हेल्महोल्ट्ज़ अपघटन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 9: Line 9:


== सिद्धांत का कथन ==
== सिद्धांत का कथन ==
<math>\mathbf{F}</math> एक बंधे हुए डोमेन पर एक सदिश क्षेत्र पर <math>V\subseteq\mathbb{R}^3</math>, जो अंदर से दो बार लगातार भिन्न होता है <math>V</math>, और जाने <math>S</math> वह सतह हो जो डोमेन को घेरती है <math>V</math>. तब <math>\mathbf{F}</math> कर्ल-मुक्त घटक और विचलन-मुक्त घटक में विघटित किया जा सकता है:<ref>{{cite web |url=http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf |title=हेल्महोल्ट्ज प्रमेय|publisher=University of Vermont| access-date=2011-03-11 | archive-url=https://web.archive.org/web/20120813005804/http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf| archive-date=2012-08-13| url-status=dead}}</ref>
<math>\mathbf{F}</math> एक बंधे हुए डोमेन पर एक सदिश क्षेत्र पर <math>V\subseteq\mathbb{R}^3</math>, जो अंदर से दो बार लगातार भिन्न होता है <math>V</math>, और जाने <math>S</math> वह सतह हो जो डोमेन को घेरती है <math>V</math>. तब <math>\mathbf{F}</math> कर्ल-मुक्त घटक और विचलन-मुक्त घटक में विघटित किया जा सकता है:<ref>{{cite web |url=http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf |title=हेल्महोल्ट्ज प्रमेय|publisher=University of Vermont| access-date=2011-03-11 | archive-url=https://web.archive.org/web/20120813005804/http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf| archive-date=2012-08-13| url-status=dead}}</ref>


<math display="block">\mathbf{F}=-\nabla \Phi+\nabla\times\mathbf{A},</math>
<math display="block">\mathbf{F}=-\nabla \Phi+\nabla\times\mathbf{A},</math>
Line 19: Line 19:
\end{align}
\end{align}
</math>
</math>
और <math>\nabla'</math> के संबंध में नाबला संचालिका होता है <math>\mathbf{r'}</math>, नहीं <math> \mathbf{r} </math>.
और <math>\nabla'</math> के संबंध में संचालिका होता है <math>\mathbf{r'}</math>, नहीं <math> \mathbf{r} </math>.


अगर <math>V = \R^3</math> और इसलिए असीमित है, और <math>\mathbf{F}</math> कम से कम उतनी ही तेजी से लुप्‍त हो जाता है <math>1/r</math> जैसा <math>r \to \infty</math>, तो एक है<ref name="griffiths">[[David J. Griffiths]], ''Introduction to Electrodynamics'', Prentice-Hall, 1999, p. 556.</ref>
अगर <math>V = \R^3</math> और इसलिए असीमित है, और <math>\mathbf{F}</math> कम से कम उतनी ही तेजी से लुप्‍त हो जाता है <math>1/r</math> जैसा <math>r \to \infty</math>, तो एक है<ref name="griffiths">[[David J. Griffiths]], ''Introduction to Electrodynamics'', Prentice-Hall, 1999, p. 556.</ref>
Line 27: Line 27:
\mathbf{A} (\mathbf{r}) & =\frac{1}{4\pi}\int_{\R^3} \frac{\nabla'\times\mathbf{F} (\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} \, \mathrm{d}V'
\mathbf{A} (\mathbf{r}) & =\frac{1}{4\pi}\int_{\R^3} \frac{\nabla'\times\mathbf{F} (\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} \, \mathrm{d}V'
\end{align}</math>
\end{align}</math>
यह विशेष रूप से अगर है <math>\mathbf F</math> में दो बार लगातार अवकलनीय है <math>\mathbb R^3</math> और सीमित समर्थन का।
यह विशेष रूप से अगर है <math>\mathbf F</math> में दो बार लगातार अवकलनीय है <math>\mathbb R^3</math> और सीमित समर्थन है।


== व्युत्पत्ति ==
== व्युत्पत्ति ==
मान लीजिए हमारे पास एक वेक्टर फलन है <math>\mathbf{F}(\mathbf{r})</math> जिनमें से हम कर्ल जानते हैं, <math>\nabla\times\mathbf{F}</math>, और विचलन, <math>\nabla\cdot\mathbf{F}</math>, सीमा पर डोमेन और क्षेत्र में। प्रपत्र में [[डेल्टा समारोह|डेल्टा फलन]] का उपयोग करके फलन लिखना
मान लीजिए हमारे पास एक वेक्टर फलन है <math>\mathbf{F}(\mathbf{r})</math> जिनमें से हम कर्ल जानते है, <math>\nabla\times\mathbf{F}</math>, और विचलन, <math>\nabla\cdot\mathbf{F}</math>, सीमा पर डोमेन और क्षेत्र में। प्रपत्र में [[डेल्टा समारोह|डेल्टा फलन]] का उपयोग करके फलन लिखना
<math display="block">\delta^3(\mathbf{r}-\mathbf{r}')=-\frac 1 {4\pi} \nabla^2 \frac{1}{|\mathbf{r}-\mathbf{r}'|}\, ,</math>
<math display="block">\delta^3(\mathbf{r}-\mathbf{r}')=-\frac 1 {4\pi} \nabla^2 \frac{1}{|\mathbf{r}-\mathbf{r}'|}\, ,</math>
जहाँ <math>\nabla^2:=\nabla\cdot\nabla</math> लाप्लास ऑपरेटर है, हमारे पास है  
जहाँ <math>\nabla^2:=\nabla\cdot\nabla</math> लाप्लास ऑपरेटर है, हमारे पास है  
Line 52: Line 52:
\mathbf{a}\times\nabla\psi &=\psi(\nabla\times\mathbf{a})-\nabla \times (\psi\mathbf{a})
\mathbf{a}\times\nabla\psi &=\psi(\nabla\times\mathbf{a})-\nabla \times (\psi\mathbf{a})
\end{align}</math>
\end{align}</math>
हम पाते हैं
हम पाते है
<math display="block">\begin{align}
<math display="block">\begin{align}
\mathbf{F}(\mathbf{r})=-\frac{1}{4\pi}\bigg[
\mathbf{F}(\mathbf{r})=-\frac{1}{4\pi}\bigg[
Line 60: Line 60:
- \int_{V}\nabla'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\bigg].
- \int_{V}\nabla'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\bigg].
\end{align}</math>
\end{align}</math>
[[विचलन प्रमेय|विचलन सिद्धांत]] के लिए समीकरण को फिर से लिखा जा सकता है
[[विचलन प्रमेय|विचलन सिद्धांत]] के लिए समीकरण को फिर से लिखा जा सकता है


<math display="block">\begin{align}
<math display="block">\begin{align}
Line 140: Line 140:


== '''परिभाषित''' ==
== '''परिभाषित''' ==
<math display="block">\Phi(\mathbf{r})\equiv\frac{1}{4\pi}\int_{V}\frac{\nabla'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math><math display="block">\mathbf{A}(\mathbf{r})\equiv\frac{1}{4\pi}\int_{V}\frac{\nabla'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math>हम अंत में प्राप्त करते हैं
<math display="block">\Phi(\mathbf{r})\equiv\frac{1}{4\pi}\int_{V}\frac{\nabla'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math><math display="block">\mathbf{A}(\mathbf{r})\equiv\frac{1}{4\pi}\int_{V}\frac{\nabla'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math>हम अंत में प्राप्त करते है
<math display="block">\mathbf{F}=-\nabla\Phi+\nabla\times\mathbf{A}.</math>
<math display="block">\mathbf{F}=-\nabla\Phi+\nabla\times\mathbf{A}.</math>
=== उच्च आयामों के लिए सामान्यीकरण ===
=== उच्च आयामों के लिए सामान्यीकरण ===


एक <math>d</math>-आयामी वेक्टर समष्टि के साथ <math>d\neq 3</math>, <math display="inline">-\frac{1}{4\pi\left|\mathbf{r}-\mathbf{r}'\right|}</math> उचित ग्रीन के कार्य द्वारा प्रतिस्थापित किया जाना चाहिए लाप्लासियन के लिए ग्रीन के कार्य करता है
एक <math>d</math>-आयामी वेक्टर समष्टि के साथ <math>d\neq 3</math>, <math display="inline">-\frac{1}{4\pi\left|\mathbf{r}-\mathbf{r}'\right|}</math> उचित ग्रीन के कार्य द्वारा प्रतिस्थापित किया जाना चाहिए लाप्लासियन के लिए ग्रीन के कार्य करता है
<math display="block">
<math display="block">
\nabla^2 G(\mathbf{r},\mathbf{r}') = \frac{\partial}{\partial r_\mu}\frac{\partial}{\partial r_\mu}G(\mathbf{r},\mathbf{r}') = \delta^d(\mathbf{r}-\mathbf{r}')
\nabla^2 G(\mathbf{r},\mathbf{r}') = \frac{\partial}{\partial r_\mu}\frac{\partial}{\partial r_\mu}G(\mathbf{r},\mathbf{r}') = \delta^d(\mathbf{r}-\mathbf{r}')
Line 150: Line 150:
जहां इंडेक्स के लिए [[आइंस्टीन संकेतन]] का उपयोग किया जाता है <math>\mu</math>. उदाहरण के लिए, <math display="inline">G(\mathbf{r},\mathbf{r}')=\frac{1}{2\pi}\ln\left|\mathbf{r}-\mathbf{r}'\right|</math> 2डी में।
जहां इंडेक्स के लिए [[आइंस्टीन संकेतन]] का उपयोग किया जाता है <math>\mu</math>. उदाहरण के लिए, <math display="inline">G(\mathbf{r},\mathbf{r}')=\frac{1}{2\pi}\ln\left|\mathbf{r}-\mathbf{r}'\right|</math> 2डी में।


ऊपर दिए गए चरणों का पालन करके हम लिख सकते हैं
ऊपर दिए गए चरणों का पालन करके हम लिख सकते है
<math display="block">
<math display="block">
F_\mu(\mathbf{r}) = \int_V F_\mu(\mathbf{r}') \frac{\partial}{\partial r_\mu}\frac{\partial}{\partial r_\mu}G(\mathbf{r},\mathbf{r}') \,\mathrm{d}^d \mathbf{r}'
F_\mu(\mathbf{r}) = \int_V F_\mu(\mathbf{r}') \frac{\partial}{\partial r_\mu}\frac{\partial}{\partial r_\mu}G(\mathbf{r},\mathbf{r}') \,\mathrm{d}^d \mathbf{r}'
  = \delta_{\mu\nu}\delta_{\rho\sigma}\int_V F_\nu(\mathbf{r}') \frac{\partial}{\partial r_\rho}\frac{\partial}{\partial r_\sigma}G(\mathbf{r},\mathbf{r}') \,\mathrm{d}^d \mathbf{r}'
  = \delta_{\mu\nu}\delta_{\rho\sigma}\int_V F_\nu(\mathbf{r}') \frac{\partial}{\partial r_\rho}\frac{\partial}{\partial r_\sigma}G(\mathbf{r},\mathbf{r}') \,\mathrm{d}^d \mathbf{r}'
</math>
</math>
जहाँ <math>\delta_{\mu\nu}</math> [[क्रोनकर डेल्टा]] है (और योग सम्मेलन फिर से उपयोग किया जाता है)। ऊपर प्रयुक्त वेक्टर लाप्लासियन की परिभाषा के स्थान पर, अब हम लेवी-सिविता प्रतीक के लिए एक पहचान का उपयोग करते हैं <math>\varepsilon</math>,
जहाँ <math>\delta_{\mu\nu}</math> [[क्रोनकर डेल्टा]] है (और योग सम्मेलन फिर से उपयोग किया जाता है)। ऊपर प्रयुक्त वेक्टर लाप्लासियन की परिभाषा के स्थान पर, अब हम लेवी-सिविता प्रतीक के लिए एक पहचान का उपयोग करते है <math>\varepsilon</math>,
<math display="block">
<math display="block">
\varepsilon_{\alpha\mu\rho}\varepsilon_{\alpha\nu\sigma} = (d-2)!(\delta_{\mu\nu}\delta_{\rho\sigma} - \delta_{\mu\sigma}\delta_{\nu\rho})
\varepsilon_{\alpha\mu\rho}\varepsilon_{\alpha\nu\sigma} = (d-2)!(\delta_{\mu\nu}\delta_{\rho\sigma} - \delta_{\mu\sigma}\delta_{\nu\rho})
Line 164: Line 164:
+ \frac{1}{(d-2)!}\varepsilon_{\alpha\mu\rho}\varepsilon_{\alpha\nu\sigma} \int_V F_\nu(\mathbf{r}') \frac{\partial}{\partial r_\rho}\frac{\partial}{\partial r_\sigma}G(\mathbf{r},\mathbf{r}') \,\mathrm{d}^d \mathbf{r}'
+ \frac{1}{(d-2)!}\varepsilon_{\alpha\mu\rho}\varepsilon_{\alpha\nu\sigma} \int_V F_\nu(\mathbf{r}') \frac{\partial}{\partial r_\rho}\frac{\partial}{\partial r_\sigma}G(\mathbf{r},\mathbf{r}') \,\mathrm{d}^d \mathbf{r}'
</math>
</math>
इसलिए हम लिख सकते हैं
इसलिए हम लिख सकते है
<math display="block">
<math display="block">
F_\mu(\mathbf{r}) = -\frac{\partial}{\partial r_\mu} \Phi(\mathbf{r}) + \varepsilon_{\mu\rho\alpha}\frac{\partial}{\partial r_\rho} A_{\alpha}(\mathbf{r})
F_\mu(\mathbf{r}) = -\frac{\partial}{\partial r_\mu} \Phi(\mathbf{r}) + \varepsilon_{\mu\rho\alpha}\frac{\partial}{\partial r_\rho} A_{\alpha}(\mathbf{r})
Line 180: Line 180:


=== फूरियर रूपांतरण से एक अन्य व्युत्पत्ति ===
=== फूरियर रूपांतरण से एक अन्य व्युत्पत्ति ===
ध्यान दें कि यहां बताए गए सिद्धांत में हमने यह निश्चित किया है कि यदि <math>\mathbf{F}</math> एक बाध्य डोमेन पर परिभाषित नहीं है, तब <math>\mathbf{F}</math> से भी तेज क्षय होगा <math>1/r</math>. इस प्रकार, का फूरियर रूपांतरण <math>\mathbf{F}</math>, रूप में दर्शाया गया है <math>\mathbf{G}</math>, के अधिपत्रित होने पर हम औपचारिक समझौता लागू करते हैं
ध्यान दें कि यहां बताए गए सिद्धांत में हमने यह निश्चित किया है कि यदि <math>\mathbf{F}</math> एक बाध्य डोमेन पर परिभाषित नहीं है, तब <math>\mathbf{F}</math> से भी तेज क्षय होगा <math>1/r</math>. इस प्रकार, का फूरियर रूपांतरण <math>\mathbf{F}</math>, रूप में दर्शाया गया है <math>\mathbf{G}</math>, के अधिपत्रित होने पर हम औपचारिक समझौता लागू करते है
<math display="block">\mathbf{F}(\mathbf{r}) = \iiint \mathbf{G}(\mathbf{k}) e^{i\mathbf{k} \cdot \mathbf{r}} dV_k </math>
<math display="block">\mathbf{F}(\mathbf{r}) = \iiint \mathbf{G}(\mathbf{k}) e^{i\mathbf{k} \cdot \mathbf{r}} dV_k </math>
एक अदिश क्षेत्र का फूरियर रूपांतरण एक अदिश क्षेत्र है, और सदिश क्षेत्र का फूरियर रूपांतरण समान आयाम का एक सदिश क्षेत्र है।
एक अदिश क्षेत्र का फूरियर रूपांतरण एक अदिश क्षेत्र है, और सदिश क्षेत्र का फूरियर रूपांतरण समान आयाम का एक सदिश क्षेत्र है।
Line 199: Line 199:


=== '''निर्धारित विचलन और कर्ल के साथ क्षेत्र''' ===
=== '''निर्धारित विचलन और कर्ल के साथ क्षेत्र''' ===
शब्द "हेल्महोल्ट्ज़ प्रमेय" निम्नलिखित का भी उल्लेख कर सकता है। मान लीजिए कि '''C''' एक परिनालिका सदिश क्षेत्र है और '''R'''<sup>3</sup> पर एक अदिश क्षेत्र है जो पर्याप्त रूप से समतल हैं और जो अनंत पर 1/''r''<sup>2</sup> से अधिक तेजी से लुप्‍त हो जाते हैं। फिर एक सदिश क्षेत्र '''F''' में सम्मलित होते है जैसे कि:<math display="block">\nabla \cdot \mathbf{F} = d \quad \text{ and } \quad \nabla \times \mathbf{F} = \mathbf{C};</math>
शब्द "हेल्महोल्ट्ज़ प्रमेय" निम्नलिखित का भी उल्लेख कर सकता है। मान लीजिए कि '''C''' एक परिनालिका सदिश क्षेत्र है और '''R'''<sup>3</sup> पर एक अदिश क्षेत्र है जो पर्याप्त रूप से समतल है और जो अनंत पर 1/''r''<sup>2</sup> से अधिक तेजी से लुप्‍त हो जाते है। फिर एक सदिश क्षेत्र '''F''' में सम्मलित होते है जैसे कि:<math display="block">\nabla \cdot \mathbf{F} = d \quad \text{ and } \quad \nabla \times \mathbf{F} = \mathbf{C};</math>
यदि अतिरिक्त सदिश क्षेत्र {{math|'''F'''}} के रूप में लुप्‍त हो जाता है {{math|''r'' → ∞}}, तो F अद्वितीय हो जाते है।<ref name="griffiths" />
यदि अतिरिक्त सदिश क्षेत्र {{math|'''F'''}} के रूप में लुप्‍त हो जाता है {{math|''r'' → ∞}}, तो F अद्वितीय हो जाते है।<ref name="griffiths" />


दूसरे शब्दों में, एक सदिश क्षेत्र निर्दिष्ट विचलन और निर्दिष्ट कर्ल दोनों के साथ बनाया जा सकता है, और यदि यह अनंत पर भी लुप्‍त हो जाता है, तो यह विशिष्ट रूप से इसके विचलन और कर्ल द्वारा निर्दिष्ट किया जाता है। स्थिर वैद्युत विक्षेप में इस सिद्धांत का बहुत महत्व है, क्योंकि स्थिर स्थितियों में विद्युत और चुंबकीय क्षेत्र के लिए मैक्सवेल के समीकरण ठीक इसी प्रकार के हैं।<ref name="griffiths" /> प्रमाण रूप निर्माण द्वारा ऊपर दिए गए एक को सामान्य करता है: हम सेट करते हैं।
दूसरे शब्दों में, एक सदिश क्षेत्र निर्दिष्ट विचलन और निर्दिष्ट कर्ल दोनों के साथ बनाया जा सकता है, और यदि यह अनंत पर भी लुप्‍त हो जाता है, तो यह विशिष्ट रूप से इसके विचलन और कर्ल द्वारा निर्दिष्ट किया जाता है। स्थिर वैद्युत विक्षेप में इस सिद्धांत का बहुत महत्व है, क्योंकि स्थिर स्थितियों में विद्युत और चुंबकीय क्षेत्र के लिए मैक्सवेल के समीकरण ठीक इसी प्रकार के है।<ref name="griffiths" /> प्रमाण रूप निर्माण द्वारा ऊपर दिए गए एक को सामान्य करता है: हम सेट करते है।


<math display="block">\mathbf{F} = - \nabla(\mathcal{G} (d)) + \nabla \times (\mathcal{G}(\mathbf{C})),</math>
<math display="block">\mathbf{F} = - \nabla(\mathcal{G} (d)) + \nabla \times (\mathcal{G}(\mathbf{C})),</math>
जहाँ <math>\mathcal{G}</math> न्यूटोनियन संभावित ऑपरेटर का प्रतिनिधित्व करता है। (जब सदिश क्षेत्र पर कार्य करते हैं, जैसे {{math|∇ × '''F'''}}, तो इसे प्रत्येक घटक पर कार्य करने के लिए परिभाषित किया जाता है।)
जहाँ <math>\mathcal{G}</math> न्यूटोनियन संभावित ऑपरेटर का प्रतिनिधित्व करता है। (जब सदिश क्षेत्र पर कार्य करते है, जैसे {{math|∇ × '''F'''}}, तो इसे प्रत्येक घटक पर कार्य करने के लिए परिभाषित किया जाता है।)


== समाधान स्थान ==
== समाधान स्थान ==
Line 231: Line 231:


== विभेदक रूप ==
== विभेदक रूप ==
हॉज अपघटन हॉज अपघटन हेल्महोल्ट्ज़ अपघटन से निकटता से संबंधित है, आर पर सदिश क्षेत्रों से सामान्यीकरण<sup>3</sup> [[रीमैनियन कई गुना]] एम पर [[विभेदक रूप]]ों के लिए। हॉज अपघटन के अधिकांश योगों के लिए एम को [[ कॉम्पैक्ट जगह ]] होना आवश्यक है।<ref>{{cite journal| jstor=2695643| title=Vector Calculus and the Topology of Domains in 3-Space| first1=Jason |last1=Cantarella |first2=Dennis |last2=DeTurck | first3=Herman|last3=Gluck|journal=The American Mathematical Monthly|volume=109|issue=5|year=2002 |pages=409–442 | doi=10.2307/2695643 }}</ref> चूँकि यह R के लिए सत्य नहीं है<sup>3</sup>, हॉज अपघटन सिद्धांत सख्ती से हेल्महोल्ट्ज़ सिद्धांत का सामान्यीकरण नहीं है। चूँकि, हॉज अपघटन के सामान्य निर्माण में कॉम्पैक्टनेस प्रतिबंध को हेल्महोल्ट्ज़ सिद्धांत का उचित सामान्यीकरण देते हुए, अंतर रूपों पर अनंत में उपयुक्त क्षय धारणाओं द्वारा प्रतिस्थापित किया जा सकता है।
हॉज अपघटन हॉज अपघटन हेल्महोल्ट्ज़ अपघटन से निकटता से संबंधित है, आर पर सदिश क्षेत्रों से सामान्यीकरण<sup>3</sup> [[रीमैनियन कई गुना]] एम पर [[विभेदक रूप]]ों के लिए। हॉज अपघटन के अधिकांश योगों के लिए एम को [[ कॉम्पैक्ट जगह |कॉम्पैक्ट जगह]] होना आवश्यक है।<ref>{{cite journal| jstor=2695643| title=Vector Calculus and the Topology of Domains in 3-Space| first1=Jason |last1=Cantarella |first2=Dennis |last2=DeTurck | first3=Herman|last3=Gluck|journal=The American Mathematical Monthly|volume=109|issue=5|year=2002 |pages=409–442 | doi=10.2307/2695643 }}</ref> चूँकि यह R के लिए सत्य नहीं है<sup>3</sup>, हॉज अपघटन सिद्धांत सख्ती से हेल्महोल्ट्ज़ सिद्धांत का सामान्यीकरण नहीं है। चूँकि, हॉज अपघटन के सामान्य निर्माण में कॉम्पैक्टनेस प्रतिबंध को हेल्महोल्ट्ज़ सिद्धांत का उचित सामान्यीकरण देते हुए, अंतर रूपों पर अनंत में उपयुक्त क्षय धारणाओं द्वारा प्रतिस्थापित किया जा सकता है।


== कमजोर सूत्रीकरण ==
== कमजोर सूत्रीकरण ==
Line 237: Line 237:


<math display="block">\mathbf{u}=\nabla\varphi+\nabla \times \mathbf{A}</math>
<math display="block">\mathbf{u}=\nabla\varphi+\nabla \times \mathbf{A}</math>
जहाँ {{mvar|φ}} पर वर्ग- समाकलनीय फलन के सोबोलेफ समष्टि {{math|''H''<sup>1</sup>(Ω)}} जिसका आंशिक साधित वितरण सेंस में परिभाषित किया गया है, और {{math|'''A''' ∈ ''H''(curl, Ω)}}, वर्ग समाकलनीय कर्ल के साथ वर्ग समाकलनीय सदिश क्षेत्रों से युक्त सदिश क्षेत्रों का सोबोलेफ समष्टि होता है।
जहाँ {{mvar|φ}} पर वर्ग- समाकलनीय फलन के सोबोलेफ समष्टि {{math|''H''<sup>1</sup>(Ω)}} जिसका आंशिक साधित वितरण सेंस में परिभाषित किया गया है, और {{math|'''A''' ∈ ''H''(curl, Ω)}}, वर्ग समाकलनीय कर्ल के साथ वर्ग समाकलनीय सदिश क्षेत्रों से युक्त सदिश क्षेत्रों का सोबोलेफ समष्टि होता है।


थोड़े समतल सदिश क्षेत्र के लिए {{math|'''u''' ∈ ''H''(curl, Ω)}}, एक समान अपघटन धारण करता है:
थोड़े समतल सदिश क्षेत्र के लिए {{math|'''u''' ∈ ''H''(curl, Ω)}}, एक समान अपघटन धारण करता है:
Line 245: Line 245:


== अनुदैर्ध्य और अनुप्रस्थ क्षेत्र ==
== अनुदैर्ध्य और अनुप्रस्थ क्षेत्र ==
भौतिकी में अधिकांशतः उपयोग की जाने वाली शब्दावली सदिश क्षेत्र के कर्ल-मुक्त घटक को अनुदैर्ध्य घटक के रूप में और अपसरण-मुक्त घटक को अनुप्रस्थ घटक के रूप में संदर्भित करती है।<ref>[https://arxiv.org/abs/0801.0335 Stewart, A. M.; Longitudinal and transverse components of a vector field, Sri Lankan Journal of Physics 12, 33–42 (2011)]</ref> यह शब्दावली निम्नलिखित निर्माण से आती है: त्रि-आयामी फूरियर रूपांतरण की गणना करें <math>\hat\mathbf{F}</math> सदिश क्षेत्र का <math>\mathbf{F}</math>. फिर इस क्षेत्र को प्रत्येक बिंदु k पर दो घटकों में विघटित करें, जिनमें से एक अनुदैर्ध्य रूप से बिंदु है, अर्थात k के समानांतर, दूसरा अनुप्रस्थ दिशा में इंगित करता है, अर्थात k के लंबवत होता है। जहाँ तक, हमारे पास है
भौतिकी में अधिकांशतः उपयोग की जाने वाली शब्दावली सदिश क्षेत्र के कर्ल-मुक्त घटक को अनुदैर्ध्य घटक के रूप में और अपसरण-मुक्त घटक को अनुप्रस्थ घटक के रूप में संदर्भित करती है।<ref>[https://arxiv.org/abs/0801.0335 Stewart, A. M.; Longitudinal and transverse components of a vector field, Sri Lankan Journal of Physics 12, 33–42 (2011)]</ref> यह शब्दावली निम्नलिखित निर्माण से आती है: त्रि-आयामी फूरियर रूपांतरण की गणना करें <math>\hat\mathbf{F}</math> सदिश क्षेत्र का <math>\mathbf{F}</math>. फिर इस क्षेत्र को प्रत्येक बिंदु k पर दो घटकों में विघटित करें, जिनमें से एक अनुदैर्ध्य रूप से बिंदु है, अर्थात k के समानांतर, दूसरा अनुप्रस्थ दिशा में इंगित करता है, अर्थात k के लंबवत होता है। जहाँ तक, हमारे पास है


<math display="block">\hat\mathbf{F} (\mathbf{k}) = \hat\mathbf{F}_t (\mathbf{k}) + \hat\mathbf{F}_l (\mathbf{k})</math>
<math display="block">\hat\mathbf{F} (\mathbf{k}) = \hat\mathbf{F}_t (\mathbf{k}) + \hat\mathbf{F}_l (\mathbf{k})</math>
<math display="block">\mathbf{k} \cdot \hat\mathbf{F}_t(\mathbf{k}) = 0.</math>
<math display="block">\mathbf{k} \cdot \hat\mathbf{F}_t(\mathbf{k}) = 0.</math>
<math display="block">\mathbf{k} \times \hat\mathbf{F}_l(\mathbf{k}) = \mathbf{0}.</math>
<math display="block">\mathbf{k} \times \hat\mathbf{F}_l(\mathbf{k}) = \mathbf{0}.</math>
अब हम इनमें से प्रत्येक घटक के लिए एक व्युत्क्रम फूरियर रूपांतरण लागू करते हैं। फूरियर रूपांतरण के गुणों का उपयोग करते हुए, हम प्राप्त करते हैं:
अब हम इनमें से प्रत्येक घटक के लिए एक व्युत्क्रम फूरियर रूपांतरण लागू करते है। फूरियर रूपांतरण के गुणों का उपयोग करते हुए, हम प्राप्त करते है:


<math display="block">\mathbf{F}(\mathbf{r}) = \mathbf{F}_t(\mathbf{r})+\mathbf{F}_l(\mathbf{r})</math><math display="block">\nabla \cdot \mathbf{F}_t (\mathbf{r}) = 0</math><math display="block">\nabla \times \mathbf{F}_l (\mathbf{r}) = \mathbf{0}</math>
<math display="block">\mathbf{F}(\mathbf{r}) = \mathbf{F}_t(\mathbf{r})+\mathbf{F}_l(\mathbf{r})</math><math display="block">\nabla \cdot \mathbf{F}_t (\mathbf{r}) = 0</math><math display="block">\nabla \times \mathbf{F}_l (\mathbf{r}) = \mathbf{0}</math>
उपरान्त <math>\nabla\times(\nabla\Phi)=0</math> और <math>\nabla\cdot(\nabla\times\mathbf{A})=0</math>,
उपरान्त <math>\nabla\times(\nabla\Phi)=0</math> और <math>\nabla\cdot(\nabla\times\mathbf{A})=0</math>,


हम प्राप्त कर सकते हैं
हम प्राप्त कर सकते है


<math display="block">\mathbf{F}_t=\nabla\times\mathbf{A}=\frac{1}{4\pi}\nabla\times\int_V\frac{\nabla'\times\mathbf{F}}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math>
<math display="block">\mathbf{F}_t=\nabla\times\mathbf{A}=\frac{1}{4\pi}\nabla\times\int_V\frac{\nabla'\times\mathbf{F}}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math>
Line 268: Line 268:
* अदिश-वेक्टर-टेंसर अपघटन
* अदिश-वेक्टर-टेंसर अपघटन
* हेल्महोल्ट्ज़ अपघटन को सामान्य करने वाला [[हॉज सिद्धांत]]
* हेल्महोल्ट्ज़ अपघटन को सामान्य करने वाला [[हॉज सिद्धांत]]
* ध्रुवीय गुणनखंड सिद्धांत
* ध्रुवीय गुणनखंड सिद्धांत
* [[लेरे प्रक्षेपण]] को परिभाषित करने के लिए हेल्महोल्ट्ज़-लेरे अपघटन का उपयोग किया गया
* [[लेरे प्रक्षेपण]] को परिभाषित करने के लिए हेल्महोल्ट्ज़-लेरे अपघटन का उपयोग किया गया



Revision as of 12:38, 13 April 2023

भौतिकी और गणित में, वेक्टर कैलकुलस के क्षेत्र में, हेल्महोल्ट्ज़ सिद्धांत,[1][2] जिसे वेक्टर कैलकुलस के मौलिक सिद्धांत के रूप में भी जाना जाता है,[3][4][5][6][7][8][9] यह बताता है कि किसी भी पर्याप्त रूप से समतल, तेजी से क्षय करने वाले वेक्टर क्षेत्र को तीन आयामों में एक अघूर्णनी (कर्ल-मुफ्त) सदिश क्षेत्र और परिनालिकीय क्षेत्र (विचलन-मुफ्त) सदिश क्षेत्र के योग में हल किया जा सकता है, इसे हेल्महोल्ट्ज़ अपघटन या हेल्महोल्ट्ज़ प्रतिनिधित्व के रूप में जाना जाता है। इसका नाम हरमन वॉन हेल्महोल्ट्ज़ के नाम पर रखा गया है।[10]

जैसा कि एक अघूर्णी सदिश क्षेत्र में एक अदिश क्षमता होती है और एक परिनालिकीय सदिश क्षेत्र में सदिश क्षमता होती है, हेल्महोल्ट्ज़ अपघटन बताता है कि सदिश क्षेत्र (उचित समतल और क्षय की स्थिति को संतुष्ट करते हुए) को योग के रूप में विघटित किया जा सकता है ,

जहाँ अदिश क्षेत्र होते है उसे अदिश विभव कहा जाता है, और A एक सदिश क्षेत्र है, जिसे सदिश विभव कहा जाता है।

सिद्धांत का कथन

एक बंधे हुए डोमेन पर एक सदिश क्षेत्र पर , जो अंदर से दो बार लगातार भिन्न होता है , और जाने वह सतह हो जो डोमेन को घेरती है . तब कर्ल-मुक्त घटक और विचलन-मुक्त घटक में विघटित किया जा सकता है:[11]

जहाँ
और के संबंध में संचालिका होता है , नहीं .

अगर और इसलिए असीमित है, और कम से कम उतनी ही तेजी से लुप्‍त हो जाता है जैसा , तो एक है[12]

यह विशेष रूप से अगर है में दो बार लगातार अवकलनीय है और सीमित समर्थन है।

व्युत्पत्ति

मान लीजिए हमारे पास एक वेक्टर फलन है जिनमें से हम कर्ल जानते है, , और विचलन, , सीमा पर डोमेन और क्षेत्र में। प्रपत्र में डेल्टा फलन का उपयोग करके फलन लिखना

जहाँ लाप्लास ऑपरेटर है, हमारे पास है

जहाँ हमने सदिश लाप्लासियन की परिभाषा का उपयोग किया है:
भेदभाव/एकीकरण के संबंध में द्वारा और अंतिम पंक्ति में, फलन तर्कों की रैखिकता:
फिर सदिश पहचान का उपयोग करना

हम पाते है
विचलन सिद्धांत के लिए समीकरण को फिर से लिखा जा सकता है