इलेक्ट्रॉन चुंबकीय क्षण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 67: Line 67:
{{main article|पाउली समीकरण|डायराक समीकरण}}
{{main article|पाउली समीकरण|डायराक समीकरण}}


यहाँ से प्रारंभ करते हुए इलेक्ट्रॉन का आवेश है  {{math|e < 0}} . अर्ध-अभिन्न स्पिन (भौतिकी) को शुरू करने की आवश्यकता प्रयोगात्मक रूप से स्टर्न-गेरलाच प्रयोग के परिणामों पर वापस जाती है। परमाणुओं का एक बीम एक मजबूत गैर-समान चुंबकीय क्षेत्र के माध्यम से चलाया जाता है, जो तब विभाजित हो जाता है {{mvar|N}} भागों परमाणुओं के आंतरिक कोणीय गति पर निर्भर करता है। यह पाया गया कि चांदी के परमाणुओं के लिए, बीम को दो भागों में विभाजित किया गया था—जमीनी अवस्था इसलिए अभिन्न नहीं हो सकती थी, क्योंकि भले ही परमाणुओं का आंतरिक कोणीय संवेग जितना संभव हो उतना छोटा था, 1, बीम को 3 भागों में विभाजित किया जाएगा , परमाणुओं के अनुरूप {{mvar|L}}{{sub|z}} = -1, 0, और +1। निष्कर्ष यह है कि चांदी के परमाणुओं का शुद्ध आंतरिक कोणीय संवेग होता है {{frac|1|2}}. वोल्फगैंग पाउली ने एक सिद्धांत स्थापित किया जिसने इस विभाजन को एक दो-घटक तरंग समारोह और [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] में एक संबंधित सुधार शब्द की प्रारम्भ करके समझाया, एक [[अर्ध-शास्त्रीय सिद्धांत|अर्ध-मौलिक सिद्धांत]] का प्रतिनिधित्व करते हुए। फ़ील्ड, इस प्रकार:
यहाँ से प्रारंभ करते हुए इलेक्ट्रॉन का आवेश {{math|e < 0}} है। अर्ध-अभिन्न स्पिन (भौतिकी) को प्रारम्भ करने की आवश्यकता प्रयोगात्मक रूप से स्टर्न-गेरलाच प्रयोग के परिणामों पर वापस जाती है। परमाणुओं का एक बीम शक्तिशाली गैर-समान चुंबकीय क्षेत्र के माध्यम से चलाया जाता है। जो तब विभाजित हो जाता है, जब {{mvar|N}} भागों परमाणुओं के आंतरिक कोणीय गति पर निर्भर करता है। यह पाया गया कि चांदी के परमाणुओं के लिए बीम को दो भागों में विभाजित किया गया था- आधार अवस्था इसलिए अभिन्न नहीं हो सकती थी क्योंकि तथापि  परमाणुओं का आंतरिक कोणीय संवेग जितना संभव हो उतना छोटा था कि एक बीम को तीन भागों में विभाजित किया जाएगा। परमाणुओं के अनुरूप {{mvar|L}}{{sub|z}} = -1, 0 और +1। निष्कर्ष यह है कि चांदी के परमाणुओं का शुद्ध आंतरिक कोणीय संवेग {{frac|1|2}} होता है। वोल्फगैंग पाउली ने एक सिद्धांत स्थापित किया। जिसने इस विभाजन को एक दो-घटक तरंग फलन और [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] में एक संबंधित करेक्शन शब्द को एक [[अर्ध-शास्त्रीय सिद्धांत|अर्ध-मौलिक सिद्धांत]] का प्रतिनिधित्व करते हुए प्रारम्भ करके समझाया। फ़ील्ड, इस प्रकार:


:<math>H = \frac{1}{2m} \left [ \boldsymbol{\sigma}\cdot \left ( \mathbf{p} - \frac{e}{c}\mathbf{A} \right ) \right ]^2 + e\phi.</math>
:<math>H = \frac{1}{2m} \left [ \boldsymbol{\sigma}\cdot \left ( \mathbf{p} - \frac{e}{c}\mathbf{A} \right ) \right ]^2 + e\phi.</math>
यहाँ {{math|'''A'''}} [[चुंबकीय वेक्टर क्षमता]] है और {{mvar|ϕ}} विद्युत क्षमता, दोनों [[विद्युत चुम्बकीय]] क्षेत्र का प्रतिनिधित्व करते हैं, और {{mvar|'''σ'''}} = ({{mvar|σ}}{{sub|x}}, {{mvar|σ}}{{sub|y}}, {{mvar|σ}}{{sub|z}}) [[पॉल मैट्रिसेस]] हैं। पहले पद को समाप्त करने पर, चुंबकीय क्षेत्र के साथ एक अवशिष्ट अंतःक्रिया पाई जाती है, साथ ही एक आवेशित कण के सामान्य मौलिक हैमिल्टनियन के साथ एक लागू क्षेत्र के साथ बातचीत होती है:
यहाँ {{math|'''A'''}} [[चुंबकीय वेक्टर क्षमता]] और {{mvar|ϕ}} विद्युत क्षमता है। दोनों [[विद्युत चुम्बकीय]] क्षेत्र का प्रतिनिधित्व करते हैं और {{mvar|'''σ'''}} = ({{mvar|σ}}{{sub|x}}, {{mvar|σ}}{{sub|y}}, {{mvar|σ}}{{sub|z}}) [[पॉल मैट्रिसेस]] हैं। पहले पद को समाप्त करने पर चुंबकीय क्षेत्र के साथ एक अवशिष्ट अंतःक्रिया पाई जाती है। साथ ही एक आवेशित कण के सामान्य मौलिक हैमिल्टनियन के साथ एक निर्धारित क्षेत्र के साथ जानकारी होती है:


