कैल्शियम एल्युमिनेट सीमेंट्स: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 9: Line 9:


== रचना ==
== रचना ==
CAC सीमेंट [[सल्फेट]]-मुक्त है और मुख्य रूप से हाइड्रेटेड [[कैल्शियम एल्युमिनेट करता है]] या कार्बोएलुमिनेट्स (AFm चरण: एल्यूमीनियम फेराइट मोनो-प्रतिस्थापित चरण) देने के लिए कठोर होता है, कभी-कभी कैल्शियम सिलिकेट हाइड्रेट | C-S-H के साथ एक मामूली घटक के रूप में होता है, जबकि {{chem2|link=calcium hydroxide|Ca(OH)2}} ([[ पोर्टलैंडर्स ]]) अनुपस्थित है।<ref name="Ojovan_2019">{{cite book | title = परमाणु अपशिष्ट स्थिरीकरण का परिचय| last1 = Ojovan | first1 = Michael I. | last2 = Lee | first2 = William E. | last3 = Kalmykov | first3 = Stepan N. | chapter = Immobilisation of Radioactive Waste in Cement | date = 2019 | pages = 271–303 | publisher = Elsevier | doi = 10.1016/B978-0-08-102702-8.00017-0 | isbn = 9780081027028 | url = }</ref> तो, सीएसी सीमेंट को कैल्शियम सल्फो-एलुमिनेट (सीएसए) सीमेंट के साथ भ्रमित नहीं होना चाहिए।
CAC सीमेंट [[सल्फेट]]-मुक्त है और मुख्य रूप से हाइड्रेटेड [[कैल्शियम एल्युमिनेट करता है|कैल्शियम एल्युमिनेट]] या कार्बोएलुमिनेट्स (AFm चरण: एल्यूमीनियम फेराइट मोनो-प्रतिस्थापित चरण) देने के लिए कठोर होता है, कभी-कभी C-S-H के साथ एक मामूली घटक के रूप में होता है, जबकि {{chem2|link=calcium hydroxide|Ca(OH)2}} ([[ पोर्टलैंडर्स |पोर्टलैंडर्स]]) अनुपस्थित है।<ref name="Ojovan_2019"><nowiki>{{cite book | title = परमाणु अपशिष्ट स्थिरीकरण का परिचय| last1 = Ojovan | first1 = Michael I. | last2 = Lee | first2 = William E. | last3 = Kalmykov | first3 = Stepan N. | chapter = Immobilisation of Radioactive Waste in Cement | date = 2019 | pages = 271–303 | publisher = Elsevier | doi = 10.1016/B978-0-08-102702-8.00017-0 | isbn = 9780081027028 | url = }</nowiki></ref> इसलिए, सीएसी सीमेंट को कैल्शियम सल्फो-एलुमिनेट (सीएसए) सीमेंट के साथ भ्रमित नहीं होना चाहिए।


कैल्शियम एल्युमिनेट सीमेंट्स का मुख्य घटक, और सबसे प्रतिक्रियाशील चरण भी [[मोनोकैल्शियम एल्यूमिनेट]] है ({{chem2|CaAl2O4}} = {{chem2|CaO · Al2O3}}, [[सीमेंट केमिस्ट नोटेशन]] में CA के रूप में भी लिखा गया है)इसमें आमतौर पर अन्य कैल्शियम एल्यूमिनेट्स के साथ-साथ कच्चे माल में अशुद्धियों से प्राप्त होने वाले कई कम प्रतिक्रियाशील चरण होते हैं। इसके बजाय उपयोग किए गए एल्यूमीनियम स्रोत की शुद्धता और आवेदन के आधार पर रचनाओं की एक विस्तृत श्रृंखला का सामना करना पड़ता है।<ref>Taylor H.F.W. (1990) ''Cement Chemistry'', Academic Press, {{ISBN|0-12-683900-X}}, p. 317.</ref> कुछ विशिष्ट फॉर्मूलेशन के घटकों में शामिल हैं:
कैल्शियम एल्युमिनेट सीमेंट्स का मुख्य घटक, और सबसे प्रतिक्रियाशील चरण भी [[मोनोकैल्शियम एल्यूमिनेट]] ({{chem2|CaAl2O4}} = {{chem2|CaO · Al2O3}}, [[सीमेंट केमिस्ट नोटेशन]] में CA के रूप में भी लिखा गया है) है। इसमें सामान्यतः अन्य कैल्शियम एल्यूमिनेट्स के साथ-साथ कच्चे माल में अशुद्धियों से प्राप्त होने वाले कई कम प्रतिक्रियाशील चरण होते हैं। इसके अतिरिक्त उपयोग किए गए एल्यूमीनियम स्रोत की शुद्धता और आवेदन के आधार पर रचनाओं की एक विस्तृत श्रृंखला का सामना करना पड़ता है।<ref>Taylor H.F.W. (1990) ''Cement Chemistry'', Academic Press, {{ISBN|0-12-683900-X}}, p. 317.</ref> कुछ विशिष्ट फॉर्मूलेशन के घटकों में सम्मिलित हैं:
{| class="wikitable"  style="margin:1em auto;"
{| class="wikitable"  style="margin:1em auto;"
!width="150"|Oxide/Mineral
!width="150"|ऑक्साइड/खनिज
!width="60"|General purpose
!width="60"|सामान्य उद्देश्य
!width="60"|Buff
!width="60"|बुफ्फ
!width="60"|White
!width="60"|सफ़ेद
!width="60"|Refractory
!width="60"|उच्चचतापसह
|-
|-
|align="left" |[[silica|{{chem2|SiO2}}]]||4.0||5.0||2.7||0.4
|align="left" |[[silica|{{chem2|SiO2}}]]||4.0||5.0||2.7||0.4
Line 36: Line 36:
|-
|-
|-
|-
|align="left" |[[Monocalcium aluminate]]||46||70||70||35
|align="left" |[[Monocalcium aluminate|मोनोकैल्शियम एलुमिनेट]]||46||70||70||35
|-
|-
|align="left" |[[Dodecacalcium hepta-aluminate]]||10||5||0||0
|align="left" |[[Dodecacalcium hepta-aluminate|डोडेकैल्शियम हेप्टा-एलुमिनेट]]||10||5||0||0
|-
|-
|align="left" |[[Monocalcium dialuminate]]||0||0||17||30
|align="left" |[[Monocalcium dialuminate|मोनोकैल्शियम डायलुमिनेट]]||0||0||17||30
|-
|-
|align="left" |[[Belite]]||7||5||0||0
|align="left" |[[Belite|बेलीट]]||7||5||0||0
|-
|-
|align="left" |[[Gehlenite]]||4||14||11||1
|align="left" |[[Gehlenite|गेहलेनाइट]]||4||14||11||1
|-
|-
|align="left" |[[Calcium Aluminoferrite|Ferrite]]||24||5||2||0
|align="left" |[[Calcium Aluminoferrite|फेराइट]]||24||5||2||0
|-
|-
|align="left" |[[Pleocroite]]||1||1||1||0
|align="left" |[[Pleocroite|प्लियोक्रोइट]]||1||1||1||0
|-
|-
|align="left" |[[Wüstite]]||7||0||0||0
|align="left" |[[Wüstite|वुस्टाइट]]||7||0||0||0
|-
|-
|align="left" |[[Corundum]]||0||0||0||33
|align="left" |[[Corundum|कोरन्डम]]||0||0||0||33
|}
|}
{{clear}}
{{clear}}
Line 58: Line 58:


