्रियों के लिए पारंपरिक ईसीटी की भिन्नता पूर्ण संतृप्ति ईसीटी है। इस प्रविधि में, चुंबकीय क्षेत्र को अनुप्रयुक्त करके पारगम्यता भिन्नताओं को संदमित कर दिया जाता है। संतृप्ति जांच में पारंपरिक भंवर धारा कुंडली और चुंबक होते हैं। इस निरीक्षण का उपयोग आंशिक रूप से लोह चुंबकीय सामग्री जैसे निकल मिश्र धातु, डुप्लेक्स मिश्र धातु और पतली-लोह चुंबकीय सामग्री जैसे फेरिटिक क्रोमियम मॉलिब्डेनम जंगरोधी इस्पात पर किया जाता है। एक संतृप्ति भंवर धारा प्रविधि का अनुप्रयोग, सामग्री की पारगम्यता, नली की मोटाई और व्यास पर निर्भर करता है।[9]

कार्बन इस्पात नलिका के लिए उपयोग की जाने वाली विधि दूरस्थ क्षेत्र भंवर धारा परीक्षण है। यह विधि सामान्य प्राचीर क्षति के प्रति संवेदनशील है और छोटे गर्तको और त्रुटियों के प्रति संवेदनशील नहीं है।

सतहों पर ईसीटी

जब सतह के अनुप्रयोगों की बात आती है, तो किसी भी निरीक्षण प्रविधि का प्रदर्शन विशिष्ट स्थितियों पर निर्भर करता है - अधिकतर सामग्री और त्रुटि के प्रकार, परन्तु सतह की स्थिति आदि। हालांकि, अधिकतर स्थितियों में, निम्नलिखित सत्य हैं:

  • विलेपन/प्रलेप पर प्रभावी: हाँ
  • कंप्यूटरीकृत अभिलेख रखना: आंशिक
  • 3डी/अग्रिम प्रतिबिंबन: कोई नहीं
  • उपयोगकर्ता निर्भरता: उच्च
  • गति: कम
  • निरीक्षण के पश्चात का विश्लेषण: कोई नहीं
  • रसायनों/उपभोग्य सामग्रियों की आवश्यकता है: नहीं

अन्य अनुप्रयोग

ईसीटी भी उपयोगी है।

अन्य भंवर धारा परीक्षण प्रविधिें

पारंपरिक ईसीटी की कुछ त्रुटियों को दूर करने के लिए, विभिन्न सफलताओं के साथ अन्य भंवर धारा परीक्षण प्रविधियों का विकास किया गया।

भंवर धारा सरणी

भंवर धारा सरणी (ECA) और पारंपरिक ईसीटी समान मूलभूत कार्य सिद्धांतों को साझा करते हैं। ईसीए प्रविधि विशिष्ट प्रतिरूपो में व्यवस्थित कुंडली (विविध कुंडली) की एक सरणी को विद्युतीय रूप से परिचालन करने की क्षमता प्रदान करती है जिसे संस्थितिविज्ञान कहा जाता है जो लक्ष्य त्रुटियों के अनुकूल संवेदनशीलता पार्श्वदृश्य उत्पन्न करता है। अलग-अलग कुंडली के मध्य पारस्परिक अधिष्ठापन से परिहार के लिए एक विशेष प्रतिरूप में कुंडली को बहुसंकेतन करके संप्राप्ति प्राप्त किया जाता है। ईसीए के लाभ हैं:[10]

  • तीव्र निरीक्षण
  • व्यापक प्रसारण क्षेत्र
  • कम प्रचालक निर्भरता - सरणी जांच स्वतः रेखापुंज क्रमवीक्षण की तुलना में अधिक सुसंगत परिणाम देती है
  • उन्नत संसूचन क्षमता
  • सरल क्रमवीक्षण प्रतिरूप के कारण सरल विश्लेषण
  • कूटलिखित आधार सामग्री के कारण उन्नत स्थिति और आकार
  • सरणी जांच को सरलता से नम्य या विनिर्देशों के आकार के लिए प्रारूप किया जा सकता है, जिससे दुर्गम क्षेत्रों का निरीक्षण करना सरल हो जाता है।

ईसीए प्रविधि उल्लेखनीय रूप से प्रभावशाली उपकरण प्रदान करती है और निरीक्षण के पर्यन्त महत्वपूर्ण समय बचाती है।[11] कार्बन इस्पात वेल्ड में ईसीए निरीक्षण ASTM मानक E3052 द्वारा नियंत्रित किया जाता है।

लोरेन्ट्स बल भंवर धारा परीक्षण

एक अलग, यद्यपि शारीरिक रूप से निकटता से संबंधित निर्देशार्थोठोस सामग्री के विद्युत संचालन में नितांत त्रुटियों और असमानताओं का संसूचन करना है।

चित्र 1: एलईटी कार्य सिद्धांत से अनुकूलित हैं।[12]

भंवर धारा परीक्षण के पारंपरिक संस्करण में एक वैकल्पिक (AC) चुंबकीय क्षेत्र का उपयोग जांच की जाने वाली सामग्री के भीतर भंवर धाराओं को प्रेरित करने के लिए किया जाता है। यदि सामग्री में एक त्रुटि होती है जो विद्युत चालकता के गैर-समान वितरण का स्थानिक वितरण करता है, तो भंवर धाराओं का मार्ग क्षुब्ध हो जाता है और एसी चुंबकीय क्षेत्र उत्पन्न करने वाली कुंडली की प्रतिबाधा संशोधित होती है। इस कुंडली के प्रतिबाधा को मापकर, एक त्रुटि का पता लगाया जा सकता है। चूंकि भंवर धाराएं एक एसी चुंबकीय क्षेत्र द्वारा उत्पन्न होती हैं, सामग्री के अघस्तल क्षेत्र में उनका प्रवेश उपरिस्तर प्रभाव से सीमित होता है। भंवर धारा परीक्षण के पारंपरिक संस्करण की प्रयोज्यता इसलिए सामग्री की सतह के तत्काल आसपास के विश्लेषण, सामान्यतः एक मिलीमीटर के क्रम तक सीमित है। कम आवृत्ति वाले कुंडली और अतिचालक चुंबकीय क्षेत्र संवेदक का उपयोग करके इस मूलभूत सीमा को अभिभूत करने के प्रयासों के कारण व्यापक अनुप्रयोग नहीं हुए हैं।

एक नवीन प्रविधि, जिसे लोरेन्ट्स बल भंवर धारा परीक्षण (LET) कहा जाता है,[12][13] डीसी चुंबकीय क्षेत्र और सापेक्ष गति को अनुप्रयुक्त करने के लाभों का समुपयोजन करती है जो विद्युत प्रवाहकीय सामग्री का गहन और अपेक्षाकृत तीव्र परीक्षण प्रदान करता है। सैद्धान्तिक रूप से, एलईटी पारंपरिक भंवर धारा परीक्षण के एक संशोधन का प्रतिनिधित्व करता है जिससे यह दो दृष्टिकोणों में भिन्न होता है, अर्थात् (i) कैसे भंवर धाराओं को प्रेरित किया जाता है और (ii) उनके अस्तव्यस्तता का पता कैसे लगाया जाता है। एलईटी में परीक्षण के अंतर्गत परिचालक और एक स्थायी चुंबक के मध्य सापेक्ष गति प्रदान करके भंवर धाराएं उत्पन्न होती हैं (चित्र देखें)। यदि चुंबक किसी त्रुटि से गुजर रहा है, तो उस पर कार्य करने वाला लोरेन्ट्स बल एक विकृति दर्शाता है जिसका संसूचन एलईटी कार्य सिद्धांत की कुंजी है। यदि वस्तु त्रुटियों से मुक्त है, तो परिणामी लोरेन्ट्स बल स्थिर रहता है।

यह भी देखें

संदर्भ

  1. Ivor Hughes. "The AWA Review: Professor David Edward Hughes", 2009, retrieved July 1, 2015
  2. 2.0 2.1 Nikhil Jahain. "The Rebirth of Eddy Current Testing", 2014, retrieved July 1, 2015
  3. "SURAGUS Technology of Eddy Current Testing".
  4. Joseph M. Buckley. "An Introduction to Eddy Current Testing Theory and Technology", retrieved July 1, 2015
  5. https://customers.phtool.com/custom-reference-standards/eddy-current-bolt-hole-standards/
  6. Terry Hennigar and Mike Wright. "Eddy Current Testing Technology", 1st edition, 2012
  7. Birring, Anmol (March 2001). "हीट एक्सचेंजर टयूबिंग के लिए एनडीटी तकनीकों का चयन". Materials Evaluation.
  8. Birring, Anmol (November 2003). "पेट्रोकेमिकल उद्योग में एड़ी वर्तमान परीक्षण". Materials Evaluation.
  9. H M Sadek. "NDE technologies for the examination of heat exchangers and boiler tubes – principles, advantages and limitations", Insight vol. 48 no. 3, March 2006, retrieved July 1, 2015
  10. Eddy Current Array, retrieved July 2, 2015
  11. Eddy Current Array (ECA) Theory, Practice and Application, retrieved July 2, 2015
  12. 12.0 12.1 M. Zec et al., Fast Technique for Lorentz Force Calculations in Nondestructive Testing Applications, COMPUMAG 2013, Budapest, Hungary
  13. Uhlig, R. P., Zec, M., Brauer, H. and Thess, A. 2012 "Lorentz Force Eddy Current Testing:a Prototype Model". Journal of Nondestructive Evaluation, 31, 357–372


बाहरी संबंध