नवीन मूल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Axiomatic set theory devised by W.V.O. Quine}}
{{Short description|Axiomatic set theory devised by W.V.O. Quine}}
[[गणितीय तर्क]] में न्यू फ़ाउंडेशन (एनएफ) एक एक्सिओम्स समुच्चय सिद्धांत के रूप में होता है, जिसकी कल्पना [[विलार्ड वैन ओरमन क्वीन]] ने [[प्रिंसिपिया मैथेमेटिका]] के प्रकार के सिद्धांत के सरलीकरण के रूप में की है। क्विन ने पहली बार अपने 1937 के लेख न्यू फाउंडेशन फॉर मैथमेटिकल लॉजिक के रूप में नाम में एनएफ प्रस्तावित किया। इस प्रविष्टि में से अधिकांश जेन्सन ''<ref>Holmes, Randall, 1998. ''[https://randall-holmes.github.io/head.pdf Elementary Set Theory with a Universal Set]''. Academia-Bruylant.</ref> और होम्स (1998) द्वारा स्पष्ट किए जाने के कारण एनएफ के एक महत्वपूर्ण संस्करण यूरेलेमेंट्स एनएफयू के साथ एनएफ पर चर्चा करते हैं। 1940 में और 1951 में एक संशोधन में क्वीन ने एनएफ का एक विस्तार प्रस्तुत किया गया जिसे कभी-कभी गणितीय तर्क या एमएल कहा जाता है, जिसमें वर्ग समुच्चय सिद्धांत के साथ -साथ [[सेट (गणित)|समुच्चय (गणित)]] भी सम्मलित होता है।''
[[गणितीय तर्क]] में न्यू फ़ाउंडेशन (एनएफ) एक एक्सिओम्स समुच्चय सिद्धांत के रूप में होता है, जिसकी कल्पना [[विलार्ड वैन ओरमन क्वीन]] ने [[प्रिंसिपिया मैथेमेटिका]] के प्रकार के सिद्धांत के सरलीकरण के रूप में की है। क्विन ने पहली बार अपने 1937 के लेख न्यू फाउंडेशन फॉर मैथमेटिकल लॉजिक के रूप में नाम में एनएफ प्रस्तावित किया। इस प्रविष्टि में से अधिकांश जेन्सन ''<ref>Holmes, Randall, 1998. ''[https://randall-holmes.github.io/head.pdf Elementary Set Theory with a Universal Set]''. Academia-Bruylant.</ref> और होम्स (1998) द्वारा स्पष्ट किए जाने के कारण एनएफ के एक महत्वपूर्ण संस्करण यूरेलेमेंट्स एनएफयू के साथ एनएफ पर चर्चा करते हैं। 1940 में और 1951 में एक संशोधन में क्वीन ने एनएफ का एक विस्तार प्रस्तुत किया गया जिसे कभी-कभी गणितीय तर्क या एमएल कहा जाता है, जिसमें वर्ग समुच्चय सिद्धांत के साथ -साथ [[सेट (गणित)|समुच्चय (गणित)]] भी सम्मलित होता है।''


न्यू फ़ाउंडेशन में एक सार्वभौमिक समुच्चय के रूप में होता है, इसलिए यह एक गैर-स्थापित समुच्चय सिद्धांत के रूप में है।<ref>[http://plato.stanford.edu/entries/quine-nf/ Quine's New Foundations] - Stanford Encyclopedia of Philosophy</ref> कहने का तात्पर्य यह है कि, यह एक एक्सिओम्स समुच्चय सिद्धांत के रूप में होता है, जो सदस्यता की अनंत अवरोही श्रृंखलाओं जैसे x<sub>n</sub> ∈ x<sub>n-1</sub> ∈ … ∈ x<sub>2</sub> ∈ x<sub>1</sub> की अनुमति देता है, यह केवल स्तरीकरण (गणित) की अनुमति देकर रसेल के विरोधाभास से बचता है। एक विशिष्ट समुच्चय सिद्धांत [[अच्छी तरह से गठित सूत्र]] को विनिर्देश के एक्सिओम्स स्कीमा का उपयोग करके परिभाषित किया जाना है। उदाहरण के लिए, x ∈ y एक स्तरीकृत सूत्र है, लेकिन x ∈ x नहीं है।
न्यू फ़ाउंडेशन में एक सार्वभौमिक समुच्चय के रूप में होता है, इसलिए यह एक गैर-स्थापित समुच्चय सिद्धांत के रूप में है।<ref>[http://plato.stanford.edu/entries/quine-nf/ Quine's New Foundations] - Stanford Encyclopedia of Philosophy</ref> कहने का तात्पर्य यह है कि, यह एक एक्सिओम्स समुच्चय सिद्धांत के रूप में होता है, जो सदस्यता की अनंत अवरोही श्रृंखलाओं जैसे x<sub>n</sub> ∈ x<sub>n-1</sub> ∈ … ∈ x<sub>2</sub> ∈ x<sub>1</sub> की अनुमति देता है, यह केवल स्तरीकरण (गणित) की अनुमति देकर रसेल के विरोधाभास से बचता है। एक विशिष्ट समुच्चय सिद्धांत [[अच्छी तरह से गठित सूत्र]] को विनिर्देश के एक्सिओम्स स्कीमा का उपयोग करके परिभाषित किया जाना है। उदाहरण के लिए, x ∈ y एक स्तरीकृत सूत्र है, लेकिन x ∈ x नहीं है।


न्यू फ़ाउंडेशन रसेलियन अनरेमिफाइड समुच्चय सिद्धांत (टीएसटी) से निकटता से संबंधित है, जो कि इस प्रकार के रैखिक पदानुक्रम के साथ प्रिंसिपिया मैथमेटिका के सिद्धांत का एक सुव्यवस्थित संस्करण के रूप में है।
न्यू फ़ाउंडेशन रसेलियन अनरेमिफाइड समुच्चय सिद्धांत (टीएसटी) से निकटता से संबंधित है, जो कि इस प्रकार के रैखिक पदानुक्रम के साथ प्रिंसिपिया मैथमेटिका के सिद्धांत का एक सुव्यवस्थित संस्करण के रूप में है।


== टाइप सिद्धांत टीएसटी ==
== टाइप सिद्धांत टीएसटी ==
रसेलियन अप्रकाशित टाइप किए गए समुच्चय सिद्धांत टीएसटी के प्राचीन विधेय समानता (<math>=</math>) और सदस्यता (<math>\in</math>) के रूप में होता है। टीएसटी में एक प्रकार का रेखीय पदानुक्रम होता है, जिसे टाइप 0 में वैयक्तिक का समावेश अनिर्धारित होता है प्रत्येक (मेटा-) [[प्राकृतिक संख्या]] के लिए n टाइप n+1 ऑब्जेक्ट्स टाइप n ऑब्जेक्ट्स के समुच्चय के रूप में होते हैं, टाइप n के समुच्चय में टाइप n-1 के सदस्य होते हैं। पहचान से जुड़ी वस्तुओं का प्रकार समान होना चाहिए।
रसेलियन अप्रकाशित टाइप किए गए समुच्चय सिद्धांत टीएसटी के प्राचीन विधेय समानता (<math>=</math>) और सदस्यता (<math>\in</math>) के रूप में होता है। टीएसटी में एक प्रकार का रेखीय पदानुक्रम होता है, जिसे टाइप 0 में वैयक्तिक का समावेश अनिर्धारित होता है प्रत्येक (मेटा-) [[प्राकृतिक संख्या]] के लिए n टाइप n+1 ऑब्जेक्ट्स टाइप n ऑब्जेक्ट्स के समुच्चय के रूप में होते हैं, टाइप n के समुच्चय में टाइप n-1 के सदस्य होते हैं। पहचान से जुड़ी वस्तुओं का प्रकार समान होना चाहिए।


टीएसटी जैसे बहु-वर्गीकृत सिद्धांत में सूत्र लिखते समय, कुछ टिप्पणी सामान्यता उनके प्रकारों को निरूपित करने के लिए चर में जोड़े जाते हैं। टीएसटी में टाइप इंडेक्स को सुपरस्क्रिप्ट के रूप में लिखने का चलन है क्योंकि सुपरस्क्रिप्ट <math>x^n</math> टाइप n के एक चर को दर्शाता है। इस प्रकार निम्नलिखित दो परमाणु सूत्रों ने टाइपिंग नियम <math>x^{n} = y^{n}\!</math> और <math>x^{n} \in y^{n+1}</math>का सफलतापूर्वक वर्णन करते हैं। क्विनियन समुच्चय सिद्धांत प्रकारों को निरूपित करने के लिए इस तरह के सुपरस्क्रिप्ट की आवश्यकता को समाप्त करना चाहता है।
टीएसटी जैसे बहु-वर्गीकृत सिद्धांत में सूत्र लिखते समय, कुछ टिप्पणी सामान्यता उनके प्रकारों को निरूपित करने के लिए चर में जोड़े जाते हैं। टीएसटी में टाइप इंडेक्स को सुपरस्क्रिप्ट के रूप में लिखने का चलन है क्योंकि सुपरस्क्रिप्ट <math>x^n</math> टाइप n के एक चर को दर्शाता है। इस प्रकार निम्नलिखित दो परमाणु सूत्रों ने टाइपिंग नियम <math>x^{n} = y^{n}\!</math> और <math>x^{n} \in y^{n+1}</math>का सफलतापूर्वक वर्णन करते हैं। क्विनियन समुच्चय सिद्धांत प्रकारों को निरूपित करने के लिए इस तरह के सुपरस्क्रिप्ट की आवश्यकता को समाप्त करना चाहता है।


टीएसटी के एक्सिओम्स हैं,
टीएसटी के एक्सिओम्स हैं,
* [[विस्तार की स्वच्छता]]: एक ही सदस्यों के साथ समान सकारात्मक प्रकार के समुच्चय समान रूप में होते है,
* [[विस्तार की स्वच्छता]]: एक ही सदस्यों के साथ समान सकारात्मक प्रकार के समुच्चय समान रूप में होते है,
* एक्सिओम्स स्कीमा व्यापकार्थ के रूप में होते है,
* एक्सिओम्स स्कीमा व्यापकार्थ के रूप में होते है,
::यदि <math>\phi(x^n)</math> एक सूत्र है, फिर समुच्चय <math>\{x^n \mid \phi(x^n)\}^{n+1}\!</math> के रूप में उपस्थित होते है।
::यदि <math>\phi(x^n)</math> एक सूत्र है, फिर समुच्चय <math>\{x^n \mid \phi(x^n)\}^{n+1}\!</math> के रूप में उपस्थित होते है।
: दूसरे शब्दों में, किसी भी सूत्र को देखते हुए <math>\phi(x^n)\!</math>, सूत्र <math>\exists A^{n+1} \forall x^n [ x^n \in A^{n+1} \leftrightarrow \phi(x^n) ]</math> एक एक्सिओम्स के रूप में उपस्थित होते है, जहां <math>A^{n+1}\!</math> समुच्चय का प्रतिनिधित्व करता है <math>\{x^n \mid \phi(x^n)\}^{n+1}\!</math> और <math>\phi(x^n)</math> [[मुक्त चर और बाध्य चर]] के रूप में नहीं होते है।
: दूसरे शब्दों में, किसी भी सूत्र को देखते हुए <math>\phi(x^n)\!</math>, सूत्र <math>\exists A^{n+1} \forall x^n [ x^n \in A^{n+1} \leftrightarrow \phi(x^n) ]</math> एक एक्सिओम्स के रूप में उपस्थित होते है, जहां <math>A^{n+1}\!</math> समुच्चय का प्रतिनिधित्व करता है <math>\{x^n \mid \phi(x^n)\}^{n+1}\!</math> और <math>\phi(x^n)</math> [[मुक्त चर और बाध्य चर]] के रूप में नहीं होते है।


इस प्रकार का सिद्धांत प्रिन्सिपिया मैथेमेटिका में पहले दिए गए सिद्धांत की तुलना में बहुत कम जटिल रूप में है, जिसमें उन [[संबंधों]] [[संबंध (गणित)|(गणित)]] के प्रकार के रूप में सम्मलित होते है, जिनके तर्क आवश्यक रूप में नहीं थे कि सभी एक ही प्रकार के हों। 1914 में, [[नॉर्बर्ट वीनर]] ने दिखाया कि समुच्चय के एक समुच्चय के रूप में क्रमबद्ध किए गए जोड़े को कैसे कोडित किया जाए, जिससे यहां वर्णित समुच्चयो के रैखिक पदानुक्रम के पक्ष में संबंध प्रकारों को समाप्त करना संभव हो सके।
इस प्रकार का सिद्धांत प्रिन्सिपिया मैथेमेटिका में पहले दिए गए सिद्धांत की तुलना में बहुत कम जटिल रूप में है, जिसमें उन [[संबंधों]] [[संबंध (गणित)|(गणित)]] के प्रकार के रूप में सम्मलित होते है, जिनके तर्क आवश्यक रूप में नहीं थे कि सभी एक ही प्रकार के हों। 1914 में, [[नॉर्बर्ट वीनर]] ने दिखाया कि समुच्चय के एक समुच्चय के रूप में क्रमबद्ध किए गए जोड़े को कैसे कोडित किया जाए, जिससे यहां वर्णित समुच्चयो के रैखिक पदानुक्रम के पक्ष में संबंध प्रकारों को समाप्त करना संभव हो सके।
Line 24: Line 24:


न्यू फ़ाउंडेशन (एनएफ) के अच्छी तरह से बनाए गए सूत्र टीएसटी के अच्छी तरह से बनाए गए सूत्र के समान होते है, लेकिन टाइप एनोटेशन के साथ मिट जाते हैं। एनएफ के एक्सिओम्स के रूप में होते है।
न्यू फ़ाउंडेशन (एनएफ) के अच्छी तरह से बनाए गए सूत्र टीएसटी के अच्छी तरह से बनाए गए सूत्र के समान होते है, लेकिन टाइप एनोटेशन के साथ मिट जाते हैं। एनएफ के एक्सिओम्स के रूप में होते है।
* [[विस्तार]]: एक ही तत्वों के साथ दो ऑब्जेक्ट एक ही ऑब्जेक्ट के रूप में होते है।
* [[विस्तार]]: एक ही तत्वों के साथ दो ऑब्जेक्ट एक ही ऑब्जेक्ट के रूप में होते है।
* [[पृथक्करण]]: टीएसटी कॉम्प्रिहेंशन के सभी उदाहरण एक टाइप इंडेक्स के साथ सूचकांकों को गिरा दिया गया और चर के बीच नई पहचान प्रस्तुत किए बिना होती है।
* [[पृथक्करण]]: टीएसटी कॉम्प्रिहेंशन के सभी उदाहरण एक टाइप इंडेक्स के साथ सूचकांकों को गिरा दिया गया और चर के बीच नई पहचान प्रस्तुत किए बिना होती है।


कन्वेंशन द्वारा, एनएफ के पृथक्करण स्कीमा के एक्सिओम्स को [[स्तरीकृत सूत्र]] की अवधारणा का उपयोग करके बताया गया है और प्रकारों के लिए कोई सीधा संदर्भ नहीं होता है। एक सूत्र <math>\phi</math> को स्तरीकृत कहा जाता है कि यदि <math>\phi</math> सिंटैक्स के टुकड़ों से लेकर प्राकृतिक संख्याओं तक कोई फलन f रूप में उपस्थित होता है, जैसे कि किसी भी परमाणु सबफॉर्मुला के लिए <math>x \in y</math> का <math>\phi</math> हमारे पास f (y) = f (x) + 1 के रूप में है, जबकि किसी भी परमाणु सबफॉर्मुला के लिए <math>x=y</math> का <math>\phi</math>, हमारे पास f (x) = f (y) के रूप में है। <math>\{x \mid \phi \}</math> व्यापकार्थ के रूप में होता है प्रत्येक स्तरीकृत सूत्र के लिए <math>\phi</math> उपस्थित होता है।
कन्वेंशन द्वारा, एनएफ के पृथक्करण स्कीमा के एक्सिओम्स को [[स्तरीकृत सूत्र]] की अवधारणा का उपयोग करके बताया गया है और प्रकारों के लिए कोई सीधा संदर्भ नहीं होता है। एक सूत्र <math>\phi</math> को स्तरीकृत कहा जाता है कि यदि <math>\phi</math> सिंटैक्स के टुकड़ों से लेकर प्राकृतिक संख्याओं तक कोई फलन f रूप में उपस्थित होता है, जैसे कि किसी भी परमाणु सबफॉर्मुला के लिए <math>x \in y</math> का <math>\phi</math> हमारे पास f (y) = f (x) + 1 के रूप में है, जबकि किसी भी परमाणु सबफॉर्मुला के लिए <math>x=y</math> का <math>\phi</math>, हमारे पास f (x) = f (y) के रूप में है। <math>\{x \mid \phi \}</math> व्यापकार्थ के रूप में होता है प्रत्येक स्तरीकृत सूत्र के लिए <math>\phi</math> उपस्थित होता है।
Line 31: Line 31:
यहां तक कि [[स्तरीकरण]] (गणित) की धारणा में निहित प्रकारों के अप्रत्यक्ष संदर्भ को समाप्त किया जाता है। [[थियोडोर हेल्परिन]] ने 1944 में दिखाया कि कॉम्प्रिहेंशन इसके उदाहरणों के एक परिमित संयोजन के बराबर होता है,<ref>{{cite journal | last1 = Hailperin | first1 = T | year = 1944| title = A set of axioms for logic | journal = [[Journal of Symbolic Logic]] | volume = 9 | issue = 1| pages = 1–19 | doi=10.2307/2267307| jstor = 2267307 | s2cid = 39672836 }}</ref> जिससे कि एनएफ को किसी भी प्रकार की धारणा के संदर्भ के बिना बारीक रूप से एक्सिओम्स किया जा सके।
यहां तक कि [[स्तरीकरण]] (गणित) की धारणा में निहित प्रकारों के अप्रत्यक्ष संदर्भ को समाप्त किया जाता है। [[थियोडोर हेल्परिन]] ने 1944 में दिखाया कि कॉम्प्रिहेंशन इसके उदाहरणों के एक परिमित संयोजन के बराबर होता है,<ref>{{cite journal | last1 = Hailperin | first1 = T | year = 1944| title = A set of axioms for logic | journal = [[Journal of Symbolic Logic]] | volume = 9 | issue = 1| pages = 1–19 | doi=10.2307/2267307| jstor = 2267307 | s2cid = 39672836 }}</ref> जिससे कि एनएफ को किसी भी प्रकार की धारणा के संदर्भ के बिना बारीक रूप से एक्सिओम्स किया जा सके।


नैवी समुच्चय सिद्धांत में उन लोगों के समान समस्याओं को समझना प्रतीत हो सकता है, लेकिन यह स्थिति नहीं है। उदाहरण के लिए असंभव रसेल के वर्ग का अस्तित्व <math>\{x \mid x \not\in x\}</math> एनएफ का एक्सिओम्स नहीं है, क्योंकि <math> x \not\in x </math> स्तरीकृत नहीं किया जा सकता है।
नैवी समुच्चय सिद्धांत में उन लोगों के समान समस्याओं को समझना प्रतीत हो सकता है, लेकिन यह स्थिति नहीं है। उदाहरण के लिए असंभव रसेल के वर्ग का अस्तित्व <math>\{x \mid x \not\in x\}</math> एनएफ का एक्सिओम्स नहीं है, क्योंकि <math> x \not\in x </math> स्तरीकृत नहीं किया जा सकता है।


=== क्रमबद्ध जोड़े ===
=== क्रमबद्ध जोड़े ===
संबंध (गणित) और फलन को सामान्य विधियो से क्रमबद्ध किए गए जोड़े के समुच्चय के रूप में टीएसटी और एनएफ और एनएफयू के रूप में परिभाषित किया गया है। क्रमबद्ध की गई जोड़ी की सामान्य परिभाषा पहली बार 1921 में कुराटोव्स्की [[संग्रहाध्यक्ष]] द्वारा प्रस्तावित की गयी अर्थात् <math>(a \quad b )k</math> = <math>\{\{a\}  \{a \quad b\}\}</math>, में एनएफ और संबंधित सिद्धांतों के लिए एक मह्त्वपूर्ण त्रुटि के रूप में है, परिणामस्वरूप क्रमबद्ध की गई जोड़ी <math>(a \quad b)</math> में आवश्यक रूप से इसके तर्कों के प्रकार a और b की तुलना में एक प्रकार से दो अधिक है। इसलिए स्तरीकरण के निर्धारण के प्रयोजनों के लिए, एक कार्य अपने क्षेत्र के सदस्यों की तुलना में तीन प्रकार से अधिक है।
संबंध (गणित) और फलन को सामान्य विधियो से क्रमबद्ध किए गए जोड़े के समुच्चय के रूप में टीएसटी और एनएफ और एनएफयू के रूप में परिभाषित किया गया है। क्रमबद्ध की गई जोड़ी की सामान्य परिभाषा पहली बार 1921 में कुराटोव्स्की [[संग्रहाध्यक्ष]] द्वारा प्रस्तावित की गयी अर्थात् <math>(a \quad b )k</math> = <math>\{\{a\}  \{a \quad b\}\}</math>, में एनएफ और संबंधित सिद्धांतों के लिए एक मह्त्वपूर्ण त्रुटि के रूप में है, परिणामस्वरूप क्रमबद्ध की गई जोड़ी <math>(a \quad b)</math> में आवश्यक रूप से इसके तर्कों के प्रकार a और b की तुलना में एक प्रकार से दो अधिक है। इसलिए स्तरीकरण के निर्धारण के प्रयोजनों के लिए, एक कार्य अपने क्षेत्र के सदस्यों की तुलना में तीन प्रकार से अधिक है।


यदि किसी जोड़े को इस प्रकार परिभाषित किया जा सके कि इसका प्रकार उसके तर्कों के समान होते हैं, जिसके परिणामस्वरूप उसके प्रकार के क्रम वाले जोड़े में एक-दूसरे से संबंध या क्रिया उसके क्षेत्र के सदस्यों की तुलना में एक प्रकार से अधिक होती है,.इसलिए एनएफ और संबद्ध सिद्धांतों में प्रायः ''[[विलार्ड वैन ओरमन क्वीन]]'' की ''समुच्चय की'' सैद्धांतिक परिभाषा दी गयी है। जिससे कि एक प्रकार का क्रमबद्ध युग्म उत्पन्न होता है।'' जो एक क्रमबद्ध की गई जोड़ी क्वीन-रॉसर परिभाषा को प्रमाणित करता है। टाइप-लेवल क्रमबद्ध की गई जोड़ी होम्स (1998) के क्रमबद्ध की गई जोड़ी और उसके बाएं और दाएं [[प्रक्षेपण (गणित)]] को प्राचीन के रूप में लाता है। चूंकि, क्विन की परिभाषा प्रत्येक तत्व A और B पर समुच्चय प्रचालन पर निर्भर करती है और इसलिए सीधे तौर पर एनएफयू में काम नहीं करती.है।''
यदि किसी जोड़े को इस प्रकार परिभाषित किया जा सके कि इसका प्रकार उसके तर्कों के समान होते हैं, जिसके परिणामस्वरूप उसके प्रकार के क्रम वाले जोड़े में एक-दूसरे से संबंध या क्रिया उसके क्षेत्र के सदस्यों की तुलना में एक प्रकार से अधिक होती है,.इसलिए एनएफ और संबद्ध सिद्धांतों में प्रायः ''[[विलार्ड वैन ओरमन क्वीन]]'' की ''समुच्चय की'' सैद्धांतिक परिभाषा दी गयी है। जिससे कि एक प्रकार का क्रमबद्ध युग्म उत्पन्न होता है।'' जो एक क्रमबद्ध की गई जोड़ी क्वीन-रॉसर परिभाषा को प्रमाणित करता है। टाइप-लेवल क्रमबद्ध की गई जोड़ी होम्स (1998) के क्रमबद्ध की गई जोड़ी और उसके बाएं और दाएं [[प्रक्षेपण (गणित)]] को प्राचीन के रूप में लाता है। चूंकि, क्विन की परिभाषा प्रत्येक तत्व A और B पर समुच्चय प्रचालन पर निर्भर करती है और इसलिए सीधे तौर पर एनएफयू में काम नहीं करती.है।''


एक वैकल्पिक दृष्टिकोण के रूप में, होम्स क्रमित जोड़ी (a, b) को एक प्राचीन धारणा के साथ-साथ इसके बाएँ और दाएँ प्रक्षेपण <math>\pi1\quad and \quad \pi2</math> के रूप में लेता है। जैसे ऐसे फलन करता है <math>\pi1((a, b)=a \quad and \pi2((a, b))=b</math> एनएफयू के होम्स के अक्षीयकरण में, बोध स्कीमा जो अस्तित्व पर जोर देती है, <math>(x|\phi)</math> किसी भी स्तरीकृत सूत्र के लिए <math>\phi</math> को एक प्रमेय माना जाता है और बाद में सिद्ध किया जाता है, इसलिए x1<math>\pi1=\{((a,b),a)|a,b\in\upsilon\}</math> जैसे भावों को उचित परिभाषा नहीं माना जाता है। सौभाग्य से, क्या क्रमबद्ध जोड़ी परिभाषा के अनुसार टाइप-लेवल के रूप में है या धारणा के अनुसार, सामान्तया प्राचीन के रूप में लिया जाता है, इससे कोई फर्क नहीं पड़ता है।
एक वैकल्पिक दृष्टिकोण के रूप में, होम्स क्रमित जोड़ी (a, b) को एक प्राचीन धारणा के साथ-साथ इसके बाएँ और दाएँ प्रक्षेपण <math>\pi1\quad and \quad \pi2</math> के रूप में लेता है। जैसे ऐसे फलन करता है <math>\pi1((a, b)=a \quad and \pi2((a, b))=b</math> एनएफयू के होम्स के अक्षीयकरण में, बोध स्कीमा जो अस्तित्व पर जोर देती है, <math>(x|\phi)</math> किसी भी स्तरीकृत सूत्र के लिए <math>\phi</math> को एक प्रमेय माना जाता है और बाद में सिद्ध किया जाता है, इसलिए x1<math>\pi1=\{((a,b),a)|a,b\in\upsilon\}</math> जैसे भावों को उचित परिभाषा नहीं माना जाता है। सौभाग्य से, क्या क्रमबद्ध जोड़ी परिभाषा के अनुसार टाइप-लेवल के रूप में है या धारणा के अनुसार, सामान्तया प्राचीन के रूप में लिया जाता है, इससे कोई फर्क नहीं पड़ता है।
=== उपयोगी बड़े समुच्चयो की स्वीकार्यता ===
=== उपयोगी बड़े समुच्चयो की स्वीकार्यता ===
एनएफ और एनएफयू + इन्फिनिटी + चॉइस, नीचे वर्णित और ज्ञात सुसंगत दो प्रकार के समुच्चयो के निर्माण की अनुमति देते हैं, जो कि [[ZFC|जेडएफसी]] और इसके उचित विस्तारण के लिए अस्वीकृत रूप में हैं क्योंकि वे बहुत बड़े रूप में होते है। कुछ समुच्चय सिद्धांत [[उचित वर्ग|उचित]] [[वर्गों]] के शीर्षक के अनुसार इन संस्थाओं को स्वीकार करते हैं।
एनएफ और एनएफयू + इन्फिनिटी + चॉइस, नीचे वर्णित और ज्ञात सुसंगत दो प्रकार के समुच्चयो के निर्माण की अनुमति देते हैं, जो कि [[ZFC|जेडएफसी]] और इसके उचित विस्तारण के लिए अस्वीकृत रूप में हैं क्योंकि वे बहुत बड़े रूप में होते है। कुछ समुच्चय सिद्धांत [[उचित वर्ग|उचित]] [[वर्गों]] के शीर्षक के अनुसार इन संस्थाओं को स्वीकार करते हैं।
* यूनिवर्सल समुच्चय वी <math>x=x</math> एक स्तरीकृत सूत्र के रूप में होते है, सार्वभौमिक समुच्चय v = {x |x = x} अभिबोध के रूप में उपस्थित होते है। एक तत्काल परिणाम यह है कि सभी समुच्चयो में पूरक समुच्चय सिद्धांत होते हैं और एनएफ के अनुसार पूरे समुच्चय थ्योरिटिक ब्रह्मांड में एक [[बूलियन बीजगणित]] संरचना के रूप में होती है।
* यूनिवर्सल समुच्चय वी <math>x=x</math> एक स्तरीकृत सूत्र के रूप में होते है, सार्वभौमिक समुच्चय v = {x |x = x} अभिबोध के रूप में उपस्थित होते है। एक तत्काल परिणाम यह है कि सभी समुच्चयो में पूरक समुच्चय सिद्धांत होते हैं और एनएफ के अनुसार पूरे समुच्चय थ्योरिटिक ब्रह्मांड में एक [[बूलियन बीजगणित]] संरचना के रूप में होती है।
* [[बुनियादी संख्या|मौलिक संख्या]] और [[क्रमसूचक संख्या]] नंबर एनएफ और टीएसटी में, एन तत्वों वाले सभी समुच्चयो का समुच्चय यहां का [[परिपत्र तर्क]] केवल स्पष्ट रूप में उपस्थित है। इसलिए प्रमुख नंबरों की [[फ्रेज]] की परिभाषा एनएफ और एनएफयू में काम करती है, एक प्रमुख नंबर [[विषमता]] के संबंध (गणित) के अनुसार समुच्चयो की समानता वर्ग के रूप में होती है, समुच्चय ए और बी विषम रूप में होते है यदि उनके बीच एक [[द्विभाजन]] उपस्थित होते है, तो हम जिस स्थिति में हम <math>A \sim B</math> लिखते हैं। इसी तरह, एक क्रमिक संख्या सुव्यवस्थित समुच्चय का तुल्यता वर्ग के रूप में होता है ।
* [[बुनियादी संख्या|मौलिक संख्या]] और [[क्रमसूचक संख्या]] नंबर एनएफ और टीएसटी में, एन तत्वों वाले सभी समुच्चयो का समुच्चय यहां का [[परिपत्र तर्क]] केवल स्पष्ट रूप में उपस्थित है। इसलिए प्रमुख नंबरों की [[फ्रेज]] की परिभाषा एनएफ और एनएफयू में काम करती है, एक प्रमुख नंबर [[विषमता]] के संबंध (गणित) के अनुसार समुच्चयो की समानता वर्ग के रूप में होती है, समुच्चय ए और बी विषम रूप में होते है यदि उनके बीच एक [[द्विभाजन]] उपस्थित होते है, तो हम जिस स्थिति में हम <math>A \sim B</math> लिखते हैं। इसी तरह, एक क्रमिक संख्या सुव्यवस्थित समुच्चय का तुल्यता वर्ग के रूप में होता है ।


== परिमित एक्सिओम्स ==
== परिमित एक्सिओम्स ==
Line 50: Line 50:
होम्स का मानना ​​है कि स्तरीकृत अभिबोध का एक्सिओम्स है, जबकि एक शक्तिशाली उपकरण, एक परिमित एक्सिओम्स में अक्षीयकरण की तुलना में बिल्कुल भी सहज नहीं होता है, जो सभी प्राकृतिक बुनियादी निर्माणों के अनुरूप हैं। इसलिए, एनएफयू के अपने परिचय में उन्होंने उन प्राकृतिक बुनियादी निर्माणों को एक्सिओम्स के रूप में लेने का विकल्प चुना और बाद में एक प्रमेय के रूप में स्तरीकृत समझ को साबित किया।
होम्स का मानना ​​है कि स्तरीकृत अभिबोध का एक्सिओम्स है, जबकि एक शक्तिशाली उपकरण, एक परिमित एक्सिओम्स में अक्षीयकरण की तुलना में बिल्कुल भी सहज नहीं होता है, जो सभी प्राकृतिक बुनियादी निर्माणों के अनुरूप हैं। इसलिए, एनएफयू के अपने परिचय में उन्होंने उन प्राकृतिक बुनियादी निर्माणों को एक्सिओम्स के रूप में लेने का विकल्प चुना और बाद में एक प्रमेय के रूप में स्तरीकृत समझ को साबित किया।
== कार्टेशियन क्लोजर ==
== कार्टेशियन क्लोजर ==
श्रेणी जिसकी वस्तुएं एनएफ के समुच्चय के रूप में होती है और जिनके तीर आकृती उन समुच्चयो के बीच के फलन के रूप में हैं, [[कार्टेशियन बंद श्रेणी|कार्टेशियन क्लोजर श्रेणी]] नहीं होती है;<ref>{{cite web |url=http://www.dpmms.cam.ac.uk/~tf/cartesian-closed.pdf |title=Why the Sets of NF do not form a Cartesian-closed Category |first=Thomas |last=Forster |date=October 14, 2007 |website=www.dpmms.cam.ac.uk}}</ref> चूंकि एनएफ में कार्टेशियन क्लोजर होने का अभाव होता है, इसलिए प्रत्येक फलन को न्यूरिंग नहीं किया जा सकता है क्योंकि कोई भी सहज रूप से उम्मीद कर सकता है और एनएफ एक टॉपोज़ के रूप में नहीं है।
श्रेणी जिसकी वस्तुएं एनएफ के समुच्चय के रूप में होती है और जिनके तीर आकृती उन समुच्चयो के बीच के फलन के रूप में हैं, [[कार्टेशियन बंद श्रेणी|कार्टेशियन क्लोजर श्रेणी]] नहीं होती है;<ref>{{cite web |url=http://www.dpmms.cam.ac.uk/~tf/cartesian-closed.pdf |title=Why the Sets of NF do not form a Cartesian-closed Category |first=Thomas |last=Forster |date=October 14, 2007 |website=www.dpmms.cam.ac.uk}}</ref> चूंकि एनएफ में कार्टेशियन क्लोजर होने का अभाव होता है, इसलिए प्रत्येक फलन को न्यूरिंग नहीं किया जा सकता है क्योंकि कोई भी सहज रूप से उम्मीद कर सकता है और एनएफ एक टॉपोज़ के रूप में नहीं है।


== स्थिरता की समस्या और संबंधित आंशिक परिणाम ==
== स्थिरता की समस्या और संबंधित आंशिक परिणाम ==
कई वर्षों के लिए, एनएफ के साथ बड़ी समस्या यह रही है कि यह किसी भी अन्य प्रसिद्ध एक्सिओम्स प्रणाली के साथ समरूपता सिद्ध नहीं हुआ है जिसमें अंकगणित को मॉडल किया जा सकता है।एनएफ पसंद के एक्सिओम्स को रोक देता है, और इस तरह अनंत (स्पेकर, 1953) के एक्सिओम्स सिद्ध होता है।लेकिन यह भी जाना जाता है ([[रोनाल्ड जेन्सेन]], 1969) जो कि यूरेलमेंट्स (कई अलग -अलग वस्तुओं की कमी वाले सदस्यों की कमी) की अनुमति देता है, एनएफयू की पैप्रमाणित र करता है, एक सिद्धांत जो मीनो अंकगणित के सापेक्ष सुसंगत है;यदि अनंत और पसंद को जोड़ा जाता है, तो परिणामी सिद्धांत में अनंत या बंधे हुए ज़रमेलो समुच्चय सिद्धांत के साथ टाइप सिद्धांत के समान स्थिरता की शक्ति होती है।(एनएफयू एक प्रकार के सिद्धांत TSTU से मेल खाती है, जहां टाइप 0 में [[urelement]]s हैं, न कि केवल एक खाली समुच्चय ।) एनएफ के अन्य अपेक्षाकृत सुसंगत वेरिएंट हैं।
कई वर्षों के लिए, एनएफ के साथ बड़ी समस्या यह रही है कि यह किसी भी अन्य प्रसिद्ध एक्सिओम्स प्रणाली के साथ समरूपता सिद्ध नहीं हुआ है जिसमें अंकगणित को मॉडल किया जा सकता है।एनएफ पसंद के एक्सिओम्स को रोक देता है, और इस तरह अनंत (स्पेकर, 1953) के एक्सिओम्स सिद्ध होता है।लेकिन यह भी जाना जाता है ([[रोनाल्ड जेन्सेन]], 1969) जो कि यूरेलमेंट्स (कई अलग -अलग वस्तुओं की कमी वाले सदस्यों की कमी) की अनुमति देता है, एनएफयू की पैप्रमाणित र करता है, एक सिद्धांत जो मीनो अंकगणित के सापेक्ष सुसंगत है;यदि अनंत और पसंद को जोड़ा जाता है, तो परिणामी सिद्धांत में अनंत या बंधे हुए ज़रमेलो समुच्चय सिद्धांत के साथ टाइप सिद्धांत के समान स्थिरता की शक्ति होती है।(एनएफयू एक प्रकार के सिद्धांत TSTU से मेल खाती है, जहां टाइप 0 में [[urelement]]s हैं, न कि केवल एक खाली समुच्चय ।) एनएफ के अन्य अपेक्षाकृत सुसंगत वेरिएंट हैं।


एनएफयू, मोटे तौर पर बोल रहा है, एनएफ की तुलना में कमजोर है, क्योंकि एनएफ में, ब्रह्मांड का शक्ति समुच्चय ही ब्रह्मांड है, जबकि एनएफयू में, ब्रह्मांड का शक्ति समुच्चय ब्रह्मांड की तुलना में सख्ती से छोटा हो सकता है (ब्रह्मांड का शक्ति समुच्चय सम्मलित हैकेवल समुच्चय , जबकि ब्रह्मांड में urelements हो सकते हैं)।यह आवश्यक रूप से एनएफयू + पसंद में स्थिति ा है।
एनएफयू, मोटे तौर पर बोल रहा है, एनएफ की तुलना में कमजोर है, क्योंकि एनएफ में, ब्रह्मांड का शक्ति समुच्चय ही ब्रह्मांड है, जबकि एनएफयू में, ब्रह्मांड का शक्ति समुच्चय ब्रह्मांड की तुलना में सख्ती से छोटा हो सकता है (ब्रह्मांड का शक्ति समुच्चय सम्मलित हैकेवल समुच्चय , जबकि ब्रह्मांड में urelements हो सकते हैं)।यह आवश्यक रूप से एनएफयू + पसंद में स्थिति ा है।


[[अर्नस्ट स्पेकर]] ने दिखाया है कि एनएफ टीएसटी + AMB के साथ [[समानता]] है, जहां AMB 'विशिष्ट अस्पष्टता' की एक्सिओम्स योजना है जो प्रमाणित करता है <math>\phi \leftrightarrow \phi^+</math> किसी भी सूत्र के लिए <math>\phi</math>, <math>\phi^+</math> प्रत्येक प्रकार के सूचकांक को बढ़ाकर प्राप्त सूत्र होने के नाते <math>\phi</math> एक - एक करके।एनएफ एक प्रकार के शिफ्टिंग ऑटोमोर्फिज्म के साथ संवर्धित सिद्धांत के साथ भी समानतापूर्ण है, एक ऑपरेशन जो एक द्वारा एक प्रकार को बढ़ाता है, अगले उच्च प्रकार पर प्रत्येक प्रकार की मैपिंग करता है, और समानता और सदस्यता संबंधों को संरक्षित करता है (और जो कॉम्प्रिहेंशन के उदाहरणों में उपयोग नहीं किया जा सकता है: यहसिद्धांत के लिए बाहरी है)।एनएफ के संबंधित टुकड़ों के बारे में टीएसटी के विभिन्न टुकड़ों के लिए समान परिणाम हैं।
[[अर्नस्ट स्पेकर]] ने दिखाया है कि एनएफ टीएसटी + AMB के साथ [[समानता]] है, जहां AMB 'विशिष्ट अस्पष्टता' की एक्सिओम्स योजना है जो प्रमाणित करता है <math>\phi \leftrightarrow \phi^+</math> किसी भी सूत्र के लिए <math>\phi</math>, <math>\phi^+</math> प्रत्येक प्रकार के सूचकांक को बढ़ाकर प्राप्त सूत्र होने के नाते <math>\phi</math> एक - एक करके।एनएफ एक प्रकार के शिफ्टिंग ऑटोमोर्फिज्म के साथ संवर्धित सिद्धांत के साथ भी समानतापूर्ण है, एक ऑपरेशन जो एक द्वारा एक प्रकार को बढ़ाता है, अगले उच्च प्रकार पर प्रत्येक प्रकार की मैपिंग करता है, और समानता और सदस्यता संबंधों को संरक्षित करता है (और जो कॉम्प्रिहेंशन के उदाहरणों में उपयोग नहीं किया जा सकता है: यहसिद्धांत के लिए बाहरी है)।एनएफ के संबंधित टुकड़ों के बारे में टीएसटी के विभिन्न टुकड़ों के लिए समान परिणाम हैं।


उसी वर्ष (1969) में कि रोनाल्ड जेन्सेन ने एनएफयू सुसंगत सिद्ध किया, ग्रिशिन सिद्ध हुआ <math>NF_3</math> एक जैसा। <math>NF_3</math> पूर्ण विस्तार (कोई urelements) और कॉम्प्रिहेंशन के उन उदाहरणों के साथ एनएफ का टुकड़ा है जो केवल तीन प्रकारों का उपयोग करके स्तरीकृत किया जा सकता है।यह सिद्धांत गणित के लिए एक बहुत ही अजीब माध्यम है (चूंकि इस अजीबता को कम करने के लिए प्रयास किए गए हैं), मोटे तौर पर क्योंकि एक क्रमबद्ध जोड़ी के लिए कोई स्पष्ट परिभाषा नहीं है।इस अजीबता के बावजूद, <math>NF_3</math> बहुत रोचक है क्योंकि टीएसटी के प्रत्येक अनंत मॉडल को तीन प्रकारों तक सीमित कर दिया गया है जो एएमबी को संतुष्ट करता है।इसलिए ऐसे प्रत्येक मॉडल के लिए, का एक मॉडल है <math>NF_3</math> एक ही सिद्धांत के साथ।यह चार प्रकारों के लिए नहीं है: <math>NF_4</math> एनएफ के रूप में एक ही सिद्धांत है, और हमें पता नहीं है कि चार प्रकारों के साथ टीएसटी का एक मॉडल कैसे प्राप्त किया जाए जिसमें एएमबी धारण करता है।
उसी वर्ष (1969) में कि रोनाल्ड जेन्सेन ने एनएफयू सुसंगत सिद्ध किया, ग्रिशिन सिद्ध हुआ <math>NF_3</math> एक जैसा। <math>NF_3</math> पूर्ण विस्तार (कोई urelements) और कॉम्प्रिहेंशन के उन उदाहरणों के साथ एनएफ का टुकड़ा है जो केवल तीन प्रकारों का उपयोग करके स्तरीकृत किया जा सकता है।यह सिद्धांत गणित के लिए एक बहुत ही अजीब माध्यम है (चूंकि इस अजीबता को कम करने के लिए प्रयास किए गए हैं), मोटे तौर पर क्योंकि एक क्रमबद्ध जोड़ी के लिए कोई स्पष्ट परिभाषा नहीं है।इस अजीबता के बावजूद, <math>NF_3</math> बहुत रोचक है क्योंकि टीएसटी के प्रत्येक अनंत मॉडल को तीन प्रकारों तक सीमित कर दिया गया है जो एएमबी को संतुष्ट करता है।इसलिए ऐसे प्रत्येक मॉडल के लिए, का एक मॉडल है <math>NF_3</math> एक ही सिद्धांत के साथ।यह चार प्रकारों के लिए नहीं है: <math>NF_4</math> एनएफ के रूप में एक ही सिद्धांत है, और हमें पता नहीं है कि चार प्रकारों के साथ टीएसटी का एक मॉडल कैसे प्राप्त किया जाए जिसमें एएमबी धारण करता है।


1983 में, मार्सेल क्रेबी ने एनएफआई नामक एक प्रणाली को लगातार सिद्ध किया, जिनके एक्सिओम्स अप्रतिबंधित विस्तार हैं और कॉम्प्रिहेंशन के उन उदाहरणों में जिसमें कोई भी चर नहीं दिया गया है, जो समुच्चय की तुलना में अधिक प्रकार से अधिक नहीं है।यह एक प्रभावशाली प्रतिबंध है, चूंकि एनएफआई एक विधेय सिद्धांत नहीं है: यह प्राकृतिक संख्याओं के समुच्चय को परिभाषित करने के लिए पर्याप्त प्रभाव को स्वीकार करता है (सभी आगमनात्मक समुच्चयो के चौराहे के रूप में परिभाषित किया गया है; ध्यान दें कि आगमनात्मक समुच्चय उसी प्रकार के होते हैं जैसे समुच्चय समुच्चय के रूप में होता है।प्राकृतिक संख्याओं को परिभाषित किया गया है)।Crabbé ने NFI के एक उप सिद्धांत पर भी चर्चा की, जिसमें केवल पैरामीटर (मुक्त चर और बाध्य चर) को कॉम्प्रिहेंशन के एक उदाहरण द्वारा उपस्थित समुच्चय के प्रकार को निर्धारित करने की अनुमति दी जाती है।उन्होंने परिणाम विधेय एनएफ (एनएफपी) कहा;यह निश्चित रूप से, संदेह है कि क्या स्व-सदस्यीय ब्रह्मांड के साथ कोई भी सिद्धांत वास्तव में भविष्य कहनेवाला है।क्या होम्स है {{date?}} दिखाया गया है कि एनएफपी में समानता के एक्सिओम्स ता के बिना प्रिंसिपिया मैथेमेटिका के प्रकारों के विधेय सिद्धांत के रूप में एक ही स्थिरता की शक्ति है।
1983 में, मार्सेल क्रेबी ने एनएफआई नामक एक प्रणाली को लगातार सिद्ध किया, जिनके एक्सिओम्स अप्रतिबंधित विस्तार हैं और कॉम्प्रिहेंशन के उन उदाहरणों में जिसमें कोई भी चर नहीं दिया गया है, जो समुच्चय की तुलना में अधिक प्रकार से अधिक नहीं है।यह एक प्रभावशाली प्रतिबंध है, चूंकि एनएफआई एक विधेय सिद्धांत नहीं है: यह प्राकृतिक संख्याओं के समुच्चय को परिभाषित करने के लिए पर्याप्त प्रभाव को स्वीकार करता है (सभी आगमनात्मक समुच्चयो के चौराहे के रूप में परिभाषित किया गया है; ध्यान दें कि आगमनात्मक समुच्चय उसी प्रकार के होते हैं जैसे समुच्चय समुच्चय के रूप में होता है।प्राकृतिक संख्याओं को परिभाषित किया गया है)।Crabbé ने NFI के एक उप सिद्धांत पर भी चर्चा की, जिसमें केवल पैरामीटर (मुक्त चर और बाध्य चर) को कॉम्प्रिहेंशन के एक उदाहरण द्वारा उपस्थित समुच्चय के प्रकार को निर्धारित करने की अनुमति दी जाती है।उन्होंने परिणाम विधेय एनएफ (एनएफपी) कहा;यह निश्चित रूप से, संदेह है कि क्या स्व-सदस्यीय ब्रह्मांड के साथ कोई भी सिद्धांत वास्तव में भविष्य कहनेवाला है।क्या होम्स है {{date?}} दिखाया गया है कि एनएफपी में समानता के एक्सिओम्स ता के बिना प्रिंसिपिया मैथेमेटिका के प्रकारों के विधेय सिद्धांत के रूप में एक ही स्थिरता की शक्ति है।


2015 के बाद से, ZF के सापेक्ष एनएफ की स्थिरता के रान्डेल होम्स द्वारा कई उम्मीदवार प्रमाण Arxiv और तर्कशास्त्री के होम पेज पर उपलब्ध हैं।होम्स टीएसटी के एक 'अजीब' संस्करण की समानता को प्रदर्शित करता है, अर्थात् टीटीटी<sub>λ</sub> - 'λ- प्रकारों के साथ पेचीदा प्रकार का सिद्धांत' - एनएफ के साथ।होम्स नेक्स्ट से पता चलता है कि टीटीटी<sub>λ</sub> ZFA के सापेक्ष सुसंगत है, अर्थात्, परमाणुओं के साथ ZF लेकिन पसंद के बिना।होम्स ZFA+C, अर्थात्, ZF के साथ परमाणुओं और पसंद के साथ, ZFA के एक वर्ग मॉडल में निर्माण करके इसे प्रदर्शित करता है, जिसमें 'कार्डिनल्स के पेचीदा जाले' सम्मलित हैं।उम्मीदवार के प्रमाण सभी लंबे हैं, लेकिन अभी तक एनएफ समुदाय द्वारा किसी भी अपूरणीय दोषों की पहचान नहीं की गई है।
2015 के बाद से, ZF के सापेक्ष एनएफ की स्थिरता के रान्डेल होम्स द्वारा कई उम्मीदवार प्रमाण Arxiv और तर्कशास्त्री के होम पेज पर उपलब्ध हैं।होम्स टीएसटी के एक 'अजीब' संस्करण की समानता को प्रदर्शित करता है, अर्थात् टीटीटी<sub>λ</sub> - 'λ- प्रकारों के साथ पेचीदा प्रकार का सिद्धांत' - एनएफ के साथ।होम्स नेक्स्ट से पता चलता है कि टीटीटी<sub>λ</sub> ZFA के सापेक्ष सुसंगत है, अर्थात्, परमाणुओं के साथ ZF लेकिन पसंद के बिना।होम्स ZFA+C, अर्थात्, ZF के साथ परमाणुओं और पसंद के साथ, ZFA के एक वर्ग मॉडल में निर्माण करके इसे प्रदर्शित करता है, जिसमें 'कार्डिनल्स के पेचीदा जाले' सम्मलित हैं।उम्मीदवार के प्रमाण सभी लंबे हैं, लेकिन अभी तक एनएफ समुदाय द्वारा किसी भी अपूरणीय दोषों की पहचान नहीं की गई है।


== कैसे एनएफ (u) समुच्चय -सिद्धांतवादी [[विरोधाभास]]ों से बचता है ==
== कैसे एनएफ (u) समुच्चय -सिद्धांतवादी [[विरोधाभास]]ों से बचता है ==
एनएफ समुच्चय सिद्धांत के तीन प्रसिद्ध विरोधाभासों से स्पष्ट है।वह एनएफयू, एक स्थिरता (मीनो अंकगणित के सापेक्ष) सिद्धांत, भी विरोधाभासों से बचता है इस तथ्य में किसी का विश्वास बढ़ा सकता है।
एनएफ समुच्चय सिद्धांत के तीन प्रसिद्ध विरोधाभासों से स्पष्ट है।वह एनएफयू, एक स्थिरता (मीनो अंकगणित के सापेक्ष) सिद्धांत, भी विरोधाभासों से बचता है इस तथ्य में किसी का विश्वास बढ़ा सकता है।


रसेल का विरोधाभास: <math>x \not\in x</math> एक स्तरीकृत सूत्र नहीं है, इसलिए का अस्तित्व <math>\{x \mid x \not\in x\}</math> कॉम्प्रिहेंशन के किसी भी उदाहरण द्वारा मुखर नहीं है।क्वीन ने कहा कि उन्होंने इस विरोधाभास के साथ एनएफ का निर्माण किया।
रसेल का विरोधाभास: <math>x \not\in x</math> एक स्तरीकृत सूत्र नहीं है, इसलिए का अस्तित्व <math>\{x \mid x \not\in x\}</math> कॉम्प्रिहेंशन के किसी भी उदाहरण द्वारा मुखर नहीं है।क्वीन ने कहा कि उन्होंने इस विरोधाभास के साथ एनएफ का निर्माण किया।


सबसे बड़े कार्डिनल नंबर के कैंटर के विरोधाभास में कैंटर के प्रमेय के आवेदन को सार्वभौमिक समुच्चय का शोषण करता है।कैंटर का प्रमेय कहता है (जेडएफसी को देखते हुए) कि [[सत्ता स्थापित]] <math>P(A)</math> किसी भी समुच्चय की <math>A</math> से बड़ा है <math>A</math> (से कोई [[इंजेक्टिव फ़ंक्शन|इंजेक्टिव]] फलन (एक-से-एक मानचित्र) नहीं हो सकता है <math>P(A)</math> में <math>A</math>)।अब निश्चित रूप से एक इंजेक्शन कार्य है <math>P(V)</math> में <math>V</math>, यदि <math>V</math> सार्वभौमिक समुच्चय है!संकल्प के लिए आवश्यक है कि कोई यह देखता है <math>|A| < |P(A)|</math> प्रकार के सिद्धांत में कोई अर्थ नहीं है: का प्रकार <math>P(A)</math> के प्रकार से अधिक है <math>A</math>।सही ढंग से टाइप किया गया संस्करण (जो अनिवार्य रूप से समान कारणों के लिए प्रकारों के सिद्धांत में एक प्रमेय है कि कैंटर के प्रमेय का मूल रूप ज़रमेलो -फ्रेनकेल समुच्चय सिद्धांत में काम करता है) <math>|P_1(A)| < |P(A)|</math>, कहाँ <math>P_1(A)</math> एक-तत्व सबसमुच्चय का समुच्चय है <math>A</math>।ब्याज के इस प्रमेय का विशिष्ट उदाहरण है <math>|P_1(V)| < |P(V)|</math>: समुच्चय की तुलना में कम एक-तत्व समुच्चय हैं (और सामान्य वस्तुओं की तुलना में बहुत कम एक-तत्व समुच्चय , यदि हम एनएफयू में हैं)।स्पष्ट द्विभाजन <math>x \mapsto \{x\}</math> ब्रह्मांड से एक-तत्व समुच्चय तक एक समुच्चय नहीं है;यह एक समुच्चय नहीं है क्योंकि इसकी परिभाषा अप्रतिबंधित है।ध्यान दें कि एनएफयू के सभी ज्ञात मॉडल में यह स्थिति ा है <math>|P_1(V)| < |P(V)| << |V|</math>;च्वाइस किसी को न केवल यह सिद्ध करने की अनुमति देता है कि urelements हैं, बल्कि इसके बीच कई कार्डिनल हैं <math>|P(V)|</math> और <math>|V|</math>।
सबसे बड़े कार्डिनल नंबर के कैंटर के विरोधाभास में कैंटर के प्रमेय के आवेदन को सार्वभौमिक समुच्चय का शोषण करता है।कैंटर का प्रमेय कहता है (जेडएफसी को देखते हुए) कि [[सत्ता स्थापित]] <math>P(A)</math> किसी भी समुच्चय की <math>A</math> से बड़ा है <math>A</math> (से कोई [[इंजेक्टिव फ़ंक्शन|इंजेक्टिव]] फलन (एक-से-एक मानचित्र) नहीं हो सकता है <math>P(A)</math> में <math>A</math>)।अब निश्चित रूप से एक इंजेक्शन कार्य है <math>P(V)</math> में <math>V</math>, यदि <math>V</math> सार्वभौमिक समुच्चय है!संकल्प के लिए आवश्यक है कि कोई यह देखता है <math>|A| < |P(A)|</math> प्रकार के सिद्धांत में कोई अर्थ नहीं है: का प्रकार <math>P(A)</math> के प्रकार से अधिक है <math>A</math>।सही ढंग से टाइप किया गया संस्करण (जो अनिवार्य रूप से समान कारणों के लिए प्रकारों के सिद्धांत में एक प्रमेय है कि कैंटर के प्रमेय का मूल रूप ज़रमेलो -फ्रेनकेल समुच्चय सिद्धांत में काम करता है) <math>|P_1(A)| < |P(A)|</math>, कहाँ <math>P_1(A)</math> एक-तत्व सबसमुच्चय का समुच्चय है <math>A</math>।ब्याज के इस प्रमेय का विशिष्ट उदाहरण है <math>|P_1(V)| < |P(V)|</math>: समुच्चय की तुलना में कम एक-तत्व समुच्चय हैं (और सामान्य वस्तुओं की तुलना में बहुत कम एक-तत्व समुच्चय , यदि हम एनएफयू में हैं)।स्पष्ट द्विभाजन <math>x \mapsto \{x\}</math> ब्रह्मांड से एक-तत्व समुच्चय तक एक समुच्चय नहीं है;यह एक समुच्चय नहीं है क्योंकि इसकी परिभाषा अप्रतिबंधित है।ध्यान दें कि एनएफयू के सभी ज्ञात मॉडल में यह स्थिति ा है <math>|P_1(V)| < |P(V)| << |V|</math>;च्वाइस किसी को न केवल यह सिद्ध करने की अनुमति देता है कि urelements हैं, बल्कि इसके बीच कई कार्डिनल हैं <math>|P(V)|</math> और <math>|V|</math>।


अब कुछ उपयोगी धारणाएं प्रस्तुत कर सकते हैं।एक समुच्चय <math>A</math> जो सहज रूप से अपील को संतुष्ट करता है <math>|A| = |P_1(A)|</math> कहा जाता है कि कैंटोरियन: एक कैंटोरियन समुच्चय कैंटर के प्रमेय के सामान्य रूप को संतुष्ट करता है।एक समुच्चय <math>A</math> जो आगे की स्थिति को संतुष्ट करता है <math>(x \mapsto \{x\})\lceil A</math>, [[सिंगलटन (गणित)]] मानचित्र का [[प्रतिबंध (गणित)]], एक समुच्चय न केवल कैंटोरियन समुच्चय है, बल्कि 'दृढ़ता से कैंटोरियन' है।
अब कुछ उपयोगी धारणाएं प्रस्तुत कर सकते हैं।एक समुच्चय <math>A</math> जो सहज रूप से अपील को संतुष्ट करता है <math>|A| = |P_1(A)|</math> कहा जाता है कि कैंटोरियन: एक कैंटोरियन समुच्चय कैंटर के प्रमेय के सामान्य रूप को संतुष्ट करता है।एक समुच्चय <math>A</math> जो आगे की स्थिति को संतुष्ट करता है <math>(x \mapsto \{x\})\lceil A</math>, [[सिंगलटन (गणित)]] मानचित्र का [[प्रतिबंध (गणित)]], एक समुच्चय न केवल कैंटोरियन समुच्चय है, बल्कि 'दृढ़ता से कैंटोरियन' है।


सबसे बड़ी क्रमिक संख्या का ब्यूरली-फ़ॉर्टी विरोधाभास निम्नानुसार है।परिभाषित करें (भोले समुच्चय सिद्धांत के बाद) ऑर्डिनल को [[समाकृतिकता]] के अनुसार कल्याण के समतुल्य वर्गों के रूप में।ऑर्डिनल्स पर एक स्पष्ट प्राकृतिक सुव्यवस्थित है;चूंकि यह एक अच्छी तरह से क्रमबद्ध है <math>\Omega</math>।यह सिद्ध करने के लिए सीधा है ([[ट्रांसफ़िनाइट इंडक्शन]] द्वारा) कि किसी दिए गए ऑर्डिनल से कम ऑर्डिनल पर प्राकृतिक क्रमबद्ध का क्रमबद्ध प्रकार <math>\alpha</math> है <math>\alpha</math> अपने आप।लेकिन इसका अर्थ है कि <math>\Omega</math> क्रमबद्ध का क्रमबद्ध प्रकार है <math> < \Omega </math> और इसलिए सभी ऑर्डिनल्स के क्रमबद्ध प्रकार की तुलना में कड़ाई से कम है - लेकिन बाद वाला, परिभाषा के अनुसार है, <math>\Omega</math> अपने आप!
सबसे बड़ी क्रमिक संख्या का ब्यूरली-फ़ॉर्टी विरोधाभास निम्नानुसार है।परिभाषित करें (भोले समुच्चय सिद्धांत के बाद) ऑर्डिनल को [[समाकृतिकता]] के अनुसार कल्याण के समतुल्य वर्गों के रूप में।ऑर्डिनल्स पर एक स्पष्ट प्राकृतिक सुव्यवस्थित है;चूंकि यह एक अच्छी तरह से क्रमबद्ध है <math>\Omega</math>।यह सिद्ध करने के लिए सीधा है ([[ट्रांसफ़िनाइट इंडक्शन]] द्वारा) कि किसी दिए गए ऑर्डिनल से कम ऑर्डिनल पर प्राकृतिक क्रमबद्ध का क्रमबद्ध प्रकार <math>\alpha</math> है <math>\alpha</math> अपने आप।लेकिन इसका अर्थ है कि <math>\Omega</math> क्रमबद्ध का क्रमबद्ध प्रकार है <math> < \Omega </math> और इसलिए सभी ऑर्डिनल्स के क्रमबद्ध प्रकार की तुलना में कड़ाई से कम है - लेकिन बाद वाला, परिभाषा के अनुसार है, <math>\Omega</math> अपने आप!


एनएफ (यू) में विरोधाभास का समाधान इस अवलोकन से प्रारंभ होता है कि क्रमबद्ध के क्रमबद्ध प्रकार से कम से कम <math>\alpha</math> की तुलना में एक उच्च प्रकार का है <math>\alpha</math>।इसलिए एक प्रकार का स्तर क्रमबद्ध की गई जोड़ी इसके तर्कों के प्रकार से दो प्रकार अधिक है और सामान्य कुरातोव्स्की ने जोड़ी को चार प्रकारों अधिक से अधिक क्रमबद्ध किया है।किसी भी क्रमबद्ध प्रकार के लिए <math>\alpha</math>, हम एक क्रमबद्ध प्रकार को परिभाषित कर सकते हैं <math>\alpha</math> एक प्रकार अधिक: यदि <math>W \in \alpha</math>, तब <math>T(\alpha)</math> क्रमबद्ध का क्रमबद्ध प्रकार है <math>W^{\iota} = \{(\{x\},\{y\}) \mid xWy\}</math>।टी ऑपरेशन की तुच्छता केवल एक प्रतीत होती है;यह दिखाना आसान है कि टी ऑर्डिनल्स पर एक कड़ाई से [[मोनोटोनिक कार्य]] (क्रमबद्ध -प्रेशरिंग) ऑपरेशन है।
एनएफ (यू) में विरोधाभास का समाधान इस अवलोकन से प्रारंभ होता है कि क्रमबद्ध के क्रमबद्ध प्रकार से कम से कम <math>\alpha</math> की तुलना में एक उच्च प्रकार का है <math>\alpha</math>।इसलिए एक प्रकार का स्तर क्रमबद्ध की गई जोड़ी इसके तर्कों के प्रकार से दो प्रकार अधिक है और सामान्य कुरातोव्स्की ने जोड़ी को चार प्रकारों अधिक से अधिक क्रमबद्ध किया है।किसी भी क्रमबद्ध प्रकार के लिए <math>\alpha</math>, हम एक क्रमबद्ध प्रकार को परिभाषित कर सकते हैं <math>\alpha</math> एक प्रकार अधिक: यदि <math>W \in \alpha</math>, तब <math>T(\alpha)</math> क्रमबद्ध का क्रमबद्ध प्रकार है <math>W^{\iota} = \{(\{x\},\{y\}) \mid xWy\}</math>।टी ऑपरेशन की तुच्छता केवल एक प्रतीत होती है;यह दिखाना आसान है कि टी ऑर्डिनल्स पर एक कड़ाई से [[मोनोटोनिक कार्य]] (क्रमबद्ध -प्रेशरिंग) ऑपरेशन है।


अब क्रमबद्ध प्रकारों पर लेम्मा को एक स्तरीकृत तरीके से बहाल किया जा सकता है: ऑर्डिनल्स पर प्राकृतिक क्रमबद्ध का क्रमबद्ध प्रकार <math> < \alpha</math> है <math>T^2(\alpha)</math> या <math>T^4(\alpha)</math>
अब क्रमबद्ध प्रकारों पर लेम्मा को एक स्तरीकृत तरीके से बहाल किया जा सकता है: ऑर्डिनल्स पर प्राकृतिक क्रमबद्ध का क्रमबद्ध प्रकार <math> < \alpha</math> है <math>T^2(\alpha)</math> या <math>T^4(\alpha)</math>
इस आधार पर किस जोड़ी का उपयोग किया जाता है (हम इसके बाद के स्तर की जोड़ी मानते हैं)।इससे कोई यह अनुमान लगा सकता है कि क्रमबद्ध टाइप ऑर्डिनल्स पर <math> <\Omega </math> है <math>T^2(\Omega)</math>, और इस तरह <math>T^2(\Omega)<\Omega</math>।इसलिए टी ऑपरेशन एक फलन नहीं है;ऑर्डिनल्स से ऑर्डिनल्स के लिए एक कड़ाई से मोनोटोन समुच्चय मैप नहीं हो सकता है जो एक ऑर्डिनल नीचे की ओर भेजता है!चूंकि टी मोनोटोन है, इसलिए हमारे पास है <math>\Omega > T^2(\Omega) > T^4(\Omega)\ldots</math>, ऑर्डिनल्स में एक अवरोही अनुक्रम जो एक समुच्चय नहीं हो सकता है।
इस आधार पर किस जोड़ी का उपयोग किया जाता है (हम इसके बाद के स्तर की जोड़ी मानते हैं)।इससे कोई यह अनुमान लगा सकता है कि क्रमबद्ध टाइप ऑर्डिनल्स पर <math> <\Omega </math> है <math>T^2(\Omega)</math>, और इस तरह <math>T^2(\Omega)<\Omega</math>।इसलिए टी ऑपरेशन एक फलन नहीं है;ऑर्डिनल्स से ऑर्डिनल्स के लिए एक कड़ाई से मोनोटोन समुच्चय मैप नहीं हो सकता है जो एक ऑर्डिनल नीचे की ओर भेजता है!चूंकि टी मोनोटोन है, इसलिए हमारे पास है <math>\Omega > T^2(\Omega) > T^4(\Omega)\ldots</math>, ऑर्डिनल्स में एक अवरोही अनुक्रम जो एक समुच्चय नहीं हो सकता है।


कोई यह प्रमाणित कर सकता है कि इस परिणाम से पता चलता है कि एनएफ (यू) का कोई भी मॉडल मानक नहीं है, क्योंकि एनएफयू के किसी भी मॉडल में ऑर्डिनल्स बाहरी रूप से अच्छी तरह से क्रमबद्ध नहीं हैं।किसी को इस पर एक स्थिति लेने की आवश्यकता नहीं है, लेकिन यह ध्यान दे सकता है कि यह एनएफयू का एक प्रमेय भी है कि एनएफयू के किसी भी समुच्चय मॉडल में गैर-अच्छी तरह से क्रमबद्ध किए गए ऑर्डिनल हैं;एनएफयू यह निष्कर्ष नहीं निकालता है कि ब्रह्मांड वी एक समुच्चय होने के बावजूद एनएफयू का एक मॉडल है, क्योंकि सदस्यता संबंध एक निर्धारित संबंध नहीं है।
कोई यह प्रमाणित कर सकता है कि इस परिणाम से पता चलता है कि एनएफ (यू) का कोई भी मॉडल मानक नहीं है, क्योंकि एनएफयू के किसी भी मॉडल में ऑर्डिनल्स बाहरी रूप से अच्छी तरह से क्रमबद्ध नहीं हैं।किसी को इस पर एक स्थिति लेने की आवश्यकता नहीं है, लेकिन यह ध्यान दे सकता है कि यह एनएफयू का एक प्रमेय भी है कि एनएफयू के किसी भी समुच्चय मॉडल में गैर-अच्छी तरह से क्रमबद्ध किए गए ऑर्डिनल हैं;एनएफयू यह निष्कर्ष नहीं निकालता है कि ब्रह्मांड वी एक समुच्चय होने के बावजूद एनएफयू का एक मॉडल है, क्योंकि सदस्यता संबंध एक निर्धारित संबंध नहीं है।


एनएफयू में गणित के एक और विकास के लिए, जेडएफसी में उसी के विकास की तुलना के साथ, SET सिद्धांत में गणित के कार्यान्वयन को देखें।
एनएफयू में गणित के एक और विकास के लिए, जेडएफसी में उसी के विकास की तुलना के साथ, SET सिद्धांत में गणित के कार्यान्वयन को देखें।


== सिस्टम एमएल (गणितीय तर्क) ==
== प्रणाली एमएल के (गणितीय तर्क) ==


एमएल एनएफ का एक विस्तार है जिसमें उचित कक्षाएं के साथ -साथ समुच्चय भी सम्मलित हैं।
एमएल एनएफ का एक विस्तार है जिसमें उचित कक्षाएं के साथ -साथ समुच्चय भी सम्मलित हैं।
विलार्ड वैन ओरमन क्वीन के गणितीय तर्क के 1940 के पहले संस्करण के समुच्चय सिद्धांत ने एनएफ से वॉन न्यूमैन-बर्नेज़-गॉडल समुच्चय सिद्धांत के उचित वर्गों से शादी की और उचित वर्गों के लिए अप्रतिबंधित कॉम्प्रिहेंशन का एक एक्सिओम्स स्कीमा सम्मलित किया।चूँकि {{harvs|txt|first=J. Barkley|last= Rosser|authorlink=J. Barkley Rosser|year=1942}} यह सिद्ध हुआ कि गणितीय तर्क में प्रस्तुत प्रणाली Burali-Forti विरोधाभास के अधीन थी।यह परिणाम एनएफ पर लागू नहीं होता है। {{harvs|txt|authorlink=Hao Wang (academic)|first=Hao |last=Wang|year=1950}} इस समस्या से बचने के लिए एमएल के लिए क्वीन के एक्सिओम्स में संशोधन करने का विधि दिखाया, और क्वीन ने 1951 में गणितीय तर्क के दूसरे और अंतिम संस्करण में परिणामी एक्सिओम्स ता को सम्मलित किया।
विलार्ड वैन ओरमन क्वीन के गणितीय तर्क के 1940 के पहले संस्करण के समुच्चय सिद्धांत ने एनएफ से वॉन न्यूमैन-बर्नेज़-गॉडल समुच्चय सिद्धांत के उचित वर्गों से शादी की और उचित वर्गों के लिए अप्रतिबंधित कॉम्प्रिहेंशन का एक एक्सिओम्स स्कीमा सम्मलित किया।चूँकि {{harvs|txt|first=J. Barkley|last= Rosser|authorlink=J. Barkley Rosser|year=1942}} यह सिद्ध हुआ कि गणितीय तर्क में प्रस्तुत प्रणाली Burali-Forti विरोधाभास के अधीन थी।यह परिणाम एनएफ पर लागू नहीं होता है। {{harvs|txt|authorlink=Hao Wang (academic)|first=Hao |last=Wang|year=1950}} इस समस्या से बचने के लिए एमएल के लिए क्वीन के एक्सिओम्स में संशोधन करने का विधि दिखाया, और क्वीन ने 1951 में गणितीय तर्क के दूसरे और अंतिम संस्करण में परिणामी एक्सिओम्स ता को सम्मलित किया।


वांग ने सिद्ध किया कि यदि एनएफ संगत है तो संशोधित एमएल है, और यह भी दिखाया कि संशोधित एमएल की स्थिरता एनएफ की स्थिरता का अर्थ है।अर्थात्, एनएफ और संशोधित एमएल समान हैं।
वांग ने सिद्ध किया कि यदि एनएफ संगत है तो संशोधित एमएल है, और यह भी दिखाया कि संशोधित एमएल की स्थिरता एनएफ की स्थिरता का अर्थ है।अर्थात्, एनएफ और संशोधित एमएल समान हैं।


== एनएफयू के मॉडल ==
== एनएफयू के मॉडल ==
जहां Zermelo-Fraenkel समुच्चय सिद्धांत के [[मेटामेथेमाटिक्स]] के लिए प्रारंभिक बिंदु | Zermelo-Fraenkel समुच्चय सिद्धांत [[संचयी पदानुक्रम]] का आसान-से-रूपांतरण अंतर्ज्ञान है, एनएफ और एनएफयू की गैर-अच्छी तरह से-संस्थापक इस अंतर्ज्ञान को सीधे लागू नहीं करता है।चूंकि , पहले के चरणों में विकसित समुच्चयो से एक चरण में समुच्चय बनाने के अंतर्ज्ञान को सभी संभावित समुच्चयो से मिलकर एक चरण में समुच्चय बनाने की अनुमति देने के लिए संवर्धित किया जा सकता है, लेकिन पहले के चरणों में गठित समुच्चय , समुच्चय के एक अनुरूप पुनरावृत्ति गर्भाधान देते हैं।<ref>Forster (2008).</ref>
जहां Zermelo-Fraenkel समुच्चय सिद्धांत के [[मेटामेथेमाटिक्स]] के लिए प्रारंभिक बिंदु | Zermelo-Fraenkel समुच्चय सिद्धांत [[संचयी पदानुक्रम]] का आसान-से-रूपांतरण अंतर्ज्ञान है, एनएफ और एनएफयू की गैर-अच्छी तरह से-संस्थापक इस अंतर्ज्ञान को सीधे लागू नहीं करता है।चूंकि , पहले के चरणों में विकसित समुच्चयो से एक चरण में समुच्चय बनाने के अंतर्ज्ञान को सभी संभावित समुच्चयो से मिलकर एक चरण में समुच्चय बनाने की अनुमति देने के लिए संवर्धित किया जा सकता है, लेकिन पहले के चरणों में गठित समुच्चय , समुच्चय के एक अनुरूप पुनरावृत्ति गर्भाधान देते हैं।<ref>Forster (2008).</ref>
थोक में एनएफयू के मॉडल के उत्पादन के लिए एक बहुत सरल विधि है।[[मॉडल सिद्धांत]] की प्रसिद्ध प्रोद्योगिकीय ों का उपयोग करते हुए, कोई व्यक्ति [[ज़रमेलो सेट सिद्धांत|ज़रमेलो समुच्चय सिद्धांत]] के एक गैर-मानक मॉडल का निर्माण कर सकता है (मूल प्रोद्योगिकीय के लिए पूर्ण जेडएफसी के रूप में लगभग प्रबल कुछ भी नहीं है) जिस पर एक बाहरी ऑटोमोर्फिज्म j है (मॉडल का एक समुच्चय नहीं)जो एक रैंक (समुच्चय सिद्धांत) को स्थानांतरित करता है <math>V_{\alpha}</math> समुच्चय के संचयी [[पदानुक्रम]] की।हम सामान्यता के नुकसान के बिना मान सकते हैं <math>j(\alpha)<\alpha</math>।हम [[स्वचालितता]] के बारे में बात करते हैं कि वे क्रमिक के अतिरिक्त रैंक को आगे बढ़ाते हैं क्योंकि हम यह नहीं मानना चाहते हैं कि मॉडल में प्रत्येक क्रमिक एक रैंक का सूचकांक है।
थोक में एनएफयू के मॉडल के उत्पादन के लिए एक बहुत सरल विधि है।[[मॉडल सिद्धांत]] की प्रसिद्ध प्रोद्योगिकीय ों का उपयोग करते हुए, कोई व्यक्ति [[ज़रमेलो सेट सिद्धांत|ज़रमेलो समुच्चय सिद्धांत]] के एक गैर-मानक मॉडल का निर्माण कर सकता है (मूल प्रोद्योगिकीय के लिए पूर्ण जेडएफसी के रूप में लगभग प्रबल कुछ भी नहीं है) जिस पर एक बाहरी ऑटोमोर्फिज्म j है (मॉडल का एक समुच्चय नहीं)जो एक रैंक (समुच्चय सिद्धांत) को स्थानांतरित करता है <math>V_{\alpha}</math> समुच्चय के संचयी [[पदानुक्रम]] की।हम सामान्यता के नुकसान के बिना मान सकते हैं <math>j(\alpha)<\alpha</math>।हम [[स्वचालितता]] के बारे में बात करते हैं कि वे क्रमिक के अतिरिक्त रैंक को आगे बढ़ाते हैं क्योंकि हम यह नहीं मानना चाहते हैं कि मॉडल में प्रत्येक क्रमिक एक रैंक का सूचकांक है।


एनएफयू के मॉडल का डोमेन नॉन -स्टैंडर्ड रैंक होगा <math>V_{\alpha}</math>।एनएफयू के मॉडल की सदस्यता संबंध होगा
एनएफयू के मॉडल का डोमेन नॉन -स्टैंडर्ड रैंक होगा <math>V_{\alpha}</math>।एनएफयू के मॉडल की सदस्यता संबंध होगा
* <math>x \in_{NFU} y \equiv_{def} j(x) \in y \wedge y \in V_{j(\alpha)+1}.</math>
* <math>x \in_{NFU} y \equiv_{def} j(x) \in y \wedge y \in V_{j(\alpha)+1}.</math>
अब यह सिद्ध हो सकता है कि यह वास्तव में एनएफयू का एक मॉडल है।होने देना <math>\phi</math> एनएफयू की भाषा में एक स्तरीकृत सूत्र बनें।सूत्र में सभी चर के प्रकारों का एक असाइनमेंट चुनें जो इस तथ्य को गवाह है कि यह स्तरीकृत है।इस स्तरीकरण द्वारा चर को सौंपे गए सभी प्रकार की तुलना में एक प्राकृतिक संख्या n चुनें।
अब यह सिद्ध हो सकता है कि यह वास्तव में एनएफयू का एक मॉडल है।होने देना <math>\phi</math> एनएफयू की भाषा में एक स्तरीकृत सूत्र बनें।सूत्र में सभी चर के प्रकारों का एक असाइनमेंट चुनें जो इस तथ्य को गवाह है कि यह स्तरीकृत है।इस स्तरीकरण द्वारा चर को सौंपे गए सभी प्रकार की तुलना में एक प्राकृतिक संख्या n चुनें।


सूत्र का विस्तार करें <math>\phi</math> एक सूत्र में <math>\phi_1</math> एनएफयू के मॉडल में सदस्यता की परिभाषा का उपयोग करके ऑटोमोर्फिज्म जे के साथ ज़रमेलो समुच्चय सिद्धांत के गैर -मानक मॉडल की भाषा में।एक समीकरण या सदस्यता कथन के दोनों किनारों पर J की किसी भी शक्ति का अनुप्रयोग इसके [[सत्य मूल्य]] को संरक्षित करता है क्योंकि J एक स्वचालितता है।प्रत्येक [[परमाणु सूत्र]] में ऐसा आवेदन करें <math>\phi_1</math> इस तरह से कि प्रत्येक चर x असाइन किया गया प्रकार मैं बिल्कुल के साथ होता है <math>N-i</math> जे के आवेदन।यह एनएफयू सदस्यता बयानों से प्राप्त परमाणु सदस्यता बयानों के रूप के लिए संभव है, और सूत्र को स्तरीकृत किया जा रहा है।प्रत्येक परिमाणित वाक्य <math>(\forall x \in V_{\alpha}.\psi(j^{N-i}(x)))</math> प्रपत्र में परिवर्तित किया जा सकता है <math>(\forall x \in j^{N-i}(V_{\alpha}).\psi(x))</math> (और इसी तरह अस्तित्वगत क्वांटिफायर के लिए)।इस परिवर्तन को प्रत्येक जगह ले जाएं और एक सूत्र प्राप्त करें <math>\phi_2</math> जिसमें j को एक बाध्य चर पर कभी भी लागू नहीं किया जाता है।
सूत्र का विस्तार करें <math>\phi</math> एक सूत्र में <math>\phi_1</math> एनएफयू के मॉडल में सदस्यता की परिभाषा का उपयोग करके ऑटोमोर्फिज्म जे के साथ ज़रमेलो समुच्चय सिद्धांत के गैर -मानक मॉडल की भाषा में।एक समीकरण या सदस्यता कथन के दोनों किनारों पर J की किसी भी शक्ति का अनुप्रयोग इसके [[सत्य मूल्य]] को संरक्षित करता है क्योंकि J एक स्वचालितता है।प्रत्येक [[परमाणु सूत्र]] में ऐसा आवेदन करें <math>\phi_1</math> इस तरह से कि प्रत्येक चर x असाइन किया गया प्रकार मैं बिल्कुल के साथ होता है <math>N-i</math> जे के आवेदन।यह एनएफयू सदस्यता बयानों से प्राप्त परमाणु सदस्यता बयानों के रूप के लिए संभव है, और सूत्र को स्तरीकृत किया जा रहा है।प्रत्येक परिमाणित वाक्य <math>(\forall x \in V_{\alpha}.\psi(j^{N-i}(x)))</math> प्रपत्र में परिवर्तित किया जा सकता है <math>(\forall x \in j^{N-i}(V_{\alpha}).\psi(x))</math> (और इसी तरह अस्तित्वगत क्वांटिफायर के लिए)।इस परिवर्तन को प्रत्येक जगह ले जाएं और एक सूत्र प्राप्त करें <math>\phi_2</math> जिसमें j को एक बाध्य चर पर कभी भी लागू नहीं किया जाता है।


किसी भी मुक्त चर y को चुनें <math>\phi</math> निर्दिष्ट प्रकार i।आवेदन करना <math>j^{i-N}</math> एक सूत्र प्राप्त करने के लिए पूरे सूत्र के लिए समान रूप से <math>\phi_3</math> जिसमें y j के किसी भी आवेदन के बिना दिखाई देता है।अब <math>\{y \in V_{\alpha} \mid \phi_3\}</math> उपस्थित है (क्योंकि j केवल मुक्त चर और स्थिरांक के लिए लागू होता है), संबंधित है <math>V_{\alpha+1}</math>, और वास्तव में वे y सम्मलित हैं जो मूल सूत्र को संतुष्ट करते हैं
किसी भी मुक्त चर y को चुनें <math>\phi</math> निर्दिष्ट प्रकार i।आवेदन करना <math>j^{i-N}</math> एक सूत्र प्राप्त करने के लिए पूरे सूत्र के लिए समान रूप से <math>\phi_3</math> जिसमें y j के किसी भी आवेदन के बिना दिखाई देता है।अब <math>\{y \in V_{\alpha} \mid \phi_3\}</math> उपस्थित है (क्योंकि j केवल मुक्त चर और स्थिरांक के लिए लागू होता है), संबंधित है <math>V_{\alpha+1}</math>, और वास्तव में वे y सम्मलित हैं जो मूल सूत्र को संतुष्ट करते हैं
<math>\phi</math> एनएफयू के मॉडल में। <math>j(\{y \in V_{\alpha} \mid \phi_3\})</math> एनएफयू के मॉडल में यह एक्सटेंशन है (एनएफयू के मॉडल में सदस्यता की विभिन्न परिभाषा के लिए जे का अनुप्रयोग सही है)।यह स्थापित करता है कि स्तरीकृत कॉम्प्रिहेंशन एनएफयू के मॉडल में है।
<math>\phi</math> एनएफयू के मॉडल में। <math>j(\{y \in V_{\alpha} \mid \phi_3\})</math> एनएफयू के मॉडल में यह एक्सटेंशन है (एनएफयू के मॉडल में सदस्यता की विभिन्न परिभाषा के लिए जे का अनुप्रयोग सही है)।यह स्थापित करता है कि स्तरीकृत कॉम्प्रिहेंशन एनएफयू के मॉडल में है।


यह देखने के लिए कि कमजोर एक्सटेंशनलिटी होल्ड सीधी है: प्रत्येक गैर -रिक्त तत्व का <math>V_{j(\alpha)+1}</math> नॉन -स्टैंडर्ड मॉडल से एक अद्वितीय विस्तार विरासत में मिला, खाली समुच्चय अपने सामान्य विस्तार को भी विरासत में मिला है, और अन्य सभी ऑब्जेक्ट्स urelements हैं।
यह देखने के लिए कि कमजोर एक्सटेंशनलिटी होल्ड सीधी है: प्रत्येक गैर -रिक्त तत्व का <math>V_{j(\alpha)+1}</math> नॉन -स्टैंडर्ड मॉडल से एक अद्वितीय विस्तार विरासत में मिला, खाली समुच्चय अपने सामान्य विस्तार को भी विरासत में मिला है, और अन्य सभी ऑब्जेक्ट्स urelements हैं।


मूल विचार यह है कि ऑटोमोर्फिज्म j शक्ति समुच्चय को कोड करता है <math>V_{\alpha+1}</math> हमारे ब्रह्मांड का <math>V_{\alpha}</math> इसकी बाहरी आइसोमॉर्फिक कॉपी में <math>V_{j(\alpha)+1}</math> हमारे ब्रह्मांड के अंदर।ब्रह्मांड के सबसमुच्चय को कोडिंग नहीं करने वाली शेष वस्तुओं को urelements के रूप में माना जाता है।
मूल विचार यह है कि ऑटोमोर्फिज्म j शक्ति समुच्चय को कोड करता है <math>V_{\alpha+1}</math> हमारे ब्रह्मांड का <math>V_{\alpha}</math> इसकी बाहरी आइसोमॉर्फिक कॉपी में <math>V_{j(\alpha)+1}</math> हमारे ब्रह्मांड के अंदर।ब्रह्मांड के सबसमुच्चय को कोडिंग नहीं करने वाली शेष वस्तुओं को urelements के रूप में माना जाता है।


यदि <math>\alpha</math> एक प्राकृतिक संख्या n है, एक को एनएफयू का एक मॉडल मिलता है जो प्रमाणित करता है कि ब्रह्मांड परिमित है (यह बाहरी रूप से अनंत है, निश्चित रूप से)।यदि <math>\alpha</math> अनंत है और [[पसंद का स्वयंसिद्ध|पसंद का]] एक्सिओम्स जेडएफसी के गैर -मानक मॉडल में धारण करता है, एक एनएफयू + इन्फिनिटी + पसंद का एक मॉडल प्राप्त करता है।
यदि <math>\alpha</math> एक प्राकृतिक संख्या n है, एक को एनएफयू का एक मॉडल मिलता है जो प्रमाणित करता है कि ब्रह्मांड परिमित है (यह बाहरी रूप से अनंत है, निश्चित रूप से)।यदि <math>\alpha</math> अनंत है और [[पसंद का स्वयंसिद्ध|पसंद का]] एक्सिओम्स जेडएफसी के गैर -मानक मॉडल में धारण करता है, एक एनएफयू + इन्फिनिटी + पसंद का एक मॉडल प्राप्त करता है।


=== एनएफयू में गणितीय नींव की आत्मनिर्भरता ===
=== एनएफयू में गणितीय नींव की आत्मनिर्भरता ===
दार्शनिक कारणों से, यह ध्यान रखना महत्वपूर्ण है कि इस प्रमाण को पूरा करने के लिए जेडएफसी या किसी भी संबंधित प्रणाली में काम करना आवश्यक नहीं है।गणित के लिए एक नींव के रूप में एनएफयू के उपयोग के विरुद्ध एक सामान्य तर्क यह है कि इस पर भरोसा करने के कारणों को उस अंतर्ज्ञान के साथ करना है जो जेडएफसी सही है।यह टीएसटी (वास्तव में TSTU) को स्वीकार करने के लिए पर्याप्त है।रूपरेखा में: टाइप सिद्धांत TSTU (प्रत्येक पॉजिटिव टाइप में urelements की अनुमति) को एक मेटाथेरी के रूप में लें और TSTU में TSTU के समुच्चय मॉडल के सिद्धांत पर विचार करें (ये मॉडल समुच्चय के अनुक्रम होंगे <math>T_i</math> (मेटाथेरी में एक ही प्रकार के सभी) प्रत्येक के एम्बेडिंग के साथ <math>P(T_i)</math> में <math>P_1(T_{i+1})</math> के शक्ति समुच्चय के कोडिंग एम्बेडिंग <math>T_i</math> में <math>T_{i+1}</math> एक प्रकार के प्रतिष्ठित तरीके से)।एक एम्बेडिंग को देखते हुए <math>T_0</math> में <math>T_1</math> (आधार प्रकार के सबसमुच्चय के साथ आधार प्रकार के तत्वों की पहचान करना), एम्बेडिंग को प्रत्येक प्रकार से अपने उत्तराधिकारी में प्राकृतिक तरीके से परिभाषित किया जा सकता है।इसे ट्रांसफ़िनेट अनुक्रमों के लिए सामान्यीकृत किया जा सकता है <math>T_{\alpha}</math> देखभाल के साथ।
दार्शनिक कारणों से, यह ध्यान रखना महत्वपूर्ण है कि इस प्रमाण को पूरा करने के लिए जेडएफसी या किसी भी संबंधित प्रणाली में काम करना आवश्यक नहीं है।गणित के लिए एक नींव के रूप में एनएफयू के उपयोग के विरुद्ध एक सामान्य तर्क यह है कि इस पर भरोसा करने के कारणों को उस अंतर्ज्ञान के साथ करना है जो जेडएफसी सही है।यह टीएसटी (वास्तव में TSTU) को स्वीकार करने के लिए पर्याप्त है।रूपरेखा में: टाइप सिद्धांत TSTU (प्रत्येक पॉजिटिव टाइप में urelements की अनुमति) को एक मेटाथेरी के रूप में लें और TSTU में TSTU के समुच्चय मॉडल के सिद्धांत पर विचार करें (ये मॉडल समुच्चय के अनुक्रम होंगे <math>T_i</math> (मेटाथेरी में एक ही प्रकार के सभी) प्रत्येक के एम्बेडिंग के साथ <math>P(T_i)</math> में <math>P_1(T_{i+1})</math> के शक्ति समुच्चय के कोडिंग एम्बेडिंग <math>T_i</math> में <math>T_{i+1}</math> एक प्रकार के प्रतिष्ठित तरीके से)।एक एम्बेडिंग को देखते हुए <math>T_0</math> में <math>T_1</math> (आधार प्रकार के सबसमुच्चय के साथ आधार प्रकार के तत्वों की पहचान करना), एम्बेडिंग को प्रत्येक प्रकार से अपने उत्तराधिकारी में प्राकृतिक तरीके से परिभाषित किया जा सकता है।इसे ट्रांसफ़िनेट अनुक्रमों के लिए सामान्यीकृत किया जा सकता है <math>T_{\alpha}</math> देखभाल के साथ।


ध्यान दें कि समुच्चय के ऐसे अनुक्रमों का निर्माण उस प्रकार के आकार तक सीमित है जिसमें उनका निर्माण किया जा रहा है;यह TSTU को अपनी स्वयं की स्थिरता सिद्ध करने से रोकता है (TSTU + INFINITY TSTU की स्थिरता सिद्ध कर सकता है; TSTU + INFINITY की स्थिरता को सिद्ध करने के लिए एक प्रकार का एक प्रकार की आवश्यकता है जिसमें कार्डिनलिटी का एक समुच्चय है <math>\beth_{\omega}</math>, जो कि प्रबल मान्यताओं के बिना TSTU+अनंत में उपस्थित नहीं हो सकता है)।अब मॉडल सिद्धांत के समान परिणामों का उपयोग एनएफयू के एक मॉडल के निर्माण के लिए किया जा सकता है और यह सत्यापित किया जा सकता है कि यह एनएफयू का एक मॉडल है, उसी तरह से, साथ ही साथ <math>T_{\alpha}</math>'के स्थान पर उपयोग किया जा रहा है <math>V_{\alpha}</math> सामान्य निर्माण में।अंतिम कदम यह देखना है कि चूंकि एनएफयू सुसंगत है, इसलिए हम अपने मेटाथेरी में पूर्ण प्रकारों के उपयोग को छोड़ सकते हैं, टीएसटीयू से एनएफयू तक मेटाथेरी को बूटस्ट्रैप कर सकते हैं।
ध्यान दें कि समुच्चय के ऐसे अनुक्रमों का निर्माण उस प्रकार के आकार तक सीमित है जिसमें उनका निर्माण किया जा रहा है;यह TSTU को अपनी स्वयं की स्थिरता सिद्ध करने से रोकता है (TSTU + INFINITY TSTU की स्थिरता सिद्ध कर सकता है; TSTU + INFINITY की स्थिरता को सिद्ध करने के लिए एक प्रकार का एक प्रकार की आवश्यकता है जिसमें कार्डिनलिटी का एक समुच्चय है <math>\beth_{\omega}</math>, जो कि प्रबल मान्यताओं के बिना TSTU+अनंत में उपस्थित नहीं हो सकता है)।अब मॉडल सिद्धांत के समान परिणामों का उपयोग एनएफयू के एक मॉडल के निर्माण के लिए किया जा सकता है और यह सत्यापित किया जा सकता है कि यह एनएफयू का एक मॉडल है, उसी तरह से, साथ ही साथ <math>T_{\alpha}</math>'के स्थान पर उपयोग किया जा रहा है <math>V_{\alpha}</math> सामान्य निर्माण में।अंतिम कदम यह देखना है कि चूंकि एनएफयू सुसंगत है, इसलिए हम अपने मेटाथेरी में पूर्ण प्रकारों के उपयोग को छोड़ सकते हैं, टीएसटीयू से एनएफयू तक मेटाथेरी को बूटस्ट्रैप कर सकते हैं।


=== ऑटोमोर्फिज्म जे के बारे में तथ्य ===
=== ऑटोमोर्फिज्म जे के बारे में तथ्य ===
इस तरह के एक मॉडल का ऑटोमोर्फिज्म जे एनएफयू में कुछ प्राकृतिक परिचालनों से निकटता से संबंधित है। उदाहरण के लिए यदि डब्ल्यू गैर मानक मॉडल में एक अच्छी तरह से क्रमबद्ध होता है, तो हम यहां मान लेते हैं कि हम क्रमबद्ध की गई जोड़ी का उपयोग करते हैं जिससे कि दो सिद्धांतों में कार्यों की कोडिंग कुछ सीमा तक उपयुक्त रूप में होती है, जो एनएफयू में भी अच्छी तरह से व्यवस्थित है, ज़र्मेलो समुच्चय सिद्धांत के गैर-मानक मॉडल में अच्छी तरह से क्रमबद्ध हैं, लेकिन इसके विपरीत, मॉडल के निर्माण में यूरेलइमेंट्स के निर्माण के कारण नहीं हैं और डब्ल्यू में एनएफयू टाइप α है, फिर J (W) एनएफयू में टाइप T (α) का एक अच्छी तरह से क्रमबद्ध रूप में होता है।
इस तरह के एक मॉडल का ऑटोमोर्फिज्म जे एनएफयू में कुछ प्राकृतिक परिचालनों से निकटता से संबंधित है। उदाहरण के लिए यदि डब्ल्यू गैर मानक मॉडल में एक अच्छी तरह से क्रमबद्ध होता है, तो हम यहां मान लेते हैं कि हम क्रमबद्ध की गई जोड़ी का उपयोग करते हैं जिससे कि दो सिद्धांतों में कार्यों की कोडिंग कुछ सीमा तक उपयुक्त रूप में होती है, जो एनएफयू में भी अच्छी तरह से व्यवस्थित है, ज़र्मेलो समुच्चय सिद्धांत के गैर-मानक मॉडल में अच्छी तरह से क्रमबद्ध हैं, लेकिन इसके विपरीत, मॉडल के निर्माण में यूरेलइमेंट्स के निर्माण के कारण नहीं हैं और डब्ल्यू में एनएफयू टाइप α है, फिर J (W) एनएफयू में टाइप T (α) का एक अच्छी तरह से क्रमबद्ध रूप में होता है।


वास्तव में, J को एनएफयू के मॉडल में एक फलन द्वारा कोडित किया जाता है। गैर -मानक मॉडल में फलन <math>V_{j(\alpha)}</math> जो किसी भी तत्व के सिंगलटन को उसके एकमात्र तत्व में भेजता है, एनएफयू में एक फलन बन जाता है जो प्रत्येक सिंगलटन {x} को भेजता है, जहां x ब्रह्मांड में कोई भी वस्तु है, J (x) को इस फलन को एंडो कहते है और इसमें निम्नलिखित गुण होते है, एंडो सिंगलटन के सेट से समुच्चय के सेट में एक इंजेक्टिव फलन है, जो कि एंडो ({x}) = {एंडो ({y}) | y∈x} प्रत्येक समुच्चय x के लिए है। यह फलन ब्रह्मांड पर एक प्रकार के स्तर की सदस्यता संबंध को परिभाषित कर सकता है, एक मूल गैर -मानक मॉडल की सदस्यता संबंध को पुन: प्रस्तुत करता है।
वास्तव में, J को एनएफयू के मॉडल में एक फलन द्वारा कोडित किया जाता है। गैर -मानक मॉडल में फलन <math>V_{j(\alpha)}</math> जो किसी भी तत्व के सिंगलटन को उसके एकमात्र तत्व में भेजता है, एनएफयू में एक फलन बन जाता है जो प्रत्येक सिंगलटन {x} को भेजता है, जहां x ब्रह्मांड में कोई भी वस्तु है, J (x) को इस फलन को एंडो कहते है और इसमें निम्नलिखित गुण होते है, एंडो सिंगलटन के सेट से समुच्चय के सेट में एक इंजेक्टिव फलन है, जो कि एंडो ({x}) = {एंडो ({y}) | y∈x} प्रत्येक समुच्चय x के लिए है। यह फलन ब्रह्मांड पर एक प्रकार के स्तर की सदस्यता संबंध को परिभाषित कर सकता है, एक मूल गैर -मानक मॉडल की सदस्यता संबंध को पुन: प्रस्तुत करता है।


== अनंत के प्रबल एक्सिओम्स ==
== अनंत के प्रबल एक्सिओम्स ==
इस खंड में, हमारे सामान्य आधार सिद्धांत एनएफयू + इन्फिनिटी + चॉइस में अनंत के विभिन्न प्रबल एक्सिओम्स को जोड़ने के प्रभाव पर विचार किया जाता है। सुसंगत रूप से ज्ञात इस आधार सिद्धांत में टीएसटी + इन्फिनिटी या जर्मेलो समुच्चय सिद्धांत के रूप में समान शक्ति विद्यमान होती है, जो कि बंधे हुए फार्मूले मैक लेन समुच्चय सिद्धांत तक सीमित है।
इस खंड में, हमारे सामान्य आधार सिद्धांत एनएफयू + इन्फिनिटी + चॉइस में अनंत के विभिन्न प्रबल एक्सिओम्स को जोड़ने के प्रभाव पर विचार किया जाता है। सुसंगत रूप से ज्ञात इस आधार सिद्धांत में टीएसटी + इन्फिनिटी या जर्मेलो समुच्चय सिद्धांत के रूप में समान शक्ति विद्यमान होती है, जो कि बंधे हुए फार्मूले मैक लेन समुच्चय सिद्धांत तक सीमित है।


कोई इस आधार सिद्धांत को जेडएफसी संदर्भ से प्रचलित अनन्तता के प्रबल एक्सिओम्स को जोड़ सकता है, जैसे कि एक दुर्गम कार्डिनल के रूप में उपस्थित होते है, लेकिन कैंटोरियन और दृढ़ता से कैंटोरियन समुच्चयो के बारे में जोर देने के लिए यह स्वाभाविक है। ऐसे अभिकथनों से न केवल सामान्य प्रकार के [[बड़े कार्डिनल]] बन जाते हैं, बल्कि सिद्धांत को अपनी शर्तों पर भी बल मिलता है।
कोई इस आधार सिद्धांत को जेडएफसी संदर्भ से प्रचलित अनन्तता के प्रबल एक्सिओम्स को जोड़ सकता है, जैसे कि एक दुर्गम कार्डिनल के रूप में उपस्थित होते है, लेकिन कैंटोरियन और दृढ़ता से कैंटोरियन समुच्चयो के बारे में जोर देने के लिए यह स्वाभाविक है। ऐसे अभिकथनों से न केवल सामान्य प्रकार के [[बड़े कार्डिनल]] बन जाते हैं, