क्षारीय पानी इलेक्ट्रोलिसिस: Difference between revisions

From Vigyanwiki
(Created page with "{{Infobox electrolysis |electrolysistype = Alkaline Water Electrolysis |acatalyst=Ni/Co/Fe |ccatalyst=Ni/C-Pt |membranemat=NiO |aptl=Ti/Ni/zirconium |cptl=Stainless steel mesh...")
 
No edit summary
Line 23: Line 23:
}}
}}


क्षारीय जल इलेक्ट्रोलिसिस एक प्रकार का [[electrolyzer]] है जिसे [[पोटेशियम हाइड्रोक्साइड]] (KOH) या [[सोडियम हाइड्रॉक्साइड]] (NaOH) के तरल क्षारीय इलेक्ट्रोलाइट समाधान में संचालित दो [[इलेक्ट्रोड]] होने की विशेषता है। इन इलेक्ट्रोडों को एक डायाफ्राम द्वारा अलग किया जाता है, उत्पाद गैसों को अलग किया जाता है और हाइड्रॉक्साइड आयनों (ओएच) को परिवहन किया जाता है।<sup>−</sup>) एक इलेक्ट्रोड से दूसरे इलेक्ट्रोड तक।<ref name="carmo2013a">{{cite journal|last=Carmo|first=M|author2=Fritz D |author3=Mergel J |author4=Stolten D |title=पीईएम जल इलेक्ट्रोलिसिस पर एक व्यापक समीक्षा|journal=Journal of Hydrogen Energy|volume=38|issue=12|pages=4901|year=2013|doi=10.1016/j.ijhydene.2013.01.151}}</ref><ref>{{cite web|title=क्षारीय जल इलेक्ट्रोलिसिस|url=http://www.eolss.net/sample-chapters/c08/e3-13-03-02.pdf|publisher=Energy Carriers and Conversion Systems|accessdate=19 October 2014}}</ref> एक हालिया तुलना से पता चला है कि क्षारीय इलेक्ट्रोलाइट्स के साथ अत्याधुनिक निकेल आधारित जल इलेक्ट्रोलाइज़र अम्लीय [[बहुलक इलेक्ट्रोलाइट झिल्ली इलेक्ट्रोलिसिस]] की तुलना में प्रतिस्पर्धी या बेहतर क्षमता प्रदान करते हैं।{{cn|date=September 2020}} प्लैटिनम समूह धातु आधारित विद्युत उत्प्रेरकों के साथ।<ref name="schalenbach2016">{{cite journal|last=Schalenbach|first=M|author2=Tjarks G |author3=Carmo M | author4=Lueke W |author5=Mueller M |author6=Stolten D|title=Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis|journal=Journal of the Electrochemical Society|volume=163|issue=11|pages=F3197|year=2016|doi=10.1149/2.0271611jes|s2cid=35846371|url=https://publications.rwth-aachen.de/record/681185}}</ref>
क्षारीय जल इलेक्ट्रोलिसिस एक प्रकार का [[electrolyzer|इलेक्ट्रोलाइज़र]] है जिसे [[पोटेशियम हाइड्रोक्साइड]] (केओएच) या [[सोडियम हाइड्रॉक्साइड]] (एनएओएच) के तरल क्षारीय इलेक्ट्रोलाइट समाधान में संचालित दो [[इलेक्ट्रोड]] होने की विशेषता है। इन इलेक्ट्रोडों को एक डायाफ्राम के माध्यम से  अलग किया जाता है, उत्पाद गैसों को अलग किया जाता है और हाइड्रॉक्साइड आयनों (ओएच) को परिवहन किया जाता है।<sup>−</sup>) एक इलेक्ट्रोड से दूसरे इलेक्ट्रोड तक।<ref name="carmo2013a">{{cite journal|last=Carmo|first=M|author2=Fritz D |author3=Mergel J |author4=Stolten D |title=पीईएम जल इलेक्ट्रोलिसिस पर एक व्यापक समीक्षा|journal=Journal of Hydrogen Energy|volume=38|issue=12|pages=4901|year=2013|doi=10.1016/j.ijhydene.2013.01.151}}</ref><ref>{{cite web|title=क्षारीय जल इलेक्ट्रोलिसिस|url=http://www.eolss.net/sample-chapters/c08/e3-13-03-02.pdf|publisher=Energy Carriers and Conversion Systems|accessdate=19 October 2014}}</ref> एक हालिया समानता से पता चला है कि क्षारीय इलेक्ट्रोलाइट्स के साथ अत्याधुनिक निकेल आधारित जल इलेक्ट्रोलाइज़र अम्लीय [[बहुलक इलेक्ट्रोलाइट झिल्ली इलेक्ट्रोलिसिस]] की समानता में प्रतिस्पर्धी या बेहतर क्षमता प्रदान करते हैं।{{cn|date=September 2020}} प्लैटिनम समूह धातु आधारित विद्युत उत्प्रेरकों के साथ।<ref name="schalenbach2016">{{cite journal|last=Schalenbach|first=M|author2=Tjarks G |author3=Carmo M | author4=Lueke W |author5=Mueller M |author6=Stolten D|title=Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis|journal=Journal of the Electrochemical Society|volume=163|issue=11|pages=F3197|year=2016|doi=10.1149/2.0271611jes|s2cid=35846371|url=https://publications.rwth-aachen.de/record/681185}}</ref>
 
