सिद्धांत सजातीय समष्टि: Difference between revisions
No edit summary |
No edit summary |
||
Line 52: | Line 52: | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
प्रधान सजातीय स्थान अवधारणा प्रमुख बंडल का | प्रधान सजातीय स्थान अवधारणा प्रमुख बंडल का विशिष्ट विषय है| इसका अर्थ है, एकल बिंदु आधार वाला एक प्रमुख बंडल। दूसरे शब्दों में [[प्रमुख बंडल|प्रमुख]] बंडलों का स्थानीय सिद्धांत आधार में कुछ मापदंडों के आधार पर प्रमुख सजातीय रिक्त स्थान के परिवार का है। बंडल के एक खंड द्वारा 'मूल' की आपूर्ति की जा सकती है| सामान्यतः ऐसे वर्गों को आधार पर स्थानीय रूप से उपस्थित माना जाता है| बंडल स्थानीय रूप से तुच्छ होता है, जिससे स्थानीय संरचना एक कार्टेशियन उत्पाद की हो। किन्तु खंड अधिकांशतः विश्व स्तर पर उपस्थित नहीं होंगे। उदाहरण के लिए एक[[ अंतर कई गुना | डिफरेंशियल मैनिफोल्ड]] M में [[फ्रेम बंडल]] का एक प्रमुख बंडल होता है जो उसके [[स्पर्शरेखा बंडल]] से जुड़ा होता है। एक वैश्विक खंड तभी उपस्थित होगा जब एम समानांतर हो, जिसका तात्पर्य मजबूत सामयिक प्रतिबंधों से है। | ||
[[संख्या सिद्धांत]] में एक क्षेत्र K (और अधिक सामान्य [[एबेलियन किस्म]]) पर परिभाषित अण्डाकार घटता E के लिए प्रमुख सजातीय स्थानों पर विचार करने का एक (सतही रूप से भिन्न) कारण है। एक बार जब यह समझ में आ गया तो अन्य बीजगणितीय समूहों के लिए शीर्षक के अधीन कई अन्य उदाहरण एकत्र किए गए| ऑर्थोगोनल समूहों के लिए [[द्विघात रूप]], और [[प्रक्षेपी रैखिक समूह|प्रक्षेपी रैखिक]] समूहों के लिए सेवेरी-ब्राउर दो प्रकार हैं। | [[संख्या सिद्धांत]] में एक क्षेत्र K (और अधिक सामान्य [[एबेलियन किस्म]]) पर परिभाषित अण्डाकार घटता E के लिए प्रमुख सजातीय स्थानों पर विचार करने का एक (सतही रूप से भिन्न) कारण है। एक बार जब यह समझ में आ गया तो अन्य बीजगणितीय समूहों के लिए शीर्षक के अधीन कई अन्य उदाहरण एकत्र किए गए| ऑर्थोगोनल समूहों के लिए [[द्विघात रूप]], और [[प्रक्षेपी रैखिक समूह|प्रक्षेपी रैखिक]] समूहों के लिए सेवेरी-ब्राउर दो प्रकार हैं। |
Revision as of 01:48, 7 April 2023
गणित में, एक प्रमुख सजातीय स्थान,[1] या टोरसर, एक समूह (गणित) G के लिए एक सजातीय स्थान X है जिसमें प्रत्येक बिंदु का स्टेबलाइज़र उपसमूह तुच्छ है। समान रूप से, समूह G के लिए प्रमुख सजातीय स्थान गैर-खाली सेट X है जिस पर G स्वतंत्र और सकर्मक रूप से कार्य करता है (अर्थात्, X में किसी भी x, y के लिए, G में एक अद्वितीय g उपस्तिथ है जैसे कि x·g = y, जहाँ · X पर G की (दाईं ओर) क्रिया को दर्शाता है।
एक समान परिभाषा अन्य श्रेणी (गणित) में जारी होती है, जहां, उदाहरण के लिए,
- G टोपोलॉजिकल समूह है, X टोपोलॉजिकल स्पेस है और क्रिया निरंतर (टोपोलॉजी) है।
- G झूठ समूह है, X स्मूथ मैनिफोल्ड है और क्रिया स्मूथ है|
- G बीजगणितीय समूह है, X बीजगणितीय प्रकार है और क्रिया नियमित है।
