अरबिट्ररीलय लार्ज: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, | गणित में, "अनियंत्रित रूप से बड़ा", "अनियंत्रित रूप से छोटा", और "अनियंत्रित रूप से लंबा" वाक्यों का उपयोग विविध प्रकार के आंकड़ों या संख्याओं के संबंध में किया जाता है ताकि किसी वस्तु के बड़ा, छोटा और लंबा होने को स्पष्ट किया जा सके। "अनियंत्रित" का उपयोग वहाँ होता है जहाँ कोई विशेष सीमा या प्रतिबंध नहीं होता है। यह विशेष रूप से [[वास्तविक संख्या|वास्तविक संख्याओं]] (और उसके [[सबसेट|उप-समूहों]]) के सन्दर्भ में होता है, हालांकि इसका अर्थ "पर्याप्त रूप से" और "अनंत रूप से" से अलग हो सकता है। | ||
== उदाहरण == | == उदाहरण == | ||
वाक्यांश | |||
:<math>f(x)</math> | :<math>f(x)</math> को अनियंत्रित रूप से बड़े <math>x</math> के लिए अवैध नहीं होने दिया जाता है। | ||
के लिए एक | निम्नलिखित के लिए एक शब्दशः है: | ||
: प्रत्येक वास्तविक संख्या | : प्रत्येक वास्तविक संख्या <math>n</math> के लिए, कुछ वास्तविक संख्या <math>x</math> सी होती है जो <math>n</math> से अधिक होने पर <math>f(x)</math>अवैध नहीं होता।" | ||
सामान्य भाषा में, "अनियंत्रित रूप से लंबा" शब्द अक्सर संख्या की एक अनुक्रम में उपयोग किया जाता है। उदाहरण के लिए, "प्राइम संख्याओं की अनियंत्रित रूप से लंबी अंकगणितीय प्रगति होती है" कहना यह नहीं मानता कि कोई असीमित लंबी प्रगति होती है (जो नहीं होती है), न ही कोई विशिष्ट प्राइम संख्या की प्रगति अपने किसी विशेष रूप से "अनियंत्रित रूप से लंबी" होती है। बल्कि, यह वाक्य इस तथ्य को संदर्भित करने के लिए उपयोग किया जाता है कि कोई भी संख्या <math>n</math> कितनी भी बड़ी हो, उससे कम से कम लंबाई वाली कुछ प्राइम संख्या की प्रगति मौजूद होती है।.<ref>[http://www.ccs.neu.edu/home/matthias/HtDP2e/htdp2e-part2.html 4 Arbitrarily Large Data.] {{webarchive|url=https://web.archive.org/web/20120222213518/http://www.ccs.neu.edu/home/matthias/HtDP2e/htdp2e-part2.html|date=February 22, 2012}} Accessed 21 February 2012</ref> | |||
अनियंत्रित रूप से छोटे वास्तविक संख्याओं के लिए व्याख्या भी "अनियंत्रित रूप से बड़ी संख्याओं" के जैसी ही हो सकती है, जैसे कि निम्नलिखित रूप से:<ref>{{Cite web|url=https://proofwiki.org/wiki/Definition:Arbitrarily_Small|title=Definition:Arbitrarily Small - ProofWiki|website=proofwiki.org|access-date=2019-11-19}}</ref> | |||
:<math>\forall \epsilon \in \mathbb{R}_{+},\, \exists x \in \mathbb{R} : |x|<\epsilon \land P(x) </math> | :<math>\forall \epsilon \in \mathbb{R}_{+},\, \exists x \in \mathbb{R} : |x|<\epsilon \land P(x) </math> | ||
अर्थात: | |||
: संख्या कितनी ही छोटी क्यों न हो, | : संख्या कितनी ही छोटी क्यों न हो,उससे भी छोटी कोई संख्या <math>x</math> होगी जिसके लिए <math>P(x)</math> सत्य होगा। | ||
== इच्छानुसार से बड़ा बनाम [[पर्याप्त रूप से बड़ा]] बनाम असीम रूप से बड़ा == | == इच्छानुसार से बड़ा बनाम [[पर्याप्त रूप से बड़ा]] बनाम असीम रूप से बड़ा == | ||