== निर्माण ==
== निर्माण ==
सीमेंट एक कैल्शियम युक्त सामग्री (आमतौर पर चूना पत्थर से कैल्शियम ऑक्साइड) और एक एल्यूमीनियम युक्त सामग्री (आमतौर पर सामान्य उद्देश्यों के लिए बॉक्साइट, या सफेद और [[आग रोक]] सीमेंट के लिए परिष्कृत एल्यूमिना) के मिश्रण को मिलाकर बनाया जाता है। तरलीकृत मिश्रण एक [[वेसिकुलर बनावट]], बेसाल्ट-जैसे [[क्लिंकर (सीमेंट)]] के लिए ठंडा होता है जो तैयार उत्पाद का उत्पादन करने के लिए अकेले पीसा जाता है। क्योंकि पूरी तरह से पिघलना आमतौर पर होता है, कच्चे माल को गांठ के रूप में इस्तेमाल किया जा सकता है। एक विशिष्ट [[भट्ठा]] व्यवस्था में एक शाफ्ट प्रीहीटर के साथ प्रदान की जाने वाली एक परावर्तक भट्टी शामिल होती है जिसमें गर्म निकास गैसें ऊपर की ओर गुजरती हैं क्योंकि ढेर कच्चे माल का मिश्रण नीचे की ओर जाता है। प्रीहीटर ज्वलन गैसों में अधिकांश गर्मी को पुन: उत्पन्न करता है, बॉक्साइट को डीहाइड्रेट और डी-हाइड्रॉक्सिलेट करता है और चूना पत्थर को डी-कार्बोनेट करता है। कैलक्लाइंड सामग्री पिघले स्नान के ठंडे सिरे में गिरती है। पिघला हुआ भट्ठी के गर्म सिरे को सांचों में भर देता है जिसमें यह ठंडा और जम जाता है। सिस्टम को चूर्णित कोयले या तेल से जलाया जाता है। ठण्डी क्लिंकर सिल्लियों को पीसकर [[सीमेंट मिल]]|बॉल-मिल में पीसा जाता है। उच्च-एल्यूमिना आग रोक सीमेंट के मामले में, जहां मिश्रण केवल सिंटर होता है, एक [[सीमेंट भट्ठा]] का उपयोग किया जा सकता है।
सीमेंट एक कैल्शियम युक्त सामग्री (सामान्यतः चूना पत्थर से कैल्शियम ऑक्साइड) और एक एल्यूमीनियम युक्त सामग्री (सामान्यतः सामान्य उद्देश्यों के लिए बॉक्साइट, या सफेद और [[आग रोक]] सीमेंट के लिए परिष्कृत एल्यूमिना) के मिश्रण को मिलाकर बनाया जाता है। तरलीकृत मिश्रण एक [[वेसिकुलर बनावट]], बेसाल्ट-जैसे [[क्लिंकर (सीमेंट)]] के लिए ठंडा होता है जो तैयार उत्पाद का उत्पादन करने के लिए अकेले पीसा जाता है। क्योंकि पूरी तरह से पिघलना सामान्यतः होता है, कच्चे माल को गांठ के रूप में इस्तेमाल किया जा सकता है। एक विशिष्ट [[भट्ठा]] व्यवस्था में एक शाफ्ट प्रीहीटर के साथ प्रदान की जाने वाली एक परावर्तक भट्टी सम्मिलित होती है जिसमें गर्म निकास गैसें ऊपर की ओर गुजरती हैं क्योंकि ढेर कच्चे माल का मिश्रण नीचे की ओर जाता है। प्रीहीटर ज्वलन गैसों में अधिकांश गर्मी को पुन: उत्पन्न करता है, बॉक्साइट को डीहाइड्रेट और डी-हाइड्रॉक्सिलेट करता है और चूना पत्थर को डी-कार्बोनेट करता है। कैलक्लाइंड सामग्री पिघले स्नान के ठंडे सिरे में गिरती है। पिघला हुआ भट्ठी के गर्म सिरे को सांचों में भर देता है जिसमें यह ठंडा और जम जाता है। सिस्टम को चूर्णित कोयले या तेल से जलाया जाता है। ठण्डी क्लिंकर सिल्लियों को पीसकर [[सीमेंट मिल]]|बॉल-मिल में पीसा जाता है। उच्च-एल्यूमिना आग रोक सीमेंट के मामले में, जहां मिश्रण केवल सिंटर होता है, एक [[सीमेंट भट्ठा]] का उपयोग किया जा सकता है।


== जलयोजन प्रतिक्रियाएँ ==
== जलयोजन प्रतिक्रियाएँ ==

Revision as of 14:34, 25 March 2023

जलयोजन से पहले निर्जल कैल्शियम एल्युमिनेट सीमेंट में मौजूद कैल्शियम एल्युमिनेट्स का चरण आरेख।

