निस्पंदन (गणित): Difference between revisions
No edit summary |
No edit summary |
||
Line 52: | Line 52: | ||
:<math>t_{1} \leq t_{2} \implies \mathcal{F}_{t_{1}} \subseteq \mathcal{F}_{t_{2}}.</math> | :<math>t_{1} \leq t_{2} \implies \mathcal{F}_{t_{1}} \subseteq \mathcal{F}_{t_{2}}.</math> | ||
समय की सटीक सीमा<math>t</math> | समय की सटीक सीमा <math>t</math> सामान्यतः संदर्भ पर निर्भर करेगा मूल्यों का सेट <math>t</math> [[असतत सेट]] या निरंतर, [[बंधा हुआ सेट]] या अनबाउंड हो सकता है। उदाहरण के लिए, | ||
:<math>t \in \{ 0, 1, \dots, N \}, \mathbb{N}_{0}, [0, T] \mbox{ or } [0, + \infty).</math> | :<math>t \in \{ 0, 1, \dots, N \}, \mathbb{N}_{0}, [0, T] \mbox{ or } [0, + \infty).</math> | ||
इसी तरह,फ़िल्टर्ड प्रायिकता स्थान (स्टोकेस्टिक आधार के रूप में भी जाना जाता है) <math>\left(\Omega, \mathcal{F}, \left\{\mathcal{F}_{t}\right\}_{t\geq 0}, \mathbb{P}\right)</math>, फिल्ट्रेशन से लैसप्रायिकता स्थान है <math>\left\{\mathcal{F}_t\right\}_{t\geq 0}</math> उसके जैसा <math>\sigma</math>-बीजगणित <math>\mathcal{F}</math>. फ़िल्टर किए गए संभाव्यता स्थान को सामान्य स्थितियों को | इसी तरह,फ़िल्टर्ड प्रायिकता स्थान (स्टोकेस्टिक आधार के रूप में भी जाना जाता है) <math>\left(\Omega, \mathcal{F}, \left\{\mathcal{F}_{t}\right\}_{t\geq 0}, \mathbb{P}\right)</math>, फिल्ट्रेशन से लैसप्रायिकता स्थान है <math>\left\{\mathcal{F}_t\right\}_{t\geq 0}</math> उसके जैसा <math>\sigma</math>-बीजगणित <math>\mathcal{F}</math>. फ़िल्टर किए गए संभाव्यता स्थान को सामान्य स्थितियों को पूर्ण करने के लिए कहा जाता है यदि यह पूर्ण माप है (यानी, <math>\mathcal{F}_0</math> सभी सम्मिलित हैं <math>\mathbb{P}</math>-अशक्त सेट) और दाएँ-निरंतर (अर्थात <math>\mathcal{F}_t = \mathcal{F}_{t+} := \bigcap_{s > t} \mathcal{F}_s</math> हर समय के लिए <math>t</math>).<ref>{{cite web|title=Stochastic Processes: A very simple introduction|author=Péter Medvegyev|date=January 2009|url=http://medvegyev.uni-corvinus.hu/St1.pdf|access-date=June 25, 2012}}</ref><ref>{{cite book|title=संभावनाएं और क्षमता|author=Claude Dellacherie|publisher=Elsevier|year=1979|isbn=9780720407013}}</ref><ref>{{cite web|title=फिल्ट्रेशन और अनुकूलित प्रक्रियाएं|author=George Lowther|url=http://almostsure.wordpress.com/2009/11/08/filtrations-and-adapted-processes/|date=November 8, 2009|access-date=June 25, 2012}}</ref> | ||