अत: यदि भलीभाँति समझा जाए तो "अनियंत्रित रूप से बड़ा" वाक्यांश "पर्याप्त बड़ा" से समान नहीं होता है। उदाहरण के रूप में, यद्यपि यह सत्य है कि प्राइम नंबर अनियंत्रित रूप से बड़े हो सकते हैं (क्योंकि यूक्लिड के उदाहरण के कारण उनकी असंख्य होती हैं), लेकिन यह सत्य नहीं है कि सभी पर्याप्त बड़े संख्याएं प्राइम होंगी। | |||
एक | एक और उदाहरण के रूप में, वाक्य "<math>f(x)</math> मनमाने ढंग से बड़े के लिए गैर-नकारात्मक है<math>x</math>. निम्नलिखित रूप में पुनर्लेखित किया जा सकता है: | ||
:<math>\forall n \in \mathbb{R} \mbox{, } \exists x \in \mathbb{R} \mbox{ such that } x > n \land f(x) \ge 0</math> | :<math>\forall n \in \mathbb{R} \mbox{, } \exists x \in \mathbb{R} \mbox{ such that } x > n \land f(x) \ge 0</math> | ||
इसके अलावा, "पर्याप्त रूप से बड़ा" का उपयोग करते हुए, यही वाक्य इस तरह से लिखा जा सकता है: | |||
:<math>\exists n \in \mathbb{R} \mbox{ such that } \forall x \in \mathbb{R} \mbox{, } x > n \Rightarrow f(x) \ge 0</math> | :<math>\exists n \in \mathbb{R} \mbox{ such that } \forall x \in \mathbb{R} \mbox{, } x > n \Rightarrow f(x) \ge 0</math> | ||
इसके अतिरिक्त, इच्छानुसार से बड़े का अर्थ [[असीम रूप से बड़ा]] भी नहीं है। उदाहरण के लिए, | इसके अतिरिक्त, इच्छानुसार से बड़े का अर्थ [[असीम रूप से बड़ा]] भी नहीं है। उदाहरण के लिए, हालांकि प्राइम संख्याएं अनिश्चित रूप से बड़ी हो सकती हैं (क्योंकि यूक्लिड के सिद्धांत के कारण उनकी असंतिम संख्या होती है), लेकिन सभी पर्याप्त बड़ी संख्याएं प्राइम नहीं होती हैं। इसी तरह, अनंत बड़े प्राइम संख्या का भी अस्तित्व नहीं होता है, क्योंकि सभी प्राइम संख्याएं (और सभी अन्य पूर्णांक भी) सीमित होती हैं। | ||
कुछ स्थितियों में, प्रस्ताव | कुछ स्थितियों में, प्रस्ताव <math>P(x)</math> केवल बहुत बड़े <math>x</math> के लिए सही है" जैसे वाक्यांशों का उपयोग प्रधान रूप से जोर देने के लिए किया जाता है, जैसे कि <math>P(x)</math> सभी <math>x</math> के लिए सत्य है, चाहे <math>x</math> कितना भी बड़ा क्यों न हो है। इन मामलों में, वाक्यांश "बहुत बड़ा" उपरोक्त अर्थ (अर्थात् "जितना भी बड़ा नंबर हो, कुछ और नंबर उससे भी बड़ा होगा जिसके लिए <math>P(x)</math> सत्य है।<ref>{{Cite web|url=https://proofwiki.org/wiki/Definition:Arbitrarily_Large|title=Definition:Arbitrarily Large - ProofWiki|website=proofwiki.org|access-date=2019-11-19}}</ref>). इसके अतिरिक्त, इस स्थितियोंमें उपयोग वास्तव में तार्किक रूप से सभी का पर्यायवाची है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 21:49, 27 March 2023
गणित में, "अनियंत्रित रूप से बड़ा", "अनियंत्रित रूप से छोटा", और "अनियंत्रित रूप से लंबा" वाक्यों का उपयोग विविध प्रकार के आंकड़ों या संख्याओं के संबंध में किया जाता है ताकि किसी वस्तु के बड़ा, छोटा और लंबा होने को स्पष्ट किया जा सके। "अनियंत्रित" का उपयोग वहाँ होता है जहाँ कोई विशेष सीमा या प्रतिबंध नहीं होता है। यह विशेष रूप से वास्तविक संख्याओं (और उसके उप-समूहों) के सन्दर्भ में होता है, हालांकि इसका अर्थ "पर्याप्त रूप से" और "अनंत रूप से" से अलग हो सकता है।