:<math>H = \frac{1}{2m}\left ( \mathbf{p} - \frac{e}{c}\mathbf{A} \right )^2 + e\phi - \frac{e\hbar}{2mc}\boldsymbol{\sigma}\cdot \mathbf{B}.</math>
:<math>H = \frac{1}{2m}\left ( \mathbf{p} - \frac{e}{c}\mathbf{A} \right )^2 + e\phi - \frac{e\hbar}{2mc}\boldsymbol{\sigma}\cdot \mathbf{B}.</math>
यह हैमिल्टनियन अब एक 2 × 2 मैट्रिक्स है, इसलिए इस पर आधारित श्रोडिंगर समीकरण को दो-घटक तरंग फ़ंक्शन का उपयोग करना चाहिए। पाउली ने 2 × 2 सिग्मा मेट्रिसेस को शुद्ध घटना विज्ञान के रूप में प्रस्तुत किया था - डिराक के पास अब एक सैद्धांतिक तर्क था जिसका अर्थ था कि स्पिन (भौतिकी) किसी समान [[क्वांटम यांत्रिकी]] में [[विशेष सापेक्षता]] को शामिल करने का परिणाम था। डायराक समीकरण में बाह्य विद्युत-चुम्बकीय 4-विभव को इसी समान से प्रस्तुत करने पर, जिसे [[न्यूनतम युग्मन]] के रूप में जाना जाता है, यह रूप लेता है (प्राकृतिक इकाइयों में) {{mvar|ħ}} = {{mvar|c}} = 1)
यह हैमिल्टनियन अब एक 2 × 2 मैट्रिक्स है। इसलिए इस पर आधारित श्रोडिंगर समीकरण को दो-घटक तरंग फलन का उपयोग करना चाहिए। पाउली ने 2 × 2 सिग्मा मेट्रिसेस को शुद्ध घटना विज्ञान के रूप में प्रस्तुत किया था। डिराक के पास अब एक सैद्धांतिक तर्क था। जिसका अर्थ था कि स्पिन (भौतिकी) किसी समान [[क्वांटम यांत्रिकी]] में [[विशेष सापेक्षता]] को सम्मिलित करने का परिणाम था। डायराक समीकरण में बाह्य विद्युत-चुम्बकीय 4-विभव को इसी समान से प्रस्तुत करने पर, जिसे [[न्यूनतम युग्मन]] के रूप में जाना जाता है, प्राकृतिक इकाइयों में {{mvar|ħ}} = {{mvar|c}} = 1 यह रूप लेता है।


:<math>\left [ -i\gamma^\mu\left ( \partial_\mu + ieA_\mu \right ) + m \right ] \psi = 0\,</math>
:<math>\left [ -i\gamma^\mu\left ( \partial_\mu + ieA_\mu \right ) + m \right ] \psi = 0\,</math>
जहाँ <math>\scriptstyle \gamma^\mu</math> [[गामा मैट्रिक्स]] हैं (जिन्हें [[डिराक मेट्रिसेस]] के रूप में जाना जाता है) और {{mvar|i}} [[काल्पनिक इकाई]] है। डिराक समीकरण का दूसरा अनुप्रयोग # गुण अब पहले की समान पाउली शब्द को पुन: उत्पन्न करेगा, क्योंकि स्थानिक डायराक मेट्रिसेस द्वारा गुणा किया जाता है {{mvar|i}}, पाउली मेट्रिसेस के समान स्क्वायरिंग और कम्यूटेशन गुण हैं। क्या अधिक है, पाउली के नए कार्यकाल के सामने खड़े इलेक्ट्रॉन के जाइरोमैग्नेटिक अनुपात के मूल्य को पहले सिद्धांतों से समझाया गया है। यह डिराक समीकरण की एक बड़ी उपलब्धि थी और इसने भौतिकविदों को इसकी समग्र शुद्धता में बहुत विश्वास दिया। पाउली सिद्धांत को निम्नलिखित तरीके से डायराक सिद्धांत की निम्न ऊर्जा सीमा के रूप में देखा जा सकता है। पहले समीकरण को 2-स्पिनर्स के लिए युग्मित समीकरणों के रूप में लिखा गया है, जिनकी इकाइयों को बहाल किया गया है:
जहाँ <math>\scriptstyle \gamma^\mu</math> [[गामा मैट्रिक्स]] हैं (जिन्हें [[डिराक मेट्रिसेस]] के रूप में जाना जाता है) और {{mvar|i}} [[काल्पनिक इकाई]] है। डिराक समीकरण का दूसरा अनुप्रयोग गुण अब पहले की समान पाउली शब्द को पुन: उत्पन्न करेगा क्योंकि स्थानिक डायराक मेट्रिसेस {{mvar|i}} द्वारा गुणा किया जाता है। पाउली मेट्रिसेस के समान स्क्वायरिंग और कम्यूटेशन गुण हैं। पाउली के नए कार्यकाल के सामने इलेक्ट्रॉन के जाइरोमैग्नेटिक अनुपात के मूल्य को पहले सिद्धांतों से समझाया गया है। यह डिराक समीकरण की एक बड़ी उपलब्धि थी और इसने भौतिकविदों को इसकी समग्र शुद्धता में बहुत विश्वास दिया। पाउली सिद्धांत को निम्नलिखित प्रकारों से डायराक सिद्धांत की निम्न ऊर्जा सीमा के रूप में देखा जा सकता है। पहले समीकरण को 2-स्पिनर्स के लिए युग्मित समीकरणों के रूप में लिखा गया है। जिनकी इकाइयों को संचालित किया गया है:


:<math>\begin{pmatrix}
:<math>\begin{pmatrix}
(mc^2 - E + e \phi) & c\sigma\cdot \left (\mathbf{p} - \frac{e}{c}\mathbf{A} \right ) \\ -c\boldsymbol{\sigma}\cdot \left ( \mathbf{p} - \frac{e}{c}\mathbf{A} \right ) & \left ( mc^2 + E - e \phi \right ) \end{pmatrix} \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. </math>
(mc^2 - E + e \phi) & c\sigma\cdot \left (\mathbf{p} - \frac{e}{c}\mathbf{A} \right ) \\ -c\boldsymbol{\sigma}\cdot \left ( \mathbf{p} - \frac{e}{c}\mathbf{A} \right ) & \left ( mc^2 + E - e \phi \right ) \end{pmatrix} \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. </math>
इसलिए
इसलिए-


:<math>\begin{align}
:<math>\begin{align}
Line 86: Line 86:
   -(E - e\phi) \psi_- + c\boldsymbol{\sigma} \cdot \left( \mathbf{p} - \frac{e}{c}\mathbf{A} \right) \psi_+ &= mc^2 \psi_-
   -(E - e\phi) \psi_- + c\boldsymbol{\sigma} \cdot \left( \mathbf{p} - \frac{e}{c}\mathbf{A} \right) \psi_+ &= mc^2 \psi_-
\end{align}</math>
\end{align}</math>
यह मानते हुए कि क्षेत्र कमजोर है और इलेक्ट्रॉन की गति गैर-सापेक्षवादी है, हमारे पास इलेक्ट्रॉन की कुल ऊर्जा लगभग उसकी बाकी ऊर्जा के बराबर है, और मौलिक मूल्य को कम करने वाली गति,
यह मानते हुए कि क्षेत्र आशक्त है और इलेक्ट्रॉन की गति गैर-सापेक्षवादी है। हमारे पास इलेक्ट्रॉन की कुल ऊर्जा लगभग उसकी शेष ऊर्जा के बराबर है और मौलिक मूल्य को कम करने वाली गति,


:<math>\begin{align}
:<math>\begin{align}
Line 92: Line 92:
           p &\approx m v
           p &\approx m v
\end{align}</math>
\end{align}</math>
और इसलिए दूसरा समीकरण लिखा जा सकता है
और इसलिए दूसरा समीकरण लिखा जा सकता है-


:<math>\psi_- \approx \frac{1}{2mc} \boldsymbol{\sigma} \cdot \left( \mathbf{p} - \frac{e}{c}\mathbf{A} \right) \psi_+</math>
:<math>\psi_- \approx \frac{1}{2mc} \boldsymbol{\sigma} \cdot \left( \mathbf{p} - \frac{e}{c}\mathbf{A} \right) \psi_+</math>
जो व्यवस्थित है {{frac|{{mvar|v}}|{{mvar|c}} }} - इस प्रकार विशिष्ट ऊर्जाओं और वेगों पर, मानक प्रतिनिधित्व में डायराक स्पिनर के निचले घटकों को शीर्ष घटकों की तुलना में बहुत दबा दिया जाता है। इस अभिव्यक्ति को पहले समीकरण में प्रतिस्थापित करने से कुछ पुनर्व्यवस्था के बाद मिलता है
जो व्यवस्थित {{frac|{{mvar|v}}|{{mvar|c}} }} है। इस प्रकार विशिष्ट ऊर्जाओं और वेगों पर मानक प्रतिनिधित्व में डायराक स्पिनर के निचले घटकों को शीर्ष घटकों की तुलना में बहुत कम कर दिया जाता है। इस अभिव्यक्ति को पहले समीकरण में प्रतिस्थापित करने से कुछ पुनर्व्यवस्था के बाद प्राप्त होता है-


:<math> \left(E - mc^2\right) \psi_+ = \frac{1}{2m} \left[ \boldsymbol{\sigma}\cdot \left( \mathbf{p} - \frac{e}{c}\mathbf{A} \right) \right]^2 \psi_+ + e\phi \psi_+</math>
:<math> \left(E - mc^2\right) \psi_+ = \frac{1}{2m} \left[ \boldsymbol{\sigma}\cdot \left( \mathbf{p} - \frac{e}{c}\mathbf{A} \right) \right]^2 \psi_+ + e\phi \psi_+</math>
बायीं ओर का संकारक अपनी बाकी ऊर्जा द्वारा कम की गई कण ऊर्जा का प्रतिनिधित्व करता है, जो केवल मौलिक ऊर्जा है, इसलिए हम पाउली के सिद्धांत को पुनः प्राप्त करते हैं यदि हम गैर-सापेक्ष सन्निकटन में डायराक स्पिनर के शीर्ष घटकों के साथ उसके 2-स्पिनर की पहचान करते हैं। एक और सन्निकटन पाउली सिद्धांत की सीमा के रूप में श्रोडिंगर समीकरण देता है। इस प्रकार श्रोडिंगर समीकरण को डायराक समीकरण के सुदूर गैर-सापेक्ष सन्निकटन के रूप में देखा जा सकता है जब कोई स्पिन की उपेक्षा कर सकता है और केवल कम ऊर्जा और वेग पर काम कर सकता है। यह नए समीकरण के लिए भी एक बड़ी जीत थी, क्योंकि इसने रहस्य का पता लगाया {{mvar|i}} जो इसमें प्रकट होता है, और एक जटिल तरंग फ़ंक्शन की आवश्यकता, डायराक बीजगणित के माध्यम से अंतरिक्ष-समय की ज्यामिति पर वापस आती है। यह इस बात पर भी प्रकाश डालता है कि क्यों श्रोडिंगर समीकरण, चूंकि एक प्रसार समीकरण के रूप में सतही तौर पर, वास्तव में तरंगों के प्रसार का प्रतिनिधित्व करता है।
बायीं ओर का संकारक अपनी शेष ऊर्जा द्वारा कम की गई कण ऊर्जा का प्रतिनिधित्व करता है। जो केवल मौलिक ऊर्जा है। इसलिए हम पाउली के सिद्धांत को पुनः प्राप्त करते हैं। यदि हम गैर-सापेक्ष सन्निकटन में डायराक स्पिनर के शीर्ष घटकों के साथ उसके 2-स्पिनर की पहचान करते हैं। एक और सन्निकटन पाउली सिद्धांत की सीमा के रूप में श्रोडिंगर समीकरण देता है। इस प्रकार श्रोडिंगर समीकरण को डायराक समीकरण के सुदूर गैर-सापेक्ष सन्निकटन के रूप में देखा जा सकता है। जब कोई स्पिन की उपेक्षा कर सकता है और केवल कम ऊर्जा और वेग पर काम कर सकता है। यह नए समीकरण के लिए भी एक बड़ा प्रभाव था क्योंकि इसने {{mvar|i}} की जानकारी का पता लगाया। जो इसमें प्रकट होता है और एक जटिल तरंग फलन की आवश्यकता डायराक बीजगणित के माध्यम से अंतरिक्ष-समय की ज्यामिति पर वापस आती है। यह इस बात पर भी प्रकाश डालता है कि क्योंकि श्रोडिंगर समीकरण चूंकि एक प्रसार समीकरण के रूप में सामान्यतः वास्तव में तरंगों के प्रसार का प्रतिनिधित्व करता है।


इस बात पर जोर दिया जाना चाहिए कि डायराक स्पिनर को बड़े और छोटे घटकों में अलग करना कम-ऊर्जा सन्निकटन पर स्पष्ट रूप से निर्भर करता है। संपूर्ण डायराक स्पिनर एक इरेड्यूसिबल संपूर्ण का प्रतिनिधित्व करता है, और पाउली सिद्धांत पर पहुंचने के लिए जिन घटकों की हमने अभी उपेक्षा की है, वे सापेक्षतावादी शासन में नई घटनाएं लाएंगे - [[ antimatter ]] और कणों के निर्माण और विनाश का विचार।
इस बात पर बल दिया जाना चाहिए कि डायराक स्पिनर को बड़े और छोटे घटकों में अलग करना कम-ऊर्जा सन्निकटन पर स्पष्ट रूप से निर्भर करता है। संपूर्ण डायराक स्पिनर एक इरेड्यूसिबल संपूर्ण का प्रतिनिधित्व करता है और पाउली सिद्धांत पर पहुंचने के लिए जिन घटकों की हमने अभी उपेक्षा की है। वे सापेक्षतावादी नियम में नई घटनाएं लाएंगे। [[ antimatter |एन्टीमैटर]] और कणों के निर्माण और नष्ट करने का विचार किया गया।


एक सामान्य मामले में (यदि विद्युत चुम्बकीय क्षेत्र का एक निश्चित रैखिक कार्य समान रूप से गायब नहीं होता है), डायराक समीकरण में स्पिनर फ़ंक्शन के चार घटकों में से तीन को बीजगणितीय रूप से समाप्त किया जा सकता है, केवल एक घटक के बराबर चौथे क्रम के आंशिक अंतर समीकरण की उपज . इसके अलावा, इस शेष घटक को गेज परिवर्तन द्वारा वास्तविक बनाया जा सकता है।<ref>{{cite journal |first=Andrey |last=Akhmeteli |year=2011 |title=Dirac spinor फ़ंक्शन के बजाय एक वास्तविक फ़ंक्शन|journal=Journal of Mathematical Physics |volume=52 |issue=8 |page=082303 |doi=10.1063/1.3624336 |arxiv=1008.4828 |bibcode=2011JMP....52h2303A |s2cid=119331138 |url=http://jmp.aip.org/resource/1/jmapaq/v52/i8/p082303_s1 |access-date=2012-04-26 |url-status=dead |archive-url=https://archive.today/20120718231440/http://jmp.aip.org/resource/1/jmapaq/v52/i8/p082303_s1 |archive-date=2012-07-18 |df=dmy-all}} <!-- or {{cite web |url=http://akhmeteli.org/wp-content/uploads/2011/08/JMAPAQ528082303_1.pdf |title=[no title cited] |url-status=dead |date=August 2011}} --></ref>
सामान्य स्थिति में (यदि विद्युत चुम्बकीय क्षेत्र का एक निश्चित रैखिक कार्य समान रूप से विलुप्त नहीं होता है), डायराक समीकरण में स्पिनर फलन के चार घटकों में से तीन को बीजगणितीय रूप से समाप्त किया जा सकता है। केवल एक घटक के बराबर चौथे क्रम के आंशिक अंतर समीकरण का उत्पन्न इसके अतिरिक्त इस शेष घटक को गेज परिवर्तन द्वारा वास्तविक बनाया जा सकता है।<ref>{{cite journal |first=Andrey |last=Akhmeteli |year=2011 |title=Dirac spinor फ़ंक्शन के बजाय एक वास्तविक फ़ंक्शन|journal=Journal of Mathematical Physics |volume=52 |issue=8 |page=082303 |doi=10.1063/1.3624336 |arxiv=1008.4828 |bibcode=2011JMP....52h2303A |s2cid=119331138 |url=http://jmp.aip.org/resource/1/jmapaq/v52/i8/p082303_s1 |access-date=2012-04-26 |url-status=dead |archive-url=https://archive.today/20120718231440/http://jmp.aip.org/resource/1/jmapaq/v52/i8/p082303_s1 |archive-date=2012-07-18 |df=dmy-all}} <!-- or {{cite web |url=http://akhmeteli.org/wp-content/uploads/2011/08/JMAPAQ528082303_1.pdf |title=[no title cited] |url-status=dead |date=August 2011}} --></ref>





Revision as of 13:51, 6 April 2023

परमाणु भौतिकी में इलेक्ट्रॉन चुंबकीय क्षण या विशेष रूप से इलेक्ट्रॉन चुंबकीय द्विध्रुवीय क्षण स्पिन (भौतिकी) और विद्युत आवेश के आंतरिक गुणों से उत्पन्न इलेक्ट्रॉन का चुंबकीय क्षण होता है। इलेक्ट्रॉन चुंबकीय क्षण का मान है। इलेक्ट्रॉन चुंबकीय क्षण की स्पष्टता बोहर चुंबक के सापेक्ष के लिए मापा गया है।

इलेक्ट्रॉन का चुंबकीय क्षण

इलेक्ट्रॉन एक आवेशित कण है। जिसका आवेश −e है। जहाँ e एलीमेन्ट्री चार्ज है। इसकी कोणीय गति दो प्रकार के घुमाव के कारण आती है: स्पिन (भौतिकी) और कक्षीय गति। मौलिक विद्युतगतिकी से विद्युत आवेश का एक घूर्णन वितरण चुंबकीय द्विध्रुव उत्पन्न करता है। जिससे यह एक छोटे बार चुंबक के समान व्यवहार करता है। इसका परिणाम यह है कि एक बाहरी चुंबकीय क्षेत्र इलेक्ट्रॉन चुंबकीय क्षण पर एक चुंबकीय क्षण बल लगाता है। जो क्षेत्र के संबंध में इस द्विध्रुव के ओरियन्टेशन पर निर्भर करता है।

यदि इलेक्ट्रॉन को मौलिक कठोर भौतिक रूप में देखा जाता है। जिसमें द्रव्यमान और आवेश का समान वितरण और गति होती है। जो कोणीय गति के साथ एक अक्ष के चारों ओर घूम रहा है। L इसका चुंबकीय द्विध्रुवीय क्षण μ द्वारा दिया गया है:

जहाँ me इलेक्ट्रॉन रेस्ट द्रव्यमान है। इस समीकरण में कोणीय गति L स्पिन कोणीय गति, कक्षीय कोणीय गति या कुल कोणीय गति हो सकती है। ट्रू स्पिन चुंबकीय क्षण और इस मॉडल द्वारा अनुमानित अनुपात आयाम रहित मात्रा कारक ge है। जिसे इलेक्ट्रॉन g-कारक (भौतिकी) के रूप में जाना जाता है:
चुंबकीय क्षण को घटे हुए प्लैंक स्थिरांक के रूप में व्यक्त करना सामान्य है। जो कि ħ और बोहर मैग्नेटन μB निम्न हैं:
चूंकि बोह्र मैग्नेटॉन की इकाइयों में μB कोणीय संवेग क्वांटम संख्या की इकाइयों में ħ है।

औपचारिक परिभाषा

आवेश और द्रव्यमान के केंद्र जैसी मौलिक धारणाएं, चूंकि क्वांटम प्राथमिक कण के लिए स्पष्ट बनाना कठिन हैं। व्यवहार में प्रयोगवादियों द्वारा उपयोग की जाने वाली परिभाषा फॉर्म फैक्टर (क्वांटम फील्ड थ्योरी) से आती है। मैट्रिक्स तत्व में दिखाई दे रहा है।


दो ऑन-शेल स्टेट्स के बीच इलेक्ट्रोमैग्नेटिक करंट ऑपरेटर का यहाँ और डायराक समीकरण के 4-स्पिनर समाधान सामान्यीकृत हैं। जिससे और वर्तमान से इलेक्ट्रॉन में संवेग का स्थानांतरण है। फॉर्म फैक्टर इलेक्ट्रॉन का आवेश है, इसका स्थिर चुंबकीय द्विध्रुवीय क्षण है और इलेक्ट्रॉन विद्युत द्विध्रुव आघूर्ण की औपचारिक परिभाषा प्रदान करता है | यदि गैर शून्य अनापोल क्षण होगा। इलेक्ट्रॉन का विद्युत द्विध्रुव आघूर्ण शेष फॉर्म फैक्टर होगा।

स्पिन चुंबकीय द्विध्रुवीय क्षण

स्पिन चुंबकीय क्षण एक इलेक्ट्रॉन के लिए आंतरिक है।[1] यह है

यहाँ S इलेक्ट्रॉन प्रचक्रण कोणीय संवेग है। स्पिन g-कारक (भौतिकी) लगभग दो है: . मौलिक यांत्रिकी में एक इलेक्ट्रॉन का चुंबकीय क्षण लगभग दोगुना होना चाहिए। दो कारक का अर्थ है कि इलेक्ट्रॉन एक चुंबकीय क्षण उत्पन्न करने के लिए संबंधित मौलिक चार्ज किए गए बॉडी के रूप में दोगुना प्रभावी प्रतीत होता है।

स्पिन चुंबकीय द्विध्रुवीय क्षण लगभग एक μB है क्योंकि और इलेक्ट्रॉन एक चक्रण स्पिन-1⁄2 कण (S = ħ⁄2): है-

[dubious ] वह z इलेक्ट्रॉन चुंबकीय आघूर्ण का घटक है
जहाँ ms स्पिन क्वांटम संख्या है। ध्यान दें कि μ स्पिन (भौतिकी) द्वारा गुणा किया गया एक ऋणात्मक स्थिरांक है। इसलिए चुंबकीय क्षण स्पिन कोणीय गति के प्रति समानांतर (गणित) है।

स्पिन g-कारक (भौतिकी) gs = 2 डायराक समीकरण से आता है। एक मौलिक समीकरण जो इलेक्ट्रॉन के स्पिन को उसके विद्युत चुम्बकीय गुणों से जोड़ता है। चुंबकीय क्षेत्र में एक इलेक्ट्रॉन के लिए डायराक समीकरण को उसकी गैर-सापेक्षतावादी सीमा तक कम करने से एक त्रुटिपूर्ण शब्द के साथ श्रोडिंगर समीकरण प्राप्त होता है। जो सही ऊर्जा देने वाले चुंबकीय क्षेत्र के साथ इलेक्ट्रॉन के आंतरिक चुंबकीय क्षण की जानकारी को ध्यान में रखता है।

इलेक्ट्रॉन स्पिन के लिए स्पिन g-कारक के लिए सबसे स्पष्ट मूल्य g-फैक्टर का मान रखने के लिए प्रयोगात्मक रूप से निर्धारित किया गया है-

−2.00231930436256(35).[2]

ध्यान दें कि यह डायराक समीकरण के मूल्य से केवल सामान्य रूप से भिन्न है। छोटे सुधार को इलेक्ट्रॉन के विषम चुंबकीय द्विध्रुवीय क्षण के रूप में जाना जाता है। यह क्वांटम इलेक्ट्रोडायनामिक्स में आभासी फोटोन के साथ इलेक्ट्रॉन की जानकारी से उत्पन्न होता है। क्वांटम इलेक्ट्रोडायनामिक्स सिद्धांत की प्रगति इलेक्ट्रॉन g-कारक की स्पष्ट भविष्यवाणी है। इलेक्ट्रॉन चुंबकीय क्षण के लिए को-डेटा मान है।

.

कक्षीय चुंबकीय द्विध्रुवीय क्षण

एक अक्ष के चारों ओर एक अन्य वस्तु के माध्यम से इलेक्ट्रॉन की गति, कक्षीय चुंबकीय द्विध्रुवीय क्षण को उत्पन्न करती है। माना कि कक्षीय गति के लिए कोणीय संवेग L है। फिर कक्षीय चुंबकीय द्विध्रुवीय क्षण है।

यहाँ gL इलेक्ट्रॉन कक्षीय g-कारक और μB बोह्र मैग्नेटॉन का मान है। gL जाइरोमैग्नेटिक अनुपात की व्युत्पत्ति के अनुरूप क्वांटम-मैकेनिकल तर्क द्वारा बिल्कुल एक के बराबर है।

कुल चुंबकीय द्विध्रुव आघूर्ण

किसी इलेक्ट्रॉन के चक्रण और कक्षीय कोणीय संवेग दोनों से उत्पन्न कुल चुंबकीय द्विध्रुव आघूर्ण, कुल कोणीय संवेग J से एक समान समीकरण द्वारा संबंधित होता है:

g-कारक gJ लैंडे g-कारक के रूप में जाना जाता है | लैंडे g-कारक, जो gL और gS क्वांटम यांत्रिकी द्वारा संबंधित हो सकता है। लैंडे g-कारक विवरण के लिए देखें।

उदाहरण: हाइड्रोजन परमाणु

हाइड्रोजन परमाणु के लिए परमाणु कक्षीय पर नियंत्रण करने वाला एक इलेक्ट्रॉन Ψn,ℓ,m , चुंबकीय द्विध्रुवीय क्षण द्वारा दिया जाता है

यहाँ L कक्षीय कोणीय गति है, n, , और m क्रमशः प्रमुख क्वांटम संख्या, अज़ीमुथल क्वांटम संख्या और चुंबकीय क्वांटम संख्या क्वांटम संख्याएँ हैं। वह z चुंबकीय क्वांटम संख्या वाले इलेक्ट्रॉन के लिए कक्षीय चुंबकीय द्विध्रुवीय क्षण का घटक m द्वारा दिया गया है-


इतिहास

इलेक्ट्रॉन चुंबकीय क्षण आंतरिक रूप से इलेक्ट्रॉन स्पिन से जुड़ा होता है और पहली बार बीसवीं शताब्दी के प्रारम्भ में परमाणु के प्रारम्भी मॉडल के समय परिकल्पित किया गया था। इलेक्ट्रॉन स्पिन के विचार को प्रस्तुत करने वाले पहले 1921 के पेपर में एक्स-रे के साथ फेरोमैग्नेटिक पदार्थों की जांच पर आर्थर कॉम्पटन थे।[3][4] कॉम्पटन के लेख में उन्होंने लिखा: प्राथमिक चुंबक की प्रकृति के बारे में संभवतः सबसे स्वाभाविक और निश्चित रूप से सबसे सामान्यतः स्वीकृत दृष्टिकोण यह है कि परमाणु के अन्दर कक्षाओं में इलेक्ट्रॉनों की गति परमाणु को एक छोटे से गुण के रूप में देती है। स्थायी चुंबक[3]: 146  उसी वर्ष ओटो स्टर्न ने एक प्रयोग प्रस्तावित किया। जिसे बाद में स्टर्न-गेरलाच प्रयोग कहा गया। जिसमें चुंबकीय क्षेत्र में चांदी के परमाणुओं को वितरण के विपरीत दिशाओं में विक्षेपित किया गया। 1925 से पहले की इस अवधि ने बोहर मॉडल पर निर्मित पुराने क्वांटम सिद्धांत को चिन्हित किया। परमाणु का बोह्र-सोमरफेल्ड मॉडल अपने मौलिक अण्डाकार इलेक्ट्रॉन कक्षाओं के साथ 1916 और 1925 के बीच की अवधि के समय आवर्त सारणी में इलेक्ट्रॉनों की व्यवस्था के संबंध में अधिक प्रगति की जा रही थी। बोह्र परमाणु में जीमान प्रभाव की व्याख्या करने के लिए सोमरफेल्ड ने प्रस्तावित किया कि इलेक्ट्रॉन तीन 'क्वांटम संख्या' n, k, और m पर आधारित होंगे। जो कक्षा के आकार, कक्षा के आकार और दिशा का वर्णन करते हैं। जिसमें कक्षा की ओर इंगित किया गया था।[5] इरविंग लैंगमुइर ने अपने 1919 के पेपर में उनके गोले में इलेक्ट्रॉनों के बारे में बताया था। रिडबर्ग ने बताया है कि ये संख्या श्रृंखला से प्राप्त की जाती हैं। यह कारक दो स्थिर परमाणुओं के लिए मूलभूत दो गुना समरूपता का सुझाव देता है।[6] यह कॉन्फ़िगरेशन को एडमंड स्टोनर ने अक्टूबर 1924 में फिलोसोफिकल मैगज़ीन में प्रकाशित अपने पेपर 'द डिस्ट्रीब्यूशन ऑफ़ इलेक्ट्रॉन्स अमंग एटॉमिक लेवल्स' में अपनाया था। वोल्फगैंग पाउली ने परिकल्पना की कि इसके लिए दो-मूल्यवानता के साथ चौथी क्वांटम संख्या की आवश्यकता है।[7]


पाउली और डिराक सिद्धांतों में इलेक्ट्रॉन स्पिन

यहाँ से प्रारंभ करते हुए इलेक्ट्रॉन का आवेश e < 0 है। अर्ध-अभिन्न स्पिन (भौतिकी) को प्रारम्भ करने की आवश्यकता प्रयोगात्मक रूप से स्टर्न-गेरलाच प्रयोग के परिणामों पर वापस जाती है। परमाणुओं का एक बीम शक्तिशाली गैर-समान चुंबकीय क्षेत्र के माध्यम से चलाया जाता है। जो तब विभाजित हो जाता है, जब N भागों परमाणुओं के आंतरिक कोणीय गति पर निर्भर करता है। यह पाया गया कि चांदी के परमाणुओं के लिए बीम को दो भागों में विभाजित किया गया था- आधार अवस्था इसलिए अभिन्न नहीं हो सकती थी क्योंकि तथापि परमाणुओं का आंतरिक कोणीय संवेग जितना संभव हो उतना छोटा था कि एक बीम को तीन भागों में विभाजित किया जाएगा। परमाणुओं के अनुरूप Lz = -1, 0 और +1। निष्कर्ष यह है कि चांदी के परमाणुओं का शुद्ध आंतरिक कोणीय संवेग 12 होता है। वोल्फगैंग पाउली ने एक सिद्धांत स्थापित किया। जिसने इस विभाजन को एक दो-घटक तरंग फलन और हैमिल्टनियन (क्वांटम यांत्रिकी) में एक संबंधित करेक्शन शब्द को एक अर्ध-मौलिक सिद्धांत का प्रतिनिधित्व करते हुए प्रारम्भ करके समझाया। फ़ील्ड, इस प्रकार:

यहाँ A चुंबकीय वेक्टर क्षमता और ϕ विद्युत क्षमता है। दोनों विद्युत चुम्बकीय क्षेत्र का प्रतिनिधित्व करते हैं और σ = (σx, σy, σz) पॉल मैट्रिसेस हैं। पहले पद को समाप्त करने पर चुंबकीय क्षेत्र के साथ एक अवशिष्ट अंतःक्रिया पाई जाती है। साथ ही एक आवेशित कण के सामान्य मौलिक हैमिल्टनियन के साथ एक निर्धारित क्षेत्र के साथ जानकारी होती है:

यह हैमिल्टनियन अब एक 2 × 2 मैट्रिक्स है। इसलिए इस पर आधारित श्रोडिंगर समीकरण को दो-घटक तरंग फलन का उपयोग करना चाहिए। पाउली ने 2 × 2 सिग्मा मेट्रिसेस को शुद्ध घटना विज्ञान के रूप में प्रस्तुत किया था। डिराक के पास अब एक सैद्धांतिक तर्क था। जिसका अर्थ था कि स्पिन (भौतिकी) किसी समान क्वांटम यांत्रिकी में विशेष सापेक्षता को सम्मिलित करने का परिणाम था। डायराक समीकरण में बाह्य विद्युत-चुम्बकीय 4-विभव को इसी समान से प्रस्तुत करने पर, जिसे न्यूनतम युग्मन के रूप में जाना जाता है, प्राकृतिक इकाइयों में ħ = c = 1 यह रूप लेता है।

जहाँ गामा मैट्रिक्स हैं (जिन्हें डिराक मेट्रिसेस के रूप में जाना जाता है) और i काल्पनिक इकाई है। डिराक समीकरण का दूसरा अनुप्रयोग गुण अब पहले की समान पाउली शब्द को पुन: उत्पन्न करेगा क्योंकि स्थानिक डायराक मेट्रिसेस i द्वारा गुणा किया जाता है। पाउली मेट्रिसेस के समान स्क्वायरिंग और कम्यूटेशन गुण हैं। पाउली के नए कार्यकाल के सामने इलेक्ट्रॉन के जाइरोमैग्नेटिक अनुपात के मूल्य को पहले सिद्धांतों से समझाया गया है। यह डिराक समीकरण की एक बड़ी उपलब्धि थी और इसने भौतिकविदों को इसकी समग्र शुद्धता में बहुत विश्वास दिया। पाउली सिद्धांत को निम्नलिखित प्रकारों से डायराक सिद्धांत की निम्न ऊर्जा सीमा के रूप में देखा जा सकता है। पहले समीकरण को 2-स्पिनर्स के लिए युग्मित समीकरणों के रूप में लिखा गया है। जिनकी इकाइयों को संचालित किया गया है:

इसलिए-

यह मानते हुए कि क्षेत्र आशक्त है और इलेक्ट्रॉन की गति गैर-सापेक्षवादी है। हमारे पास इलेक्ट्रॉन की कुल ऊर्जा लगभग उसकी शेष ऊर्जा के बराबर है और मौलिक मूल्य को कम करने वाली गति,

और इसलिए दूसरा समीकरण लिखा जा सकता है-

जो व्यवस्थित vc है। इस प्रकार विशिष्ट ऊर्जाओं और वेगों पर मानक प्रतिनिधित्व में डायराक स्पिनर के निचले घटकों को शीर्ष घटकों की तुलना में बहुत कम कर दिया जाता है। इस अभिव्यक्ति को पहले समीकरण में प्रतिस्थापित करने से कुछ पुनर्व्यवस्था के बाद प्राप्त होता है-

बायीं ओर का संकारक अपनी शेष ऊर्जा द्वारा कम की गई कण ऊर्जा का प्रतिनिधित्व करता है। जो केवल मौलिक ऊर्जा है। इसलिए हम पाउली के सिद्धांत को पुनः प्राप्त करते हैं। यदि हम गैर-सापेक्ष सन्निकटन में डायराक स्पिनर के शीर्ष घटकों के साथ उसके 2-स्पिनर की पहचान करते हैं। एक और सन्निकटन पाउली सिद्धांत की सीमा के रूप में श्रोडिंगर समीकरण देता है। इस प्रकार श्रोडिंगर समीकरण को डायराक समीकरण के सुदूर गैर-सापेक्ष सन्निकटन के रूप में देखा जा सकता है। जब कोई स्पिन की उपेक्षा कर सकता है और केवल कम ऊर्जा और वेग पर काम कर सकता है। यह नए समीकरण के लिए भी एक बड़ा प्रभाव था क्योंकि इसने i की जानकारी का पता लगाया। जो इसमें प्रकट होता है और एक जटिल तरंग फलन की आवश्यकता डायराक बीजगणित के माध्यम से अंतरिक्ष-समय की ज्यामिति पर वापस आती है। यह इस बात पर भी प्रकाश डालता है कि क्योंकि श्रोडिंगर समीकरण चूंकि एक प्रसार समीकरण के रूप में सामान्यतः वास्तव में तरंगों के प्रसार का प्रतिनिधित्व करता है।

इस बात पर बल दिया जाना चाहिए कि डायराक स्पिनर को बड़े और छोटे घटकों में अलग करना कम-ऊर्जा सन्निकटन पर स्पष्ट रूप से निर्भर करता है। संपूर्ण डायराक स्पिनर एक इरेड्यूसिबल संपूर्ण का प्रतिनिधित्व करता है और पाउली सिद्धांत पर पहुंचने के लिए जिन घटकों की हमने अभी उपेक्षा की है। वे सापेक्षतावादी नियम में नई घटनाएं लाएंगे। एन्टीमैटर और कणों के निर्माण और नष्ट करने का विचार किया गया।

सामान्य स्थिति में (यदि विद्युत चुम्बकीय क्षेत्र का एक निश्चित रैखिक कार्य समान रूप से विलुप्त नहीं होता है), डायराक समीकरण में स्पिनर फलन के चार घटकों में से तीन को बीजगणितीय रूप से समाप्त किया जा सकता है। केवल एक घटक के बराबर चौथे क्रम के आंशिक अंतर समीकरण का उत्पन्न इसके अतिरिक्त इस शेष घटक को गेज परिवर्तन द्वारा वास्तविक बनाया जा सकता है।[8]


नाप

परमाणु चुंबकीय अनुनाद विधि द्वारा प्रयोगात्मक रूप से इलेक्ट्रॉन के विषम चुंबकीय क्षण के अस्तित्व का पता लगाया गया है। यह कई संक्रमणों के लिए मापा अनुनाद आवृत्ति का उपयोग करके हाइड्रोजन # हाइड्रोजन -1 .28protium.29 और ड्यूटेरियम के समस्थानिकों में इलेक्ट्रॉन खोल ऊर्जा स्तरों के हाइपरफाइन विभाजन के निर्धारण की अनुमति देता है।[9][10] इलेक्ट्रॉन के चुंबकीय क्षण को एक-इलेक्ट्रॉन क्वांटम साइक्लोट्रॉन और गैर-विध्वंस जितना स्पेक्ट्रोस्कोपी का उपयोग करके मापा गया है। इलेक्ट्रॉन की स्पिन आवृत्ति जी-कारक (भौतिकी) द्वारा निर्धारित की जाती हैg-कारक।


यह भी देखें

संदर्भ

  1. Mahajan, A.; Rangwala, A. (1989). बिजली और चुंबकत्व. p. 419. ISBN 9780074602256.
  2. "2018 CODATA Value: electron g factor". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2020-03-13.
  3. 3.0 3.1 Compton, Arthur H. (August 1921). "चुंबकीय इलेक्ट्रॉन". Journal of the Franklin Institute. 192 (2): 145–155. doi:10.1016/S0016-0032(21)90917-7.
  4. Charles P. Enz, Heisenberg's applications of quantum mechanics (1926-33) or the settling of the new land*), Department de Physique Théorique Université de Genève, 1211 Genève 4, Switzerland (10. I. 1983)
  5. Manjit Kumar, Quantum: Einstein, Bohr and the Great Debate About the Nature of Reality, 2008.
  6. Langmuir, Irving. (1919). The arrangement of electrons in atoms and molecules. https://doi.org/10.1016/s0016-0032(19)91097-0
  7. Wolfgang Pauli. Exclusion principle and quantum mechanics. Online available via ⟨http://nobelprize.org⟩[permanent dead link]. Nobel Lecture delivered on December 13th 1946 for the 1945 Nobel Prize in Physics.
  8. Akhmeteli, Andrey (2011). "Dirac spinor फ़ंक्शन के बजाय एक वास्तविक फ़ंक्शन". Journal of Mathematical Physics. 52 (8): 082303. arXiv:1008.4828. Bibcode:2011JMP....52h2303A. doi:10.1063/1.3624336. S2CID 119331138. Archived from the original on 18 July 2012. Retrieved 26 April 2012.
  9. Foley, H.M.; Kusch, Polykarp (15 February 1948). "इलेक्ट्रॉन का आंतरिक क्षण". Physical Review. 73 (4): 412. doi:10.1103/PhysRev.73.412. Archived from the original on 8 March 2021. Retrieved 2 April 2015.
  10. Kusch, Polykarp; Foley, H.M. (1 August 1948). "इलेक्ट्रॉन का चुंबकीय क्षण". Physical Review. 74 (3): 207–11. Bibcode:1948PhRv...74..250K. doi:10.1103/PhysRev.74.250. PMID 17820251. Archived from the original on 22 April 2021. Retrieved 2 April 2015.


ग्रन्थसूची