यह परिभाषित करने के लिए भी उपयोगी है (अनबाउंड इंडेक्स सेट के मामले में)। <math>\mathcal{F}_{\infty}</math> के रूप में <math>\sigma</math>-बीजगणित के अनंत मिलन से उत्पन्न <math>\mathcal{F}_{t}</math>है, जिसमें निहित है <math>\mathcal{F}</math>: | यह परिभाषित करने के लिए भी उपयोगी है (अनबाउंड इंडेक्स सेट के मामले में)। <math>\mathcal{F}_{\infty}</math> के रूप में <math>\sigma</math>-बीजगणित के अनंत मिलन से उत्पन्न <math>\mathcal{F}_{t}</math>है, जिसमें निहित है <math>\mathcal{F}</math>: | ||
:<math>\mathcal{F}_{\infty} = \sigma\left(\bigcup_{t \geq 0} \mathcal{F}_{t}\right) \subseteq \mathcal{F}.</math> | :<math>\mathcal{F}_{\infty} = \sigma\left(\bigcup_{t \geq 0} \mathcal{F}_{t}\right) \subseteq \mathcal{F}.</math> | ||
एक σ-बीजगणित उन घटनाओं के सेट को परिभाषित करता है जिन्हें मापा जा सकता है, | एक σ-बीजगणित उन घटनाओं के सेट को परिभाषित करता है जिन्हें मापा जा सकता है, जो संभाव्यता के संदर्भ में उन घटनाओं के उपयुक्त है जिनमें भेदभाव किया जा सकता है, या ऐसे प्रश्न जिनका उत्तर समय पर दिया जा सकता है <math>t</math>. इसलिए,फिल्ट्रेशन का उपयोग अक्सर उन घटनाओं के सेट में परिवर्तन का प्रतिनिधित्व करने के लिए किया जाता है, जिन्हें [[जानकारी]] के लाभ या हानि के माध्यम से मापा जा सकता है। विशिष्ट उदाहरण [[गणितीय वित्त]] में है, जहां फिल्ट्रेशन प्रत्येक समय तक और सहित उपलब्ध जानकारी का प्रतिनिधित्व करता है <math>t</math>, और अधिक से अधिक सटीक है (मापने योग्य घटनाओं का सेट वही रहता है या बढ़ रहा है) क्योंकि स्टॉक मूल्य के विकास से अधिक जानकारी उपलब्ध हो जाती है। | ||
==== स्टॉपिंग टाइम से संबंध: स्टॉपिंग टाइम सिग्मा-अलजेब्रा ==== | ==== स्टॉपिंग टाइम से संबंध: स्टॉपिंग टाइम सिग्मा-अलजेब्रा ==== |
Revision as of 20:22, 9 April 2023
गणित में,निस्पंदन अनुक्रमित परिवार है किसी दिए गए बीजगणितीय संरचना के सुबाबजेक्ट का , सूचकांक के साथ कुछ पूरी प्रणाली से ऑर्डर किए गए सेट सूचकांक सेट पर चल रहा है , इस शर्त के अधीन कि
- अगर में , तब .
यदि सूचकांक कुछ स्टोकेस्टिक प्रक्रिया का समय पैरामीटर है, तो फिल्ट्रेशन की व्याख्या बीजगणितीय संरचना के साथ अनेक संभावनाओं में से चुनी हूई प्रक्रिया के बारे में उपलब्ध सभी ऐतिहासिक किंतु भविष्य की जानकारी का प्रतिनिधित्व करने के रूप में नहीं की जा सकती है। समय के साथ जटिलता प्राप्त करना। इसलिए,प्रक्रिया जोनिस्पंदन के लिए अनुकूलित प्रक्रिया है इसे गैर-प्रत्याशित भी कहा जाता है, क्योंकि यह भविष्य में नहीं देख सकता है।