उदाहरण
वाक्यांश
- को अनियंत्रित रूप से बड़े के लिए अवैध नहीं होने दिया जाता है।
निम्नलिखित के लिए एक शब्दशः है:
- प्रत्येक वास्तविक संख्या के लिए, कुछ वास्तविक संख्या सी होती है जो से अधिक होने पर अवैध नहीं होता।"
सामान्य भाषा में, "अनियंत्रित रूप से लंबा" शब्द अक्सर संख्या की एक अनुक्रम में उपयोग किया जाता है। उदाहरण के लिए, "प्राइम संख्याओं की अनियंत्रित रूप से लंबी अंकगणितीय प्रगति होती है" कहना यह नहीं मानता कि कोई असीमित लंबी प्रगति होती है (जो नहीं होती है), न ही कोई विशिष्ट प्राइम संख्या की प्रगति अपने किसी विशेष रूप से "अनियंत्रित रूप से लंबी" होती है। बल्कि, यह वाक्य इस तथ्य को संदर्भित करने के लिए उपयोग किया जाता है कि कोई भी संख्या कितनी भी बड़ी हो, उससे कम से कम लंबाई वाली कुछ प्राइम संख्या की प्रगति मौजूद होती है।.[1]
अनियंत्रित रूप से छोटे वास्तविक संख्याओं के लिए व्याख्या भी "अनियंत्रित रूप से बड़ी संख्याओं" के जैसी ही हो सकती है, जैसे कि निम्नलिखित रूप से:[2]
अर्थात:
- संख्या कितनी ही छोटी क्यों न हो,उससे भी छोटी कोई संख्या होगी जिसके लिए सत्य होगा।
इच्छानुसार से बड़ा बनाम पर्याप्त रूप से बड़ा बनाम असीम रूप से बड़ा
अत: यदि भलीभाँति समझा जाए तो "अनियंत्रित रूप से बड़ा" वाक्यांश "पर्याप्त बड़ा" से समान नहीं होता है। उदाहरण के रूप में, यद्यपि यह सत्य है कि प्राइम नंबर अनियंत्रित रूप से बड़े हो सकते हैं (क्योंकि यूक्लिड के उदाहरण के कारण उनकी असंख्य होती हैं), लेकिन यह सत्य नहीं है कि सभी पर्याप्त बड़े संख्याएं प्राइम होंगी।
एक और उदाहरण के रूप में, वाक्य " मनमाने ढंग से बड़े के लिए गैर-नकारात्मक है. निम्नलिखित रूप में पुनर्लेखित किया जा सकता है:
इसके अलावा, "पर्याप्त रूप से बड़ा" का उपयोग करते हुए, यही वाक्य इस तरह से लिखा जा सकता है:
इसके अतिरिक्त, इच्छानुसार से बड़े का अर्थ असीम रूप से बड़ा भी नहीं है। उदाहरण के लिए, हालांकि प्राइम संख्याएं अनिश्चित रूप से बड़ी हो सकती हैं (क्योंकि यूक्लिड के सिद्धांत के कारण उनकी असंतिम संख्या होती है), लेकिन सभी पर्याप्त बड़ी संख्याएं प्राइम नहीं होती हैं। इसी तरह, अनंत बड़े प्राइम संख्या का भी अस्तित्व नहीं होता है, क्योंकि सभी प्राइम संख्याएं (और सभी अन्य पूर्णांक भी) सीमित होती हैं।
कुछ स्थितियों में, प्रस्ताव केवल बहुत बड़े के लिए सही है" जैसे वाक्यांशों का उपयोग प्रधान रूप से जोर देने के लिए किया जाता है, जैसे कि सभी के लिए सत्य है, चाहे कितना भी बड़ा क्यों न हो है। इन मामलों में, वाक्यांश "बहुत बड़ा" उपरोक्त अर्थ (अर्थात् "जितना भी बड़ा नंबर हो, कुछ और नंबर उससे भी बड़ा होगा जिसके लिए सत्य है।[3]). इसके अतिरिक्त, इस स्थितियोंमें उपयोग वास्तव में तार्किक रूप से सभी का पर्यायवाची है।
यह भी देखें
- पर्याप्त रूप से बड़ा
- गणितीय शब्दजाल
संदर्भ
- ↑ 4 Arbitrarily Large Data. Archived February 22, 2012, at the Wayback Machine Accessed 21 February 2012
- ↑ "Definition:Arbitrarily Small - ProofWiki". proofwiki.org. Retrieved 2019-11-19.
- ↑ "Definition:Arbitrarily Large - ProofWiki". proofwiki.org. Retrieved 2019-11-19.