बर्गर वेक्टर: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Vector representing lattice distortion due to dislocations in a crystal}} | {{short description|Vector representing lattice distortion due to dislocations in a crystal}} | ||
सामग्री विज्ञान में डच भौतिक विज्ञानी [[जॉन बर्गर]] के नाम पर '''बर्गर वेक्टर''' | सामग्री विज्ञान में डच भौतिक विज्ञानी [[जॉन बर्गर]] के नाम पर '''बर्गर वेक्टर''' [[वेक्टर (ज्यामितीय)]] है। जिसे अधिकांशतः {{math|'''b'''}} के रूप में दर्शाया जाता है। जो क्रिस्टल संरचना में [[अव्यवस्था]] के परिणामस्वरूप जाली विरूपण की [[परिमाण (वेक्टर)]] और दिशा का प्रतिनिधित्व करता है।<ref>Callister, William D. Jr. "Fundamentals of Materials Science and Engineering," [[John Wiley & Sons]], Inc. Danvers, MA. (2005)/</ref> | ||
[[File:Burgers Vector and dislocations (screw and edge type).svg|thumb|upright=1.75|एक किनारे अव्यवस्था (बाएं) और एक पेंच अव्यवस्था (दाएं) में बर्गर वेक्टर। किनारे की अव्यवस्था की कल्पना एक आधे विमान (ग्रे बॉक्स) के परिचय के रूप में की जा सकती है जो क्रिस्टल समरूपता में फिट नहीं होता है। पेंच अव्यवस्था की कल्पना आधे विमान के साथ कट और कतरनी ऑपरेशन के रूप में की जा सकती है।]]वेक्टर के परिमाण और दिशा को सबसे अच्छी तरह से समझा जाता है। जब अव्यवस्था वाली क्रिस्टल संरचना को पहली बार अव्यवस्था के बिना देखा जाता है, जो कि [[सही क्रिस्टल]] संरचना है। इस पूर्ण क्रिस्टल संरचना में आयत जिसकी लंबाई और चौड़ाई के पूर्णांक गुणक हैं। {{mvar|a}} (क्रिस्टल संरचना#यूनिट सेल किनारे की लंबाई) मूल अव्यवस्था के मूल के स्थल को सम्मिलित | [[File:Burgers Vector and dislocations (screw and edge type).svg|thumb|upright=1.75|एक किनारे अव्यवस्था (बाएं) और एक पेंच अव्यवस्था (दाएं) में बर्गर वेक्टर। किनारे की अव्यवस्था की कल्पना एक आधे विमान (ग्रे बॉक्स) के परिचय के रूप में की जा सकती है जो क्रिस्टल समरूपता में फिट नहीं होता है। पेंच अव्यवस्था की कल्पना आधे विमान के साथ कट और कतरनी ऑपरेशन के रूप में की जा सकती है।]]वेक्टर के परिमाण और दिशा को सबसे अच्छी तरह से समझा जाता है। जब अव्यवस्था वाली क्रिस्टल संरचना को पहली बार अव्यवस्था के बिना देखा जाता है, जो कि [[सही क्रिस्टल]] संरचना है। इस पूर्ण क्रिस्टल संरचना में आयत जिसकी लंबाई और चौड़ाई के पूर्णांक गुणक हैं। {{mvar|a}} (क्रिस्टल संरचना#यूनिट सेल किनारे की लंबाई) मूल अव्यवस्था के मूल के स्थल को सम्मिलित करते हुए तैयार की गई है। एक बार जब यह घेरने वाला आयत तैयार हो जाता है, तो अव्यवस्था को पेश किया जा सकता है। इस अव्यवस्था का न केवल सही क्रिस्टल संरचना किंतु आयत के रूप में भी विकृत होने का प्रभाव होगा। उक्त आयत का एक पक्ष लंबवत पक्ष से अलग हो सकता है। आयत के कोनों में से आयत की लंबाई और चौड़ाई [[रेखा खंड|रेखा खंडो]] के कनेक्शन को अलग कर सकता है, और प्रत्येक रेखा खंड को एक दूसरे से विस्थापित कर सकता है। विस्थापन शुरू होने से पहले एक आयत था जो अब एक खुला ज्यामितीय आंकड़ा है। जिसका उद्घाटन बर्गर वेक्टर की दिशा और परिमाण को परिभाषित करता है। विशेष रूप से उद्घाटन की चौड़ाई बर्गर वेक्टर के परिमाण को परिभाषित करती है और जब निश्चित निर्देशांक का एक समुच्चय पेश किया जाता है। अव्यवस्थित आयत की लंबाई रेखा खंड और चौड़ाई रेखा खंड के टर्मिनी के बीच कोण निर्दिष्ट किया जा सकता है। | ||