कैल्शियम एल्युमिनेट सीमेंट्स[1] मुख्य रूप से हाइड्रोलिक कैल्शियम एल्यूमिनेट्स से युक्त सीमेंट हैं। वैकल्पिक नाम फ्रेंच में एल्युमिनस सीमेंट, उच्च-एल्यूमिना सीमेंट और सीमेंट फोंडू हैं। उनका उपयोग कई छोटे स्तर पर, विशेष अनुप्रयोगों में किया जाता है।

इतिहास

चूना पत्थर और कम सिलिका बाक्साइट से सीमेंट बनाने की विधि को 1908 में पाविन डी लाफार्ज (कंपनी) की बीड द्वारा फ्रांस में पेटेंट कराया गया था। प्रारंभिक विकास सल्फेट प्रतिरोध की प्रस्तुति करने वाले सीमेंट की खोज के परिणामस्वरूप हुआ था। सीमेंट को फ्रेंच में सीमेंट फोंडू के नाम से जाना जाता था। इसके बाद, इसके अन्य विशेष गुणों की खोज की गई, और इनसे आला अनुप्रयोगों में इसका भविष्य बना।

2010 के दशक तक, उत्पाद अमेरिकी बाजार में फोंडाग सीमेंट (एफओएनडी एल्युमिनस एग्रीगेट) के नाम से पाया गया, जिसे कभी-कभी एएलएजी (अल्युमिनस एग्रीगेट) कहा जाता है। फोंडाग सीमेंट 40 प्रतिशत एल्यूमिना का मिश्रण है, जो उच्च तापमान और −184–1,093 °C (−300–2,000 °F) से थर्मल चक्र पर स्थिर है। [2]


रचना

CAC सीमेंट सल्फेट-मुक्त है और मुख्य रूप से हाइड्रेटेड कैल्शियम एल्युमिनेट या कार्बोएलुमिनेट्स (AFm चरण: एल्यूमीनियम फेराइट मोनो-प्रतिस्थापित चरण) देने के लिए कठोर होता है, कभी-कभी C-S-H के साथ एक मामूली घटक के रूप में होता है, जबकि Ca(OH)2 (पोर्टलैंडर्स) अनुपस्थित है।[3] इसलिए, सीएसी सीमेंट को कैल्शियम सल्फो-एलुमिनेट (सीएसए) सीमेंट के साथ भ्रमित नहीं होना चाहिए।

कैल्शियम एल्युमिनेट सीमेंट्स का मुख्य घटक, और सबसे प्रतिक्रियाशील चरण भी मोनोकैल्शियम एल्यूमिनेट (CaAl2O4 = CaO · Al2O3, सीमेंट केमिस्ट नोटेशन में CA के रूप में भी लिखा गया है) है। इसमें सामान्यतः अन्य कैल्शियम एल्यूमिनेट्स के साथ-साथ कच्चे माल में अशुद्धियों से प्राप्त होने वाले कई कम प्रतिक्रियाशील चरण होते हैं। इसके अतिरिक्त उपयोग किए गए एल्यूमीनियम स्रोत की शुद्धता और आवेदन के आधार पर रचनाओं की एक विस्तृत श्रृंखला का सामना करना पड़ता है।[4] कुछ विशिष्ट फॉर्मूलेशन के घटकों में सम्मिलित हैं:

ऑक्साइड/खनिज सामान्य उद्देश्य बुफ्फ सफ़ेद उच्चचतापसह
[[silica|SiO2]] 4.0 5.0 2.7 0.4
[[alumina|Al2O3]] 39.4 53.0 62.4 79.6
[[iron(III) oxide|Fe2O3]] 16.4 2.0 0.4 0
CaO 38.4 38.0 34.0 19.8
MgO 1.0 0.1 0.1 0
[[sodium oxide|Na2O]] 0.1 0.1 0 0
[[potassium oxide|K2O]] 0.2 0 0 0
[[Titanium dioxide|TiO2]] 1.9 1.8 0.4 0.1
मोनोकैल्शियम एलुमिनेट 46 70 70 35
डोडेकैल्शियम हेप्टा-एलुमिनेट 10 5 0 0
मोनोकैल्शियम डायलुमिनेट 0 0 17 30
बेलीट 7 5 0 0
गेहलेनाइट 4 14 11 1
फेराइट 24 5 2 0
प्लियोक्रोइट 1 1 1 0
वुस्टाइट 7 0 0 0
कोरन्डम 0 0 0 33