[1] कभी-कभी, फ़िल्टर किए गए बीजगणित के रूप में, इसकी आवश्यकता नहीं होती है कि सबलजेब्रा सार्वभौमिक बीजगणित में कुछ संक्रियाओं के संबंध में (कहते हैं, सदिश जोड़) किंतु अन्य संक्रियाओं के संबंध में नहीं (कहते हैं, गुणन) जो केवल संतुष्ट करती हैं , जहां सूचकांक सेट प्राकृतिक संख्या है; यह ग्रेडेड बीजगणित के अनुरूप है।
कभी-कभी, फिल्ट्रेशन के अतिरिक्त आवश्यकता को पूरा करने के लिए माना जाता है कि संघ (सेट सिद्धांत)। संपूर्ण हो , या (अधिक सामान्य मामलों में, जब संघ की धारणा समझ में नहीं आती है) कि विहित समरूपता की प्रत्यक्ष सीमा से को समरूपता है। इस आवश्यकता को माना जाता है या नहीं, यह सामान्यतः पाठ के लेखक पर निर्भर करता है और अक्सर स्पष्ट रूप से कहा जाता है। यह लेख इस आवश्यकता को लागू नहीं करता है।
अवरोही निस्पंदन' की धारणा भी है, जिसे संतुष्ट करना आवश्यक है के एवज (और, कभी-कभी, के बजाय ). फिर से, यह संदर्भ पर निर्भर करता है कि फिल्ट्रेशन शब्द को वास्तव में कैसे समझा जाए। अवरोही फिल्ट्रेशन को कोफिल्ट्रेशन की दोहरी (श्रेणी सिद्धांत) धारणा के साथ भ्रमित नहीं होना चाहिए (जिसमें उप-वस्तुओं के बजाय मात्रात्मक वस्तुएं सम्मिलित हैं)।
फिल्ट्रेशन का व्यापक रूप से सार बीजगणित, समरूप बीजगणित (जहां वे वर्णक्रमीय अनुक्रमों के लिए महत्वपूर्ण तरीके से संबंधित हैं) में उपयोग किया जाता है, और सिग्मा बीजगणित के नेस्टेड अनुक्रमों के लिए सिद्धांत और संभाव्यता सिद्धांत को मापता है। कार्यात्मक विश्लेषण और संख्यात्मक विश्लेषण में, सामान्यतः अन्य शब्दावली का उपयोग किया जाता है, जैसे कि रिक्त स्थान या नेस्टेड रिक्त स्थान का पैमाना।
उदाहरण
बीजगणित
बीजगणित
देखें: फ़िल्टर्ड बीजगणित
समूह
बीजगणित में, फिल्ट्रेशन के सामान्यतः जिसके द्वारा अनुक्रमित किया जाता है , प्राकृतिक संख्याओं का सेट (गणित)।समूह कानिस्पंदन , तोनेस्टेड अनुक्रम है के सामान्य उपसमूहों की (यानी, किसी के लिए अपने पास ). ध्यान दें कि फिल्ट्रेशन शब्द का यह प्रयोग हमारे अवरोही फिल्ट्रेशन से मेल खाता है।
एक समूह दिया और छानना ,टोपोलॉजिकल स्पेस को परिभाषित करने का प्राकृतिक युक्ति है , छानने से संबंधित होने के लिए टोपोलॉजी का आधार फिल्ट्रेशन में दिखाई देने वाले उपसमूहों के सभी सहसमुच्चयों का समुच्चय है, यदि यह फॉर्म के सेट का संघ है, तो इसे ओपन के रूप में परिभाषित किया गया है , कहाँ और प्राकृतिक संख्या है।
एक समूह परनिस्पंदन से संबंधित टोपोलॉजी बनाता है सामयिक समूह में।
फिल्ट्रेशन से जुड़ी टोपोलॉजी समूह पर हॉसडॉर्फ स्पेस है अगर और केवल अगर .