परिभाषा
यदि G गैर-अबेलियन समूह है, तो किसी को बाएं और दाएं टॉर्सर्स के मध्य अंतर इस आधार पर करना चाहिए कि क्रिया बाएँ या दाएँ की ओर है या नहीं। इस लेख में, हम सही कार्यों का उपयोग करेंगे।
परिभाषा को अधिक स्पष्ट रूप से बताने के लिए, एक्स एक जी-टोरसर या जी-प्रिंसिपल सजातीय स्थान है यदि एक्स रिक्त है और मानचित्र से सुसज्जित है (उपयुक्त श्रेणी में) X × G → X ऐसा है कि
- x·1 = x
- x·(gh) = (x·g)·h
सभी x ∈ X और सभी g,h ∈ G के लिए और ऐसा कि मानचित्र X × G → X × X द्वारा दिए गए
एक समरूपता है (समुच्चयों की संख्या, या टोपोलॉजिकल रिक्त स्थान या ..., जैसा उपयुक्त हो, अर्थात् प्रश्नगत श्रेणी में)।
ध्यान दें कि इसका अर्थ है कि X और G समरूप हैं (प्रश्नगत श्रेणी में; समूह के रूप में नहीं)। चूँकि यह आवश्यक बिंदु है, X में कोई मुख्य 'पहचान' बिंदु नहीं है। अर्थात्, X पूर्णतया G जैसा दिखता है अतिरिक्त इसके कि कौन सा बिंदु पहचान को भूल गया है। (इस अवधारणा का उपयोग प्रायः गणित में अधिक आंतरिक दृष्टिकोण को पारित करने की विधि के रूप में किया जाता है, जिसका शीर्षक 'थ्रो अवे द ओरिजिन' है।)
चूँकि X एक समूह नहीं है, हम तत्वों का गुणन नहीं कर सकते हैं| यद्यपि, हम उनका भागफल ले सकते हैं। अर्थात् एक मानचित्र X × X → G है जो अद्वितीय तत्व g = x \ y ∈ G को (x, y) भेजता है जैसे कि y = x·g
चूँकि, सही समूह क्रिया के साथ बाद वाली संक्रिया की संरचना, एक त्रिगुट संक्रिया X × (X × X) → X, उत्पन्न करती है, जो समूह गुणन के एक सामान सामान्यीकरण के रूप में कार्य करता है और जो एक प्रमुख सजातीय स्थान को बीजगणितीय रूप से चिह्नित करने के लिए पर्याप्त है और इसके साथ जुड़े समूह को आंतरिक रूप से चिह्नित करता है| अगर हम निरूपित करते हैं इस त्रिगुट संक्रिया के परिणाम के बाद निम्नलिखित सर्वसमिका (गणित)
एक प्रमुख सजातीय स्थान को परिभाषित करने के लिए पर्याप्त होगा| जबकि अतिरिक्त संपत्ति,
उन स्थानों की पहचान करता है जो एबेलियन समूहों से जुड़े हैं। समूह को औपचारिक भागफल के रूप में परिभाषित किया जा सकता है तुल्यता संबंध के अधीन
- ,
- समूह उत्पाद के साथ, पहचान और व्युत्क्रम परिभाषित, क्रमशः
- ,
- ,
द्वारा और
- द्वारा समूह क्रिया|
उदाहरण
बाएं या दाएं गुणन की प्राकृतिक क्रिया के अधीन प्रत्येक समूह G को स्वयं बाएं या दाएं G-टोरसर के रूप में सोचा जा सकता है।
एक अन्य उदाहरण एफ्फिन स्थान की अवधारणा है, सदिश स्थान V के अंतर्निहित एफ्फिन स्थान A का विचार संक्षेप में यह कहकर कहा जा सकता है कि A, V के लिए एक प्रमुख सजातीय स्थान है जो अनुवादों के योज्य समूह के रूप में कार्य करता है।
किसी भी नियमित पॉलीटॉप का ध्वज (ज्यामिति) इसके समरूपता समूह के लिए एक टोरसर बनाता है।