खनिज चरण सभी कुछ भिन्न रचनाओं के साथ ठोस समाधान का रूप लेते हैं।

निर्माण

सीमेंट एक कैल्शियम युक्त सामग्री (सामान्यतः चूना पत्थर से कैल्शियम ऑक्साइड) और एक एल्यूमीनियम युक्त सामग्री (सामान्यतः सामान्य उद्देश्यों के लिए बॉक्साइट, या सफेद और आग रोक सीमेंट के लिए परिष्कृत एल्यूमिना) के मिश्रण को मिलाकर बनाया जाता है। तरलीकृत मिश्रण एक वेसिकुलर बनावट, बेसाल्ट-जैसे क्लिंकर (सीमेंट) के लिए ठंडा होता है जो तैयार उत्पाद का उत्पादन करने के लिए अकेले पीसा जाता है। क्योंकि पूरी तरह से पिघलना सामान्यतः होता है, कच्चे माल को गांठ के रूप में इस्तेमाल किया जा सकता है। एक विशिष्ट भट्ठा व्यवस्था में एक शाफ्ट प्रीहीटर के साथ प्रदान की जाने वाली एक परावर्तक भट्टी सम्मिलित होती है जिसमें गर्म निकास गैसें ऊपर की ओर गुजरती हैं क्योंकि ढेर कच्चे माल का मिश्रण नीचे की ओर जाता है। प्रीहीटर ज्वलन गैसों में अधिकांश गर्मी को पुन: उत्पन्न करता है, बॉक्साइट को डीहाइड्रेट और डी-हाइड्रॉक्सिलेट करता है और चूना पत्थर को डी-कार्बोनेट करता है। कैलक्लाइंड सामग्री पिघले स्नान के ठंडे सिरे में गिरती है। पिघला हुआ भट्ठी के गर्म सिरे को सांचों में भर देता है जिसमें यह ठंडा और जम जाता है। सिस्टम को चूर्णित कोयले या तेल से जलाया जाता है। ठण्डी क्लिंकर सिल्लियों को पीसकर सीमेंट मिल|बॉल-मिल में पीसा जाता है। उच्च-एल्यूमिना आग रोक सीमेंट के मामले में, जहां मिश्रण केवल सिंटर होता है, एक सीमेंट भट्ठा का उपयोग किया जा सकता है।

जलयोजन प्रतिक्रियाएँ

सीएसी सीमेंट साधारण पोर्टलैंड सीमेंट (ओपीसी) की तुलना में अधिक तेजी से ठोस ताकत हासिल करता है। कभी-कभी, लंबे समय तक काम करने की क्षमता सुनिश्चित करने के लिए एक मंदबुद्धि की आवश्यकता होती है।

पोर्टलैंड सीमेंट्स के विपरीत, कैल्शियम एल्युमिनेट सीमेंट्स कैल्शियम हाइड्रॉक्साइड (Ca(OH)2, पोर्टलैंडाइट या लाइम (सामग्री)) उनके जलयोजन के दौरान।

कैल्शियम एल्युमिनेट सीमेंट्स की जलयोजन प्रतिक्रियाएं बहुत जटिल हैं। शक्ति-विकासशील चरण हैं मोनोकैल्शियम एल्युमिनेट (CA), डोडेका-कैल्शियम हेप्टा-एल्यूमिनेट (C12A7), और सफेद (C2S), एक डाइकैल्शियम सिलिकेट। कैल्शियम एल्युमिनोफेराइट (C4AF), मोनोकैल्शियम डाइलुमिनेट (CA2), gehlenite और pleochroite कंक्रीट की ताकत में बहुत कम योगदान देते हैं।