यदि दो फ़िल्टर और समूह पर परिभाषित किया गया है , फिर पहचान मानचित्र से को , जहां की सर्वप्रथम प्रति दिया जाता है -टोपोलॉजी और दूसरा -टोपोलॉजी, निरंतर है अगर किसी के लिए वहाँ है ऐसा है कि , अर्थात, अगर और केवल अगर पहचान मानचित्र 1 पर निरंतर है। विशेष रूप से, दो फ़िल्ट्रेशनही टोपोलॉजी को परिभाषित करते हैं यदि और केवल अगर किसी उपसमूह के लिए में दिखाई दे रहा है तो दूसरे में मध्य या अनुरूप दिखाई दे रहा है।
रिंग्स और मॉड्यूल: अवरोही फिल्ट्रेशन
एक अंगूठी दी और-मापांक , का अवरोही निस्पंदन सुब्मोडले का घटता क्रम है . इसलिए यह समूहों के लिए धारणा काविशेष मामला है, अतिरिक्त प्रतिबंध के साथ कि उपसमूह सबमॉड्यूल हैं। संबंधित टोपोलॉजी को समूहों के लिए परिभाषित किया गया है।
एक महत्वपूर्ण विशेष मामले के रूप में जाना जाता है -ऐडिक टोपोलॉजी (या -एडिक, आदि): चलो क्रमविनिमेय अंगूठी हो, और काआदर्श .दिया -मापांक , क्रम के सबमॉड्यूल का कानिस्पंदन बनाता है .-एडिक टोपोलॉजी ऑन फिर इस फिल्ट्रेशन से जुड़ी टोपोलॉजी है। अगर सिर्फ अंगूठी है ही, हमने परिभाषित किया है-एडिक टोपोलॉजी ऑन .
कब दिया जाता है -एडिक टोपोलॉजी, टोपोलॉजिकल रिंग बन जाता है। यदि-मापांक तो दिया जाता है -एडिक टोपोलॉजी, यह टोपोलॉजिकल मॉड्यूल बन जाता है | टोपोलॉजिकल -मॉड्यूल, दी गई टोपोलॉजी के सापेक्ष .
रिंग्स और मॉड्यूल: आरोही फिल्ट्रेशन
एक अंगूठी दी और-मापांक , का आरोही निस्पंदन सबमॉड्यूल का बढ़ता क्रम है . विशेष रूप से, अगर क्षेत्र है, फिर का आरोही निस्पंदन -सदिश स्थल की सदिश उपसमष्टियों का बढ़ता क्रम है . फ़्लैग (रैखिक बीजगणित) ऐसे फ़िल्टरों का महत्वपूर्ण वर्ग है।
सेट
किसी सेट का अधिकतम फिल्ट्रेशन सेट के ऑर्डरिंग (क्रमपरिवर्तन) के उपयुक्त होता है। उदाहरण के लिए, छानना आदेश से मेल खाता है .तत्व के साथ क्षेत्र के दृष्टिकोण से,सेट परआदेश अधिकतम ध्वज (रैखिक बीजगणित) (एक सदिश स्थान परनिस्पंदन) से मेल खाता है,तत्व के साथ क्षेत्र परसदिश स्थान होने पर विचार करता है।
माप सिद्धांत
माप सिद्धांत में, विशेष रूप से मार्टिंगेल सिद्धांत और स्टोकेस्टिक प्रक्रियाओं के सिद्धांत में,निस्पंदन सिग्मा बीजगणित काबढ़ता क्रम (गणित) है|मापने योग्य स्थान पर बीजगणित। यानी मापने योग्य जगह दी गई है ,निस्पंदन काक्रम है -बीजगणित साथ जहां प्रत्येक गैर-ऋणात्मक वास्तविक संख्या है और
समय की सटीक सीमा सामान्यतः संदर्भ पर निर्भर करेगा मूल्यों का सेट असतत सेट या निरंतर, बंधा हुआ सेट या अनबाउंड हो सकता है। उदाहरण के लिए,
इसी तरह,फ़िल्टर्ड प्रायिकता स्थान (स्टोकेस्टिक आधार के रूप में भी जाना जाता है) , फिल्ट्रेशन से लैसप्रायिकता स्थान है उसके जैसा -बीजगणित . फ़िल्टर किए गए संभाव्यता स्थान को सामान्य स्थितियों को पूर्ण करने के लिए कहा जाता है यदि यह पूर्ण माप है (यानी, सभी सम्मिलित हैं -अशक्त सेट) और दाएँ-निरंतर (अर्थात हर समय के लिए ).[2][3][4] यह परिभाषित करने के लिए भी उपयोगी है (अनबाउंड इंडेक्स सेट के मामले में)। के रूप में -बीजगणित के अनंत मिलन से उत्पन्न है, जिसमें निहित है :