सदिश समष्टि V दिए जाने पर हम G को सामान्य रैखिक समूह GL(V) और X को V के सभी (आदेशित) आधार (रैखिक बीजगणित) का समुच्चय मान सकते हैं। तब G, X पर इस प्रकार कार्य करता है जैसे कि यह V के सदिशों पर कार्य करता है; और यह समूह क्रिया (गणित) का कार्य करता है क्योंकि किसी भी आधार को G के माध्यम से किसी अन्य में रूपांतरित किया जा सकता है। क्या अधिक है, एक आधार के प्रत्येक वेक्टर को ठीक करने वाला एक रैखिक परिवर्तन, सामान्य रैखिक समूह GL(V) का तटस्थ तत्व होने के नाते V में सभी v को ठीक करेगा, जिससे वास्तव में X प्रमुख सजातीय स्थान हो। एक रेखीय बीजगणित तर्क में आधार-निर्भरता का पालन करने का एक मार्ग X में x को ट्रैक करना है। इसी प्रकार, ऑर्थोनॉर्मल आधार का स्थान (एन-फ्रेम्स के स्टीफेल मनीफोल्ड ) ऑर्थोगोनल समूह के लिए एक प्रमुख सजातीय स्थान है।
श्रेणी सिद्धांत में, यदि दो वस्तुएँ X और Y समरूपी हैं, तो उनके मध्य की समरूपता, Iso(X,Y), X, Aut(X) के ऑटोमोर्फिज़्म समूह के लिए एक टॉर्सर बनाती है, और इसी प्रकार Aut(Y) के लिए| वस्तुओं के मध्य समरूपता का एक विकल्प इन समूहों के मध्य एक समरूपता को जन्म देता है और इन दो समूहों के साथ टॉर्सर की पहचान करता है, टॉर्सर को एक समूह संरचना देता है (क्योंकि अब इसका एक आधार बिंदु है)।
अनुप्रयोग
प्रधान सजातीय स्थान अवधारणा प्रमुख बंडल का विशिष्ट विषय है| इसका अर्थ है, एकल बिंदु आधार वाला एक प्रमुख बंडल। दूसरे शब्दों में प्रमुख बंडलों का स्थानीय सिद्धांत आधार में कुछ मापदंडों के आधार पर प्रमुख सजातीय रिक्त स्थान के परिवार का है। बंडल के एक खंड द्वारा 'मूल' की आपूर्ति की जा सकती है| सामान्यतः ऐसे वर्गों को आधार पर स्थानीय रूप से उपस्थित माना जाता है| बंडल स्थानीय रूप से तुच्छ होता है, जिससे स्थानीय संरचना एक कार्टेशियन उत्पाद की हो। किन्तु खंड अधिकांशतः विश्व स्तर पर उपस्थित नहीं होंगे। उदाहरण के लिए एक डिफरेंशियल मैनिफोल्ड M में फ्रेम बंडल का एक प्रमुख बंडल होता है जो उसके स्पर्शरेखा बंडल से जुड़ा होता है। एक वैश्विक खंड तभी उपस्थित होगा जब एम समानांतर हो, जिसका तात्पर्य मजबूत सामयिक प्रतिबंधों से है।
संख्या सिद्धांत में एक क्षेत्र K (और अधिक सामान्य एबेलियन किस्म) पर परिभाषित अण्डाकार घटता E के लिए प्रमुख सजातीय स्थानों पर विचार करने का एक (सतही रूप से भिन्न) कारण है। एक बार जब यह समझ में आ गया तो अन्य बीजगणितीय समूहों के लिए शीर्षक के अधीन कई अन्य उदाहरण एकत्र किए गए| ऑर्थोगोनल समूहों के लिए द्विघात रूप, और प्रक्षेपी रैखिक समूहों के लिए सेवेरी-ब्राउर दो प्रकार हैं।
अंडाकार वक्र स्तिथि में डायोफैंटिन समीकरणों के लिए रुचि का कारण यह है कि के बीजगणितीय रूप से बंद नहीं हो सकता है। ऐसे वक्र C उपस्थित हो सकते हैं जिनके पास K पर परिभाषित कोई बिंदु नहीं है, और जो E के लिए एक बड़े क्षेत्र पर समरूप बन जाते हैं, परिभाषा के अनुसार K पर एक बिंदु है जो इसके अतिरिक्त कानून के लिए पहचान तत्व के रूप में कार्य करता है। यही है, इस स्तिथि के लिए हमें C को भिन्न करना चाहिए जिसमें जीनस (गणित) 1 है, अंडाकार वक्र E से जिसमें