रासायनिक उद्योग में प्रौद्योगिकी का एक लंबा इतिहास रहा है। हाइड्रोजन की पहली बड़े पैमाने पर मांग 19वीं शताब्दी के अंत में हवा से हल्के गैस उठाने वाले विमानों के लिए उभरी, और 1930 के दशक में [[भाप सुधार]] के आगमन से पहले, तकनीक प्रतिस्पर्धी थी।
रासायनिक उद्योग में प्रौद्योगिकी का एक लंबा इतिहास रहा है। हाइड्रोजन की पहली बड़े पैमाने पर मांग 19वीं शताब्दी के अंत में हवा से हल्के गैस उठाने वाले विमानों के लिए उभरी, और 1930 के दशक में [[भाप सुधार]] के आगमन से पहले, तकनीक प्रतिस्पर्धी थी।


Line 30: Line 31:


== संरचना और सामग्री ==
== संरचना और सामग्री ==
इलेक्ट्रोड को आमतौर पर एक पतली झरझरा पन्नी (0.050 से 0.5 मिमी के बीच की मोटाई के साथ) से अलग किया जाता है, जिसे आमतौर पर डायाफ्राम या विभाजक कहा जाता है।{{cn|date=September 2020}} डायाफ्राम इलेक्ट्रॉनों के लिए गैर-प्रवाहकीय है, इस प्रकार इलेक्ट्रोड के बीच छोटी दूरी की अनुमति देते हुए इलेक्ट्रोड के बीच विद्युत शॉर्ट्स से बचा जाता है। आयनिक चालकता जलीय क्षारीय घोल द्वारा प्रदान की जाती है, जो डायाफ्राम के छिद्रों में प्रवेश करती है। अत्याधुनिक डायाफ्राम [[ zirconia ]] और पॉलीसल्फोन की मिश्रित सामग्री जिरफॉन है।<ref>{{cite web|title=एजीएफए जिरफॉन पर्ल उत्पाद विनिर्देश| url=http://www.agfa.com/specialty-products/solutions/membranes/zirfon-perl-utp-500/|accessdate=29 January 2019 |archive-url=https://web.archive.org/web/20180423012500/http://www.agfa.com/specialty-products/solutions/membranes/zirfon-perl-utp-500/ |archive-date=2018-04-23 |url-status=dead}}</ref>
इलेक्ट्रोड को सामान्यतः एक पतली झरझरा पन्नी (0.050 से 0.5 मिमी के बीच की मोटाई के साथ) से अलग किया जाता है, जिसे सामान्यतः डायाफ्राम या विभाजक कहा जाता है।{{cn|date=September 2020}} डायाफ्राम इलेक्ट्रॉनों के लिए गैर-प्रवाहकीय है, इस प्रकार इलेक्ट्रोड के बीच छोटी दूरी की अनुमति देते हुए इलेक्ट्रोड के बीच विद्युत शॉर्ट्स से बचा जाता है। आयनिक चालकता जलीय क्षारीय घोल के माध्यम से  प्रदान की जाती है, जो डायाफ्राम के छिद्रों में प्रवेश करती है। अत्याधुनिक डायाफ्राम [[ zirconia | ज़र्कोनिया]] और पॉलीसल्फोन की मिश्रित सामग्री जिरफॉन है।<ref>{{cite web|title=एजीएफए जिरफॉन पर्ल उत्पाद विनिर्देश| url=http://www.agfa.com/specialty-products/solutions/membranes/zirfon-perl-utp-500/|accessdate=29 January 2019 |archive-url=https://web.archive.org/web/20180423012500/http://www.agfa.com/specialty-products/solutions/membranes/zirfon-perl-utp-500/ |archive-date=2018-04-23 |url-status=dead}}</ref>
 
