चौगुना गुणनफल: Difference between revisions

From Vigyanwiki
m (14 revisions imported from alpha:चौगुना_गुणनफल)
No edit summary
 
Line 72: Line 72:
==संदर्भ==
==संदर्भ==
*{{cite book |last1=Gibbs|last2=Wilson |first1=Josiah Willard |first2= Edwin Bidwell  |title=Vector analysis: a text-book for the use of students of mathematics  |url=https://archive.org/details/vectoranalysiste00gibbiala |publisher=Scribner |year=1901}}
*{{cite book |last1=Gibbs|last2=Wilson |first1=Josiah Willard |first2= Edwin Bidwell  |title=Vector analysis: a text-book for the use of students of mathematics  |url=https://archive.org/details/vectoranalysiste00gibbiala |publisher=Scribner |year=1901}}
[[Category: वैक्टर पर संचालन]] [[Category: वेक्टर पथरी]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 17/03/2023]]
[[Category:Created On 17/03/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:वेक्टर पथरी]]
[[Category:वैक्टर पर संचालन]]

Latest revision as of 17:37, 17 April 2023

गणित में, चौगुनी उत्पाद त्रि-आयामी यूक्लिडियन अंतरिक्ष में चार वेक्टर (ज्यामितीय) का उत्पाद है। चौगुनी उत्पाद नाम का उपयोग दो अलग-अलग उत्पादों के लिए किया जाता है,[1] अदिश-मूल्यवान अदिश चतुर्भुज उत्पाद और सदिश-मूल्यवान सदिश चौगुना उत्पाद या चार सदिशों का सदिश उत्पाद।

स्केलर चौगुनी उत्पाद

स्केलर चौगुनी उत्पाद को दो क्रॉस उत्पादों के डॉट उत्पाद के रूप में परिभाषित किया गया है:

जहां ए, बी, सी, डी त्रि-आयामी यूक्लिडियन अंतरिक्ष में वैक्टर हैं।[2] पहचान का उपयोग करके इसका मूल्यांकन किया जा सकता है:[2]:

या निर्धारक का उपयोग करना:

प्रमाण

हम पहले सिद्ध करते हैं

यह और के तत्वों के बीच पत्राचार का उपयोग करके सीधा मैट्रिक्स बीजगणित द्वारा दिखाया जा सकता है, द्वारा दिए गए

, जहाँ

इसके बाद यह तिरछा-सममित आव्यूहों के गुणों से अनुसरण करता है

हम ट्रिपल उत्पाद या वेक्टर ट्रिपल उत्पाद से भी जानते हैं कि

इस पहचान के साथ-साथ हमारे द्वारा प्राप्त की गई पहचान का उपयोग करके, हम वांछित पहचान प्राप्त करते हैं:

वेक्टर चौगुनी उत्पाद

वेक्टर चौगुनी उत्पाद को दो क्रॉस उत्पादों के क्रॉस उत्पाद के रूप में परिभाषित किया गया है:

जहां ए, बी, सी, डी त्रि-आयामी यूक्लिडियन अंतरिक्ष में वैक्टर हैं।[3] पहचान का उपयोग करके इसका मूल्यांकन किया जा सकता है:[4]

ट्रिपल उत्पाद के लिए अंकन का उपयोग करना:

पहचान का उपयोग करके समतुल्य रूप प्राप्त किए जा सकते हैं:[5]

इस सर्वसमिका को टेन्सर संकेतन और आइंस्टीन संकलन परिपाटी का उपयोग करते हुए इस प्रकार भी लिखा जा सकता है:

आवेदन

गोलाकार और समतल ज्यामिति में विभिन्न सूत्रों को प्राप्त करने के लिए चौगुनी गुणनफल उपयोगी होते हैं।[3] उदाहरण के लिए, यदि इकाई क्षेत्र पर चार बिंदुओं को चुना जाता है, ए, बी, सी, डी, और इकाई वैक्टर को गोले के केंद्र से क्रमशः चार बिंदुओं, 'ए, बी, सी, डी' तक खींचा जाता है, पहचान:

क्रॉस उत्पाद के परिमाण के संबंध के संयोजन में:

और डॉट उत्पाद:

जहाँ इकाई क्षेत्र के लिए a = b = 1, गॉस के लिए जिम्मेदार कोणों के बीच पहचान का परिणाम है:

जहाँ x 'a' × 'b' और 'c' × 'd' के बीच का कोण है, या समतुल्य रूप से, इन सदिशों द्वारा परिभाषित तलों के बीच है।

सदिश कलन पर योशिय्याह विलार्ड गिब्स का अग्रणी कार्य कई अन्य उदाहरण प्रदान करता है।[3]

यह भी देखें

  • बिनेट-कॉची पहचान
  • लाग्रेंज की पहचान

टिप्पणियाँ

  1. Gibbs & Wilson 1901, §42 of section "Direct and skew products of vectors", p.77
  2. 2.0 2.1 Gibbs & Wilson 1901, p. 76
  3. 3.0 3.1 3.2 Gibbs & Wilson 1901, pp. 77 ff
  4. Gibbs & Wilson 1901, p. 77
  5. Gibbs & Wilson, Equation 27, p. 77

संदर्भ

  • Gibbs, Josiah Willard; Wilson, Edwin Bidwell (1901). Vector analysis: a text-book for the use of students of mathematics. Scribner.