K-पॉइंट है (या, दूसरे शब्दों में, एक डायोफैंटिन समीकरण प्रदान करें जिसका समाधान K में है)। वक्र C, E के ऊपर टॉर्सर्स बन जाता है, और इस स्तिथि में एक समृद्ध संरचना वाला एक सेट बनाता है कि K एक संख्या क्षेत्र (सेल्मर समूह का सिद्धांत) है। वास्तव में 'Q' के ऊपर एक विशिष्ट समतल घन वक्र C के निकट परिमेय बिंदु होने का कोई विशेष कारण नहीं है; मानक वीयरस्ट्रैस मॉडल सदैव करता है, अर्थात् अनंत पर बिंदु, किन्तु आपको K पर उस रूप में C डालने के लिए K पर एक बिंदु की आवश्यकता होती है।
इस सिद्धांत को स्थानीय विश्लेषण पर अत्यन्त ध्यान से विकसित किया गया है, जिससे टेट-शफारेविच समूह की परिभाषा को बढ़ावा मिला है। सामान्य रूप से टॉरसर सिद्धांत को लेने का दृष्टिकोण, बीजगणितीय रूप से बंद क्षेत्र पर सरल, और एक छोटे से क्षेत्र में 'नीचे' जाने का प्रयास करना वंश (श्रेणी सिद्धांत) का एक स्वरूप है। यह एक बार में गैलोइस कोहोलॉजी के प्रश्नों की ओर ले जाता है, क्योंकि टॉर्स समूह कोहोलॉजी एच में कक्षाओं का प्रतिनिधित्व करते हैं1</उप>।
अन्य उपयोग
एक प्रमुख सजातीय स्थान की अवधारणा को निम्नानुसार वैश्वीकृत भी किया जा सकता है। X को एक स्थान (एक योजना (गणित)/कई गुना/स्थलीय स्थान आदि) होने दें, और G को X पर एक समूह होने दें, अर्थात, X से अधिक रिक्त स्थान की श्रेणी (गणित) में एक समूह वस्तु। इस मामले में, एक (दाएं, कहते हैं) X पर G-torsor E एक (दाएं) G ग्रुप एक्शन (गणित) के साथ X के ऊपर एक स्थान E (उसी प्रकार का) है, जैसे कि आकृतिवाद
- द्वारा दिए गए
- उपयुक्त श्रेणी (गणित) में एक तुल्याकारिता है, और ऐसा कि E, X पर स्थानीय रूप से तुच्छ है, उसमें E → X एक्स पर स्थानीय रूप से एक खंड प्राप्त करता है। इस अर्थ में टॉर्सर्स की आइसोमोर्फिज्म कक्षाएं सह-समरूपता समूह एच में कक्षाओं के अनुरूप हैं1(एक्स,जी).
जब हम स्मूथ मैनिफोल्ड कैटेगरी (गणित) में होते हैं, तब एक G-टॉर्सर (G a Lie समूह के लिए) ठीक एक प्रमुख G-प्रिंसिपल बंडल होता है, जैसा कि ऊपर परिभाषित किया गया है।
उदाहरण: यदि जी एक कॉम्पैक्ट लाई समूह (माना जाता है) है, तो वर्गीकरण स्थान पर एक G-torsor है .
यह भी देखें
- सजातीय स्थान
- ढेर (गणित)
टिप्पणियाँ
- ↑ S. Lang and J. Tate (1958). "एबेलियन किस्मों पर प्रमुख सजातीय स्थान". American Journal of Mathematics. 80 (3): 659–684. doi:10.2307/2372778.
अग्रिम पठन
- Garibaldi, Skip; Merkurjev, Alexander; Serre, Jean-Pierre (2003). Cohomological invariants in Galois cohomology. University Lecture Series. Vol. 28. Providence, RI: American Mathematical Society. ISBN 0-8218-3287-5. Zbl 1159.12311.
- Skorobogatov, A. (2001). Torsors and rational points. Cambridge Tracts in Mathematics. Vol. 144. Cambridge: Cambridge University Press. ISBN 0-521-80237-7. Zbl 0972.14015.
बाहरी संबंध
- Torsors made easy by John Baez