व्यावहारिक रूप से बर्गर वेक्टर की गणना करते समय आयताकार वामावर्त सर्किट (बर्गर सर्किट) | व्यावहारिक रूप से बर्गर वेक्टर की गणना करते समय आयताकार वामावर्त सर्किट (बर्गर सर्किट) शुरुआती बिंदु से अव्यवस्था को घेरने के लिए खींच सकता है (ऊपर चित्र देखें)। बर्गर वेक्टर सर्किट को पूरा करने के लिए वेक्टर होगा अर्थात सर्किट के अंत से शुरू होने तक।<ref>{{cite web |url=https://www.princeton.edu/~maelabs/mae324/glos324/burgersvector.htm|title= बर्गर वेक्टर, बी|website=www.princeton.edu}}</ref> | ||
सदिश की दिशा अव्यवस्था के तल पर निर्भर करती है। जो सामान्यतः निकटतम पैक क्रिस्टलोग्राफिक विमानों में होता है। | सदिश की दिशा अव्यवस्था के तल पर निर्भर करती है। जो सामान्यतः निकटतम पैक क्रिस्टलोग्राफिक विमानों में होता है। | ||
Line 24: | Line 24: | ||
अधिकांश धात्विक सामग्रियों में अव्यवस्था के लिए बर्गर वेक्टर का परिमाण सामग्री के अंतर-परमाण्विक रिक्ति के बराबर परिमाण का होता है क्योंकि एकल अव्यवस्था क्रिस्टल जाली को निकट-संकुलित क्रिस्टलोग्राफिक रिक्ति इकाई द्वारा ऑफ समुच्चय कर देगी। | अधिकांश धात्विक सामग्रियों में अव्यवस्था के लिए बर्गर वेक्टर का परिमाण सामग्री के अंतर-परमाण्विक रिक्ति के बराबर परिमाण का होता है क्योंकि एकल अव्यवस्था क्रिस्टल जाली को निकट-संकुलित क्रिस्टलोग्राफिक रिक्ति इकाई द्वारा ऑफ समुच्चय कर देगी। | ||
एज डिस्लोकेशन में, बर्गर वेक्टर और डिस्लोकेशन | एज डिस्लोकेशन में, बर्गर वेक्टर और डिस्लोकेशन लाइन एक दूसरे के लंबवत होते हैं। स्क्रू डिस्लोकेशन में, वे समानांतर होते हैं।<ref>Kittel, Charles, "[[Introduction to Solid State Physics]]," 7th edition, [[John Wiley & Sons]], Inc, (1996) pp 592–593.</ref> | ||
बर्गर सदिश ठोस विलयन सुदृढ़ीकरण अवक्षेपण सख्तीकरण और कार्य सख्तीकरण को प्रभावित करके किसी सामग्री की [[उपज (इंजीनियरिंग)]] का निर्धारण करने में महत्वपूर्ण है। | बर्गर सदिश ठोस विलयन सुदृढ़ीकरण अवक्षेपण सख्तीकरण और कार्य सख्तीकरण को प्रभावित करके किसी सामग्री की [[उपज (इंजीनियरिंग)]] का निर्धारण करने में महत्वपूर्ण है। |
Revision as of 11:20, 4 April 2023
सामग्री विज्ञान में डच भौतिक विज्ञानी जॉन बर्गर के नाम पर बर्गर वेक्टर वेक्टर (ज्यामितीय) है। जिसे अधिकांशतः b के रूप में दर्शाया जाता है। जो क्रिस्टल संरचना में अव्यवस्था के परिणामस्वरूप जाली विरूपण की परिमाण (वेक्टर) और दिशा का प्रतिनिधित्व करता है।[1]