एक σ-बीजगणित उन घटनाओं के सेट को परिभाषित करता है जिन्हें मापा जा सकता है, जो संभाव्यता के संदर्भ में उन घटनाओं के उपयुक्त है जिनमें भेदभाव किया जा सकता है, या ऐसे प्रश्न जिनका उत्तर समय पर दिया जा सकता है . इसलिए,फिल्ट्रेशन का उपयोग अक्सर उन घटनाओं के सेट में परिवर्तन का प्रतिनिधित्व करने के लिए किया जाता है, जिन्हें जानकारी के लाभ या हानि के माध्यम से मापा जा सकता है। विशिष्ट उदाहरण गणितीय वित्त में है, जहां फिल्ट्रेशन प्रत्येक समय तक और सहित उपलब्ध जानकारी का प्रतिनिधित्व करता है , और अधिक से अधिक सटीक है (मापने योग्य घटनाओं का सेट वही रहता है या बढ़ रहा है) क्योंकि स्टॉक मूल्य के विकास से अधिक जानकारी उपलब्ध हो जाती है।
स्टॉपिंग टाइम से संबंध: स्टॉपिंग टाइम सिग्मा-अलजेब्रा
होने देना फ़िल्टर्ड प्रायिकता स्थान हो।यादृच्छिक चर #माप सिद्धांत के संबंध में रुकने का समय है , अगर सभी के लिए . रुकने का समय -बीजगणित को अब परिभाषित किया गया है
- .
इसे दिखाना मुश्किल नहीं है वास्तव मेंसिग्मा-बीजगणित है|-बीजगणित। सेट यादृच्छिक समय तक जानकारी को एन्कोड करता है इस अर्थ में कि, यदि फ़िल्टर किए गए संभाव्यता स्थान कोयादृच्छिक प्रयोग के रूप में व्याख्या किया जाता है, तो अधिकतम जानकारी जो यादृच्छिक समय तक प्रयोग को बार-बार दोहराने से प्राप्त की जा सकती है है .[5] विशेष रूप से, यदि अंतर्निहित प्रायिकता स्थान परिमित है (अर्थात परिमित है), का न्यूनतम सेट (सेट समावेशन के संबंध में) संघ द्वारा सभी पर दिए गए हैं के न्यूनतम सेट के सेट का वह अंदर है .[5]
यह दिखाया जा सकता है है -मापने योग्य। हालाँकि, सरल उदाहरण[5]दिखाओ कि, सामान्य तौर पर, . अगर और बार रुक रहे हैं , और लगभग निश्चित रूप से, फिर
यह भी देखें
- प्राकृतिक फिल्ट्रेशन
- निस्पंदन (संभावना सिद्धांत)
- फ़िल्टर (गणित)
संदर्भ
- ↑ Björk, Thomas (2005). "Appendix B". आर्बिट्रेज थ्योरी इन कंटीन्यूअस टाइम. ISBN 978-0-19-927126-9.
- ↑ Péter Medvegyev (January 2009). "Stochastic Processes: A very simple introduction" (PDF). Retrieved June 25, 2012.
- ↑ Claude Dellacherie (1979). संभावनाएं और क्षमता. Elsevier. ISBN 9780720407013.
- ↑ George Lowther (November 8, 2009). "फिल्ट्रेशन और अनुकूलित प्रक्रियाएं". Retrieved June 25, 2012.
- ↑ 5.0 5.1 5.2 Fischer, Tom (2013). "स्टॉपिंग टाइम्स और स्टॉपिंग टाइम सिग्मा-अलजेब्रा के सरल निरूपण पर". Statistics and Probability Letters. 83 (1): 345–349. arXiv:1112.1603. doi:10.1016/j.spl.2012.09.024.
- Øksendal, Bernt K. (2003). Stochastic Differential Equations: An Introduction with Applications. Berlin: Springer. ISBN 978-3-540-04758-2.