डायाफ्राम आगे कैथोड और एनोड पर उत्पादित हाइड्रोजन और ऑक्सीजन के मिश्रण से बचा जाता है,<ref name="schalenbach2016zirfon">{{cite journal|last=Schalenbach|first=M|author2=Lueke W |author3=Stolten D| title=क्षारीय जल इलेक्ट्रोलिसिस के लिए ज़िरफ़ोन पर्ल सेपरेटर की हाइड्रोजन डिफ्यूसिविटी और इलेक्ट्रोलाइट पारगम्यता|journal= Journal of the Electrochemical Society |volume=163|issue=14|pages=F1480–F1488|year=2016|doi= 10.1149/2.1251613jes|s2cid=55017229|url=http://jes.ecsdl.org/content/163/14/F1480.full.pdf}}</ref><ref name="Haug2017">{{cite journal|last=Haug|first=P|author2=Koj M |author3=Turek T| title=क्षारीय जल इलेक्ट्रोलिसिस में गैस की शुद्धता पर प्रक्रिया की स्थिति का प्रभाव|journal=International Journal of Hydrogen Energy|volume=42|issue=15|pages=9406–9418|year=2017|doi=10.1016/j.ijhydene.2016.12.111}}</ref> क्रमश।
डायाफ्राम आगे कैथोड और एनोड पर उत्पादित हाइड्रोजन और ऑक्सीजन के मिश्रण से बचा जाता है,<ref name="schalenbach2016zirfon">{{cite journal|last=Schalenbach|first=M|author2=Lueke W |author3=Stolten D| title=क्षारीय जल इलेक्ट्रोलिसिस के लिए ज़िरफ़ोन पर्ल सेपरेटर की हाइड्रोजन डिफ्यूसिविटी और इलेक्ट्रोलाइट पारगम्यता|journal= Journal of the Electrochemical Society |volume=163|issue=14|pages=F1480–F1488|year=2016|doi= 10.1149/2.1251613jes|s2cid=55017229|url=http://jes.ecsdl.org/content/163/14/F1480.full.pdf}}</ref><ref name="Haug2017">{{cite journal|last=Haug|first=P|author2=Koj M |author3=Turek T| title=क्षारीय जल इलेक्ट्रोलिसिस में गैस की शुद्धता पर प्रक्रिया की स्थिति का प्रभाव|journal=International Journal of Hydrogen Energy|volume=42|issue=15|pages=9406–9418|year=2017|doi=10.1016/j.ijhydene.2016.12.111}}</ref> क्रमश।