सीमेंट सेटिंग के दौरान, प्रतिक्रियाशील एल्युमिनेट्स सामान्य ऑक्साइड नोटेशन में यहां व्यक्त किए गए हाइड्रेटेड चरणों का मिश्रण बनाने के लिए शुरू में पानी के साथ प्रतिक्रिया करते हैं और अधिक कॉम्पैक्ट सीमेंट केमिस्ट नोटेशन (सीसीएन) (सीएओ = सी; Al2O3 = ए; H2O = एच; और SiO2 = एस):

   CaO · Al2O3 · 10 H2O     (CAH10),
2 CaO · Al2O3 · 8 H2O       (C2AH8),
3 CaO · Al2O3 · 6 H2O       (C3AH6), और Al(OH)3 जेल,

प्रत्येक की मात्रा कंक्रीट # इलाज तापमान पर निर्भर करती है।

पहले दो हाइड्रेट बाद में के मिश्रण में विघटित हो जाते हैं 3 CaO · Al2O3 · 6 H2O, Al(OH)3 जेल, और पानी, इस प्रक्रिया को रूपांतरण कहा जा रहा है। पानी के नुकसान के कारण, रूपांतरण से सरंध्रता में वृद्धि होती है, जो कंक्रीट की ताकत में कमी के साथ हो सकती है। यह संरचनात्मक कंक्रीट में एक समस्या होने की आवश्यकता नहीं है, बशर्ते कि पर्याप्त उच्च सीमेंट सामग्री और पर्याप्त रूप से कम पानी-सीमेंट अनुपात | पानी/सीमेंट अनुपात कार्यरत हो।[5]


संरचनात्मक स्थिरता के मुद्दे: सामान्य निर्माण के लिए अनुचित उपयोग

विशेष सावधानियों के बिना एक सामान्य निर्माण सामग्री के रूप में कैल्शियम एल्यूमिनेट सीमेंट का अनुचित उपयोग (क्योंकि बहुत कम सीमेंट सामग्री और बहुत अधिक पानी-सीमेंट अनुपात| पानी/सीमेंट अनुपात के साथ इसके खराब कार्यान्वयन के कारण) इमारतों में गंभीर संरचनात्मक स्थिरता की समस्याएं पैदा हुई हैं विशेष रूप से 1970 वर्षों के दौरान जब इस प्रकार के सीमेंट का उपयोग इसके तेज सख्त गुणों के कारण किया गया था। कुछ वर्षों के बाद कुछ[quantify] सीमेंट के क्षरण के कारण इमारतें और संरचनाएं ढह गईं और कई को तोड़ना पड़ा या मजबूत करना पड़ा। ऊष्मा और आर्द्रता अवक्रमण की प्रक्रिया को गति प्रदान करते हैं जिसे रूपांतरण कहा जाता है (ऊपर दिए गए अनुभाग को देखें जिसमें जलयोजन उत्पादों में से कुछ को प्रभावित करने वाले भारी मात्रा में परिवर्तन का उल्लेख किया गया है)।[citation needed]

8 फरवरी 1974 को ब्रिटेन में एक स्विमिंग पूल की छत गिर गई।[6] 1984 में, चेकोस्लोवाकिया (1952 में निर्मित) में उहर्स्के ह्रदिस्ते में एक कारखाने की इमारत की छत ढह गई, जिसमें 18 लोग मारे गए।[7] मैड्रिड, स्पेन में, एक बड़ा हाउसिंग ब्लॉक उपनाम कोरिया (क्योंकि यह कोरियाई युद्ध के दौरान अमेरिकियों को घर देने के लिए बनाया गया था) बनाया गया था 1951 ~ 1954 प्रभावित हुआ था और 2006 में इसे तोड़ना पड़ा था। इसके अलावा मैड्रिड में विसेंट काल्डेरन फुटबॉल स्टेडियम प्रभावित हुआ था और इसे आंशिक रूप से पुनर्निर्माण और प्रबलित किया जाना था।[8]


विशेष अनुप्रयोग

उनकी अपेक्षाकृत उच्च लागत और नाजुक कार्यान्वयन के कारण, कैल्शियम एल्युमिनेट सीमेंट्स का उपयोग कई प्रतिबंधित अनुप्रयोगों में किया जाता है जहां प्रदर्शन प्राप्त लागतों को उचित ठहराता है:

  • कुछ ठोस घटकों के लिए, जिसके लिए कम तापमान पर भी तीव्र शक्ति विकास की आवश्यकता होती है। इस मामले में, पर्याप्त रूप से उच्च सीमेंट सामग्री और पर्याप्त रूप से कम पानी-सीमेंट अनुपात | पानी/सीमेंट अनुपात हमेशा संभावित संरचनात्मक स्थिरता समस्याओं को कम करने और कंक्रीट स्थायित्व को बढ़ाने के लिए अनिवार्य है।
  • मिश्रित सीमेंट योगों में एक घटक के रूप में, विभिन्न गुणों जैसे अल्ट्रा-रैपिड स्ट्रेंथ डेवलपमेंट और नियंत्रित विस्तार की आवश्यकता होती है।
  • दुर्दम्य कंक्रीट में, जहां उच्च तापमान पर शक्ति की आवश्यकता होती है।
  • बायोजेनिक सल्फाइड जंग के लिए उनके उच्च प्रतिरोध के कारण सीवरेज इन्फ्रास्ट्रक्चर जैसे माइक्रोबियल जंग के खिलाफ एक सुरक्षात्मक लाइनर (और मरम्मत सामग्री) के रूप में।

सीवर नेटवर्क अनुप्रयोग

कैल्शियम एल्युमिनेट सीमेंट्स के बायोजेनिक संक्षारण प्रतिरोध का उपयोग आज तीन मुख्य अनुप्रयोगों में किया जाता है:

  • अपशिष्ट जल के लिए नमनीय लोहे के पाइप में कैल्शियम एल्युमिनेट सीमेंट मोर्टार (चिनाई) से बनी एक आंतरिक परत होती है।
  • सीवरेज के लिए कंक्रीट पाइप या तो पूर्ण द्रव्यमान कैल्शियम एल्युमिनेट सीमेंट कंक्रीट या कैल्शियम एल्युमिनेट सीमेंट मोर्टार के आंतरिक लाइनर के साथ बनाया जा सकता है।
  • निम्नलिखित में से किसी एक विधि का उपयोग करके 100% कैल्शियम एल्युमिनेट मोर्टार के साथ मानव-सुलभ सीवर इन्फ्रास्ट्रक्चर का पुनर्वास: कम दबाव गीला स्प्रे, स्पिनिंग हेड गीला स्प्रे, या उच्च दबाव सूखा स्प्रे (गनाईट, shotcrete )।

संदर्भ

  1. Hewlett P.C. (Ed.) (1998) Lea's Chemistry of Cement and Concrete: 4th Ed, Arnold, ISBN 0-340-56589-6, Chapter 13.
  2. "स्थापना दिवस". Water Online. 2019. Retrieved 29 August 2019. ALAG (ALuminous AGgregate) is a synthetic calcium aluminate aggregate manufactured by the fusion of bauxite and limestone into a partially re-crystallized aggregate of approximately 40% alumina. It is essentially Fondu clinker, crushed and sized into grades commonly needed by concrete and castable formulators.
  3. {{cite book | title = परमाणु अपशिष्ट स्थिरीकरण का परिचय| last1 = Ojovan | first1 = Michael I. | last2 = Lee | first2 = William E. | last3 = Kalmykov | first3 = Stepan N. | chapter = Immobilisation of Radioactive Waste in Cement | date = 2019 | pages = 271–303 | publisher = Elsevier | doi = 10.1016/B978-0-08-102702-8.00017-0 | isbn = 9780081027028 | url = }
  4. Taylor H.F.W. (1990) Cement Chemistry, Academic Press, ISBN 0-12-683900-X, p. 317.
  5. Taylor ibid p. 330.
  6. "परीक्षण त्रुटि विधि". 18 April 2002.
  7. "Před 30 lety se v uherskohradišťském MESITu zřítila část výrobní haly" [30 years ago, a part of a factory hall has collapsed in MESIT in Uherské Hradiště]. Deník (in Czech). 2014-11-21. Retrieved 2022-09-22.{{cite news}}: CS1 maint: unrecognized language (link)
  8. http://www.elmundo.es/papel/2007/02/07/madrid/2082060.html[dead link]


अग्रिम पठन