वेक्टर के परिमाण और दिशा को सबसे अच्छी तरह से समझा जाता है। जब अव्यवस्था वाली क्रिस्टल संरचना को पहली बार अव्यवस्था के बिना देखा जाता है, जो कि सही क्रिस्टल संरचना है। इस पूर्ण क्रिस्टल संरचना में आयत जिसकी लंबाई और चौड़ाई के पूर्णांक गुणक हैं। a (क्रिस्टल संरचना#यूनिट सेल किनारे की लंबाई) मूल अव्यवस्था के मूल के स्थल को सम्मिलित करते हुए तैयार की गई है। एक बार जब यह घेरने वाला आयत तैयार हो जाता है, तो अव्यवस्था को पेश किया जा सकता है। इस अव्यवस्था का न केवल सही क्रिस्टल संरचना किंतु आयत के रूप में भी विकृत होने का प्रभाव होगा। उक्त आयत का एक पक्ष लंबवत पक्ष से अलग हो सकता है। आयत के कोनों में से आयत की लंबाई और चौड़ाई रेखा खंडो के कनेक्शन को अलग कर सकता है, और प्रत्येक रेखा खंड को एक दूसरे से विस्थापित कर सकता है। विस्थापन शुरू होने से पहले एक आयत था जो अब एक खुला ज्यामितीय आंकड़ा है। जिसका उद्घाटन बर्गर वेक्टर की दिशा और परिमाण को परिभाषित करता है। विशेष रूप से उद्घाटन की चौड़ाई बर्गर वेक्टर के परिमाण को परिभाषित करती है और जब निश्चित निर्देशांक का एक समुच्चय पेश किया जाता है। अव्यवस्थित आयत की लंबाई रेखा खंड और चौड़ाई रेखा खंड के टर्मिनी के बीच कोण निर्दिष्ट किया जा सकता है।
व्यावहारिक रूप से बर्गर वेक्टर की गणना करते समय आयताकार वामावर्त सर्किट (बर्गर सर्किट) शुरुआती बिंदु से अव्यवस्था को घेरने के लिए खींच सकता है (ऊपर चित्र देखें)। बर्गर वेक्टर सर्किट को पूरा करने के लिए वेक्टर होगा अर्थात सर्किट के अंत से शुरू होने तक।[2]
सदिश की दिशा अव्यवस्था के तल पर निर्भर करती है। जो सामान्यतः निकटतम पैक क्रिस्टलोग्राफिक विमानों में होता है।
परिमाण सामान्यतः समीकरण द्वारा दर्शाया जाता है (केवल शरीर केंद्रित क्यूबिक और चेहरा केंद्रित घन लैटिस के लिए):
जहाँ a क्रिस्टल की इकाई कोशिका कोर लंबाई है। बर्गर वेक्टर का परिमाण है और h, k, और l बर्गर सदिश के घटक हैं। गुणांक इस तथ्य के कारण है कि बीसीसी और एफसीसी लैटिस में सबसे छोटा जाली वैक्टर व्यक्त किया जा सकता है। तुलनात्मक रूप से सरल घन जालक के लिए और इसलिए परिमाण द्वारा दर्शाया गया है।
सामान्यतः एक अव्यवस्था के बर्गर वेक्टर को अव्यवस्था रेखा के चारों ओर विरूपण क्षेत्र पर एक लाइन अभिन्न प्रदर्शन करके परिभाषित किया जाता है।
जहां एकीकरण पथ L अव्यवस्था रेखा के चारों ओर बर्गर सर्किट है। ui विस्थापन क्षेत्र है और विरूपण क्षेत्र है।
अधिकांश धात्विक सामग्रियों में अव्यवस्था के लिए बर्गर वेक्टर का परिमाण सामग्री के अंतर-परमाण्विक रिक्ति के बराबर परिमाण का होता है क्योंकि एकल अव्यवस्था क्रिस्टल जाली को निकट-संकुलित क्रिस्टलोग्राफिक रिक्ति इकाई द्वारा ऑफ समुच्चय कर देगी।
एज डिस्लोकेशन में, बर्गर वेक्टर और डिस्लोकेशन लाइन एक दूसरे के लंबवत होते हैं। स्क्रू डिस्लोकेशन में, वे समानांतर होते हैं।[3]
बर्गर सदिश ठोस विलयन सुदृढ़ीकरण अवक्षेपण सख्तीकरण और कार्य सख्तीकरण को प्रभावित करके किसी सामग्री की उपज (इंजीनियरिंग) का निर्धारण करने में महत्वपूर्ण है।
अव्यवस्था रेखा की दिशा निर्धारित करने में बर्गर वेक्टर एक महत्वपूर्ण भूमिका निभाता है।
यह भी देखें
- फ्रैंक-स्रोत पढ़ें
- अव्यवस्थाएं
संदर्भ
- ↑ Callister, William D. Jr. "Fundamentals of Materials Science and Engineering," John Wiley & Sons, Inc. Danvers, MA. (2005)/
- ↑ "बर्गर वेक्टर, बी". www.princeton.edu.
- ↑ Kittel, Charles, "Introduction to Solid State Physics," 7th edition, John Wiley & Sons, Inc, (1996) pp 592–593.