आमतौर पर, निकेल आधारित धातुओं का उपयोग क्षारीय जल इलेक्ट्रोलिसिस के लिए इलेक्ट्रोड के रूप में किया जाता है।<ref>{{Cite journal |last1=Zhou |first1=Daojin |last2=Li |first2=Pengsong |display-authors=et al. |date=2020 |title=Recent Advances in Non‐Precious Metal‐Based Electrodes for Alkaline Water Electrolysis |url=https://onlinelibrary.wiley.com/doi/10.1002/cnma.202000010 |journal=ChemNanoMat |language=en |volume=6 |issue=3 |pages=336–355 |doi=10.1002/cnma.202000010 |s2cid=213442277 |issn=2199-692X}}</ref> शुद्ध धातुओं को ध्यान में रखते हुए, नी सबसे कम सक्रिय गैर-महान धातु है।<ref name="Quanio2014">{{cite journal|last=Quaino|first=P|author2=Juarez F |author3=Santos E| author4=Schmickler W| title=Volcano plots in hydrogen electrocatalysis–uses and abuses |journal=Beilstein Journal of Nanotechnology |volume=42|pages=846–854|year=2014|doi= 10.3762/bjnano.5.96 |pmid=24991521| pmc=4077405 }}</ref> प्लेटिनम समूह धातुओं और ऑक्सीजन विकास के दौरान उनके विघटन जैसे अच्छे महान धातु विद्युत उत्प्रेरकों की उच्च कीमत<ref name="Schalenbach-dissolution">{{cite journal|last=Schalenbach |first=M |display-authors=et al | title=क्षारीय मीडिया में महान धातुओं का विद्युत रासायनिक विघटन|journal= Electrocatalysis|volume=9|issue=2 |pages=153–161|year=2018|doi=10.1007/s12678-017-0438-y |s2cid=104106046 }}</ref> एक कमी है। ऑक्सीजन के विकास के दौरान नी को अधिक स्थिर माना जाता है,<ref name="Cherevko2016 ">{{cite journal|last=Cherevko |first=S |display-authors=et al | title=Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability |journal=Catalysis Today |volume=262|pages=170–180|year=2016|doi= 10.1016/j.cattod.2015.08.014}}</ref> लेकिन स्टेनलेस स्टील ने हेटेरोजेनियस_वाटर_ऑक्सीडेशन | ऑक्सीजन इवोल्यूशन रिएक्शन (ओईआर) के दौरान उच्च तापमान पर नी की तुलना में अच्छी स्थिरता और बेहतर उत्प्रेरक गतिविधि दिखाई है।<ref name="Colli et al.">{{cite journal|last=Colli |first=A.N. |display-authors=et al | title=व्यावहारिक क्षारीय जल इलेक्ट्रोलिसिस के लिए गैर-कीमती इलेक्ट्रोड|journal= Materials|volume=12|issue=8 |pages=1336|year=2019|doi=10.3390/ma12081336 |pmid=31022944 |doi-access=free |pmc=6515460 |bibcode=2019Mate...12.1336C }}</ref>
सामान्यतः, निकेल आधारित धातुओं का उपयोग क्षारीय जल इलेक्ट्रोलिसिस के लिए इलेक्ट्रोड के रूप में किया जाता है।<ref>{{Cite journal |last1=Zhou |first1=Daojin |last2=Li |first2=Pengsong |display-authors=et al. |date=2020 |title=Recent Advances in Non‐Precious Metal‐Based Electrodes for Alkaline Water Electrolysis |url=https://onlinelibrary.wiley.com/doi/10.1002/cnma.202000010 |journal=ChemNanoMat |language=en |volume=6 |issue=3 |pages=336–355 |doi=10.1002/cnma.202000010 |s2cid=213442277 |issn=2199-692X}}</ref> शुद्ध धातुओं को ध्यान में रखते हुए, नी सबसे कम सक्रिय गैर-महान धातु है।<ref name="Quanio2014">{{cite journal|last=Quaino|first=P|author2=Juarez F |author3=Santos E| author4=Schmickler W| title=Volcano plots in hydrogen electrocatalysis–uses and abuses |journal=Beilstein Journal of Nanotechnology |volume=42|pages=846–854|year=2014|doi= 10.3762/bjnano.5.96 |pmid=24991521| pmc=4077405 }}</ref> प्लेटिनम समूह धातुओं और ऑक्सीजन विकास के समय उनके विघटन जैसे अच्छे महान धातु विद्युत उत्प्रेरकों की उच्च कीमत<ref name="Schalenbach-dissolution">{{cite journal|last=Schalenbach |first=M |display-authors=et al | title=क्षारीय मीडिया में महान धातुओं का विद्युत रासायनिक विघटन|journal= Electrocatalysis|volume=9|issue=2 |pages=153–161|year=2018|doi=10.1007/s12678-017-0438-y |s2cid=104106046 }}</ref> एक कमी है। ऑक्सीजन के विकास के समय नी को अधिक स्थिर माना जाता है,<ref name="Cherevko2016">{{cite journal|last=Cherevko |first=S |display-authors=et al | title=Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability |journal=Catalysis Today |volume=262|pages=170–180|year=2016|doi= 10.1016/j.cattod.2015.08.014}}</ref> किन्तु स्टेनलेस स्टील ने हेटेरोजेनियस_वाटर_ऑक्सीडेशन | ऑक्सीजन इवोल्यूशन रिएक्शन (ओईआर) के समय उच्च तापमान पर नी की समानता में अच्छी स्थिरता और बेहतर उत्प्रेरक गतिविधि दिखाई है।<ref name="Colli et al.">{{cite journal|last=Colli |first=A.N. |display-authors=et al | title=व्यावहारिक क्षारीय जल इलेक्ट्रोलिसिस के लिए गैर-कीमती इलेक्ट्रोड|journal= Materials|volume=12|issue=8 |pages=1336|year=2019|doi=10.3390/ma12081336 |pmid=31022944 |doi-access=free |pmc=6515460 |bibcode=2019Mate...12.1336C }}</ref>
निकेल-जिंक की डील करके उच्च सतह क्षेत्र नी उत्प्रेरक प्राप्त किए जा सकते हैं<ref name="Colli et al." />या निकेल-एल्युमीनियम मिश्र धातु क्षारीय घोल में, जिसे आमतौर पर रेनी निकल कहा जाता है। सेल परीक्षणों में अब तक सबसे अच्छा प्रदर्शन करने वाले इलेक्ट्रोड में नी मेश पर प्लाज्मा वैक्यूम स्प्रे नी मिश्र धातु शामिल है<ref name="Schiller1995">{{cite journal|last=Schiller |first=G |author2=Henne R|author3=Borock V| title=क्षारीय जल इलेक्ट्रोलिसिस के लिए उच्च-प्रदर्शन इलेक्ट्रोड का वैक्यूम प्लाज्मा छिड़काव|journal=Journal of Thermal Spray Technology |volume=4|issue=2 |pages=185|year=1995|bibcode=1995JTST....4..185S|doi=10.1007/BF02646111|s2cid=137144045 }}</ref>
 
<ref name="Schiller1998">{{cite journal|last=Schiller |first=G |author2=Henne R|author3=Mohr P| author4=Peinecke V| title=एक उन्नत आंतरायिक रूप से संचालित 10-kW क्षारीय जल इलेक्ट्रोलाइज़र के लिए उच्च प्रदर्शन इलेक्ट्रोड|journal=International Journal of Hydrogen Energy|volume=23|issue=9 |pages=761–765|year=1998|doi= 10.1016/S0360-3199(97)00122-5}}</ref>
निकेल-जिंक की डील करके उच्च सतह क्षेत्र नी उत्प्रेरक प्राप्त किए जा सकते हैं<ref name="Colli et al." /> या निकेल-एल्युमीनियम मिश्र धातु क्षारीय घोल में, जिसे आमतौर पर रेनी निकल कहा जाता है। सेल परीक्षणों में अब तक सबसे अच्छा प्रदर्शन करने वाले इलेक्ट्रोड में नी मेश पर प्लाज्मा वैक्यूम स्प्रे नी मिश्र धातु सम्मलित है<ref name="Schiller1995">{{cite journal|last=Schiller |first=G |author2=Henne R|author3=Borock V| title=क्षारीय जल इलेक्ट्रोलिसिस के लिए उच्च-प्रदर्शन इलेक्ट्रोड का वैक्यूम प्लाज्मा छिड़काव|journal=Journal of Thermal Spray Technology |volume=4|issue=2 |pages=185|year=1995|bibcode=1995JTST....4..185S|doi=10.1007/BF02646111|s2cid=137144045 }}</ref><ref name="Schiller1998">{{cite journal|last=Schiller |first=G |author2=Henne R|author3=Mohr P| author4=Peinecke V| title=एक उन्नत आंतरायिक रूप से संचालित 10-kW क्षारीय जल इलेक्ट्रोलाइज़र के लिए उच्च प्रदर्शन इलेक्ट्रोड|journal=International Journal of Hydrogen Energy|volume=23|issue=9 |pages=761–765|year=1998|doi= 10.1016/S0360-3199(97)00122-5}}</ref>
और गर्म डुबकी गैल्वेनाइज्ड नी मेश।<ref name="Schalenbach2018-3">{{cite journal|last=Schalenbach |first=M |display-authors=et al | title= निकल इलेक्ट्रोड के साथ एक क्षारीय पानी इलेक्ट्रोलाइज़र कुशल उच्च वर्तमान घनत्व संचालन को सक्षम बनाता है|journal= International Journal of Hydrogen Energy |volume=43 |issue=27 |pages=11932–11938 | year=2018|doi= 10.1016/j.ijhydene.2018.04.219 |s2cid=103477803 }}</ref> बड़े पैमाने पर औद्योगिक निर्माण के लिए बाद वाला दृष्टिकोण दिलचस्प हो सकता है क्योंकि यह सस्ता और आसानी से स्केलेबल है।
 
और गर्म डुबकी गैल्वेनाइज्ड नी मेश।<ref name="Schalenbach2018-3">{{cite journal|last=Schalenbach |first=M |display-authors=et al | title= निकल इलेक्ट्रोड के साथ एक क्षारीय पानी इलेक्ट्रोलाइज़र कुशल उच्च वर्तमान घनत्व संचालन को सक्षम बनाता है|journal= International Journal of Hydrogen Energy |volume=43 |issue=27 |pages=11932–11938 | year=2018|doi= 10.1016/j.ijhydene.2018.04.219 |s2cid=103477803 }}</ref> बड़े पैमाने पर औद्योगिक निर्माण के लिए बाद वाला दृष्टिकोण रोचक हो सकता है क्योंकि यह सस्ता और आसानी से स्केलेबल है।
 
== पीईएम जल इलेक्ट्रोलिसिस == की समानता में लाभ


== पीईएम जल इलेक्ट्रोलिसिस == की तुलना में लाभ
पॉलिमर_इलेक्ट्रोलाइट_मेम्ब्रेन_इलेक्ट्रोलिसिस की समानता में, क्षारीय जल इलेक्ट्रोलिसिस के फायदे मुख्य रूप से हैं:
पॉलिमर_इलेक्ट्रोलाइट_मेम्ब्रेन_इलेक्ट्रोलिसिस की तुलना में, क्षारीय जल इलेक्ट्रोलिसिस के फायदे मुख्य रूप से हैं:


# PEM जल इलेक्ट्रोलिसिस के लिए उपयोग किए जाने वाले प्लेटिनम धातु समूह आधारित उत्प्रेरक के संबंध में सस्ता उत्प्रेरक।
# पीईएम जल इलेक्ट्रोलिसिस के लिए उपयोग किए जाने वाले प्लेटिनम धातु समूह आधारित उत्प्रेरक के संबंध में सस्ता उत्प्रेरक।
# विनिमेय इलेक्ट्रोलाइट और एनोडिक उत्प्रेरक के कम विघटन के कारण उच्च स्थायित्व।
# विनिमेय इलेक्ट्रोलाइट और एनोडिक उत्प्रेरक के कम विघटन के कारण उच्च स्थायित्व।
# क्षारीय इलेक्ट्रोलाइट में कम गैस प्रसार के कारण उच्च गैस शुद्धता।
# क्षारीय इलेक्ट्रोलाइट में कम गैस प्रसार के कारण उच्च गैस शुद्धता।

Revision as of 23:53, 6 April 2023

क्षारीय पानी इलेक्ट्रोलिसिस
Typical Materials
Type of Electrolysis:Alkaline Water Electrolysis
Style of membrane/diaphragmNiO
Bipolar/separator plate materialStainless steel
Catalyst material on the anodeNi/Co/Fe
Catalyst material on the cathodeNi/C-Pt
Anode PTL materialTi/Ni/zirconium
Cathode PTL materialStainless steel mesh
State-of-the-art Operating Ranges
Cell temperature60-80C[1]
Stack pressure<30 bar[1]
Current density0.2-0.4 A/cm2[1][2]
Cell voltage1.8-2.40 V[1][2]
Power densityto 1.0 W/cm2[1]
Part-load range20-40%[1]
Specific energy consumption stack4.2-5.9 kWh/Nm3[1]
Specific energy consumption system4.5-7.0 kWh/Nm3[1]
Cell voltage efficiency52-69%[1]
System hydrogen production rate<760 Nm3/h[1]
Lifetime stack<90,000 h[1]
Acceptable degradation rate<3 µV/h[1]
System lifetime20-30 a[1]

क्षारीय जल इलेक्ट्रोलिसिस एक प्रकार का इलेक्ट्रोलाइज़र है जिसे पोटेशियम हाइड्रोक्साइड (केओएच) या सोडियम हाइड्रॉक्साइड (एनएओएच) के तरल क्षारीय इलेक्ट्रोलाइट समाधान में संचालित दो इलेक्ट्रोड होने की विशेषता है। इन इलेक्ट्रोडों को एक डायाफ्राम के माध्यम से अलग किया जाता है, उत्पाद गैसों को अलग किया जाता है और हाइड्रॉक्साइड आयनों (ओएच) को परिवहन किया जाता है।) एक इलेक्ट्रोड से दूसरे इलेक्ट्रोड तक।[1][3] एक हालिया समानता से पता चला है कि क्षारीय इलेक्ट्रोलाइट्स के साथ अत्याधुनिक निकेल आधारित जल इलेक्ट्रोलाइज़र अम्लीय बहुलक इलेक्ट्रोलाइट झिल्ली इलेक्ट्रोलिसिस की समानता में प्रतिस्पर्धी या बेहतर क्षमता प्रदान करते हैं।[citation needed] प्लैटिनम समूह धातु आधारित विद्युत उत्प्रेरकों के साथ।[4]

रासायनिक उद्योग में प्रौद्योगिकी का एक लंबा इतिहास रहा है। हाइड्रोजन की पहली बड़े पैमाने पर मांग 19वीं शताब्दी के अंत में हवा से हल्के गैस उठाने वाले विमानों के लिए उभरी, और 1930 के दशक में भाप सुधार के आगमन से पहले, तकनीक प्रतिस्पर्धी थी।

निम्न-कार्बन अर्थव्यवस्था के संदर्भ में क्षारीय जल इलेक्ट्रोलिसिस को कुशल ऊर्जा रूपांतरण और भंडारण को सक्षम करने वाली एक महत्वपूर्ण तकनीक के रूप में माना जा सकता है।[5]


संरचना और सामग्री

इलेक्ट्रोड को सामान्यतः एक पतली झरझरा पन्नी (0.050 से 0.5 मिमी के बीच की मोटाई के साथ) से अलग किया जाता है, जिसे सामान्यतः डायाफ्राम या विभाजक कहा जाता है।[citation needed] डायाफ्राम इलेक्ट्रॉनों के लिए गैर-प्रवाहकीय है, इस प्रकार इलेक्ट्रोड के बीच छोटी दूरी की अनुमति देते हुए इलेक्ट्रोड के बीच विद्युत शॉर्ट्स से बचा जाता है। आयनिक चालकता जलीय क्षारीय घोल के माध्यम से प्रदान की जाती है, जो डायाफ्राम के छिद्रों में प्रवेश करती है। अत्याधुनिक डायाफ्राम ज़र्कोनिया और पॉलीसल्फोन की मिश्रित सामग्री जिरफॉन है।[6]

डायाफ्राम आगे कैथोड और एनोड पर उत्पादित हाइड्रोजन और ऑक्सीजन के मिश्रण से बचा जाता है,[7][8] क्रमश।

सामान्यतः, निकेल आधारित धातुओं का उपयोग क्षारीय जल इलेक्ट्रोलिसिस के लिए इलेक्ट्रोड के रूप में किया जाता है।[9] शुद्ध धातुओं को ध्यान में रखते हुए, नी सबसे कम सक्रिय गैर-महान धातु है।[10] प्लेटिनम समूह धातुओं और ऑक्सीजन विकास के समय उनके विघटन जैसे अच्छे महान धातु विद्युत उत्प्रेरकों की उच्च कीमत[11] एक कमी है। ऑक्सीजन के विकास के समय नी को अधिक स्थिर माना जाता है,[12] किन्तु स्टेनलेस स्टील ने हेटेरोजेनियस_वाटर_ऑक्सीडेशन | ऑक्सीजन इवोल्यूशन रिएक्शन (ओईआर) के समय उच्च तापमान पर नी की समानता में अच्छी स्थिरता और बेहतर उत्प्रेरक गतिविधि दिखाई है।[2]

निकेल-जिंक की डील करके उच्च सतह क्षेत्र नी उत्प्रेरक प्राप्त किए जा सकते हैं[2] या निकेल-एल्युमीनियम मिश्र धातु क्षारीय घोल में, जिसे आमतौर पर रेनी निकल कहा जाता है। सेल परीक्षणों में अब तक सबसे अच्छा प्रदर्शन करने वाले इलेक्ट्रोड में नी मेश पर प्लाज्मा वैक्यूम स्प्रे नी मिश्र धातु सम्मलित है[13][14]

और गर्म डुबकी गैल्वेनाइज्ड नी मेश।[15] बड़े पैमाने पर औद्योगिक निर्माण के लिए बाद वाला दृष्टिकोण रोचक हो सकता है क्योंकि यह सस्ता और आसानी से स्केलेबल है।

== पीईएम जल इलेक्ट्रोलिसिस == की समानता में लाभ

पॉलिमर_इलेक्ट्रोलाइट_मेम्ब्रेन_इलेक्ट्रोलिसिस की समानता में, क्षारीय जल इलेक्ट्रोलिसिस के फायदे मुख्य रूप से हैं:

  1. पीईएम जल इलेक्ट्रोलिसिस के लिए उपयोग किए जाने वाले प्लेटिनम धातु समूह आधारित उत्प्रेरक के संबंध में सस्ता उत्प्रेरक।
  2. विनिमेय इलेक्ट्रोलाइट और एनोडिक उत्प्रेरक के कम विघटन के कारण उच्च स्थायित्व।
  3. क्षारीय इलेक्ट्रोलाइट में कम गैस प्रसार के कारण उच्च गैस शुद्धता।

संदर्भ

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 Carmo, M; Fritz D; Mergel J; Stolten D (2013). "पीईएम जल इलेक्ट्रोलिसिस पर एक व्यापक समीक्षा". Journal of Hydrogen Energy. 38 (12): 4901. doi:10.1016/j.ijhydene.2013.01.151.
  2. 2.0 2.1 2.2 2.3 Colli, A.N.; et al. (2019). "व्यावहारिक क्षारीय जल इलेक्ट्रोलिसिस के लिए गैर-कीमती इलेक्ट्रोड". Materials. 12 (8): 1336. Bibcode:2019Mate...12.1336C. doi:10.3390/ma12081336. PMC 6515460. PMID 31022944.
  3. "क्षारीय जल इलेक्ट्रोलिसिस" (PDF). Energy Carriers and Conversion Systems. Retrieved 19 October 2014.
  4. Schalenbach, M; Tjarks G; Carmo M; Lueke W; Mueller M; Stolten D (2016). "Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis". Journal of the Electrochemical Society. 163 (11): F3197. doi:10.1149/2.0271611jes. S2CID 35846371.
  5. Ďurovič, Martin; Hnát, Jaromír; Bouzek, Karel (2021-05-01). "क्षारीय और तटस्थ मीडिया में हाइड्रोजन विकास प्रतिक्रिया के लिए विद्युत उत्प्रेरक। एक तुलनात्मक समीक्षा". Journal of Power Sources (in English). 493: 229708. doi:10.1016/j.jpowsour.2021.229708. ISSN 0378-7753. S2CID 233570530.
  6. "एजीएफए जिरफॉन पर्ल उत्पाद विनिर्देश". Archived from the original on 2018-04-23. Retrieved 29 January 2019.
  7. Schalenbach, M; Lueke W; Stolten D (2016). "क्षारीय जल इलेक्ट्रोलिसिस के लिए ज़िरफ़ोन पर्ल सेपरेटर की हाइड्रोजन डिफ्यूसिविटी और इलेक्ट्रोलाइट पारगम्यता" (PDF). Journal of the Electrochemical Society. 163 (14): F1480–F1488. doi:10.1149/2.1251613jes. S2CID 55017229.
  8. Haug, P; Koj M; Turek T (2017). "क्षारीय जल इलेक्ट्रोलिसिस में गैस की शुद्धता पर प्रक्रिया की स्थिति का प्रभाव". International Journal of Hydrogen Energy. 42 (15): 9406–9418. doi:10.1016/j.ijhydene.2016.12.111.
  9. Zhou, Daojin; Li, Pengsong; et al. (2020). "Recent Advances in Non‐Precious Metal‐Based Electrodes for Alkaline Water Electrolysis". ChemNanoMat (in English). 6 (3): 336–355. doi:10.1002/cnma.202000010. ISSN 2199-692X. S2CID 213442277.
  10. Quaino, P; Juarez F; Santos E; Schmickler W (2014). "Volcano plots in hydrogen electrocatalysis–uses and abuses". Beilstein Journal of Nanotechnology. 42: 846–854. doi:10.3762/bjnano.5.96. PMC 4077405. PMID 24991521.
  11. Schalenbach, M; et al. (2018). "क्षारीय मीडिया में महान धातुओं का विद्युत रासायनिक विघटन". Electrocatalysis. 9 (2): 153–161. doi:10.1007/s12678-017-0438-y. S2CID 104106046.
  12. Cherevko, S; et al. (2016). "Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability". Catalysis Today. 262: 170–180. doi:10.1016/j.cattod.2015.08.014.
  13. Schiller, G; Henne R; Borock V (1995). "क्षारीय जल इलेक्ट्रोलिसिस के लिए उच्च-प्रदर्शन इलेक्ट्रोड का वैक्यूम प्लाज्मा छिड़काव". Journal of Thermal Spray Technology. 4 (2): 185. Bibcode:1995JTST....4..185S. doi:10.1007/BF02646111. S2CID 137144045.
  14. Schiller, G; Henne R; Mohr P; Peinecke V (1998). "एक उन्नत आंतरायिक रूप से संचालित 10-kW क्षारीय जल इलेक्ट्रोलाइज़र के लिए उच्च प्रदर्शन इलेक्ट्रोड". International Journal of Hydrogen Energy. 23 (9): 761–765. doi:10.1016/S0360-3199(97)00122-5.
  15. Schalenbach, M; et al. (2018). "निकल इलेक्ट्रोड के साथ एक क्षारीय पानी इलेक्ट्रोलाइज़र कुशल उच्च वर्तमान घनत्व संचालन को सक्षम बनाता है". International Journal of Hydrogen Energy. 43 (27): 11932–11938. doi:10.1016/j.ijhydene.2018.04.219. S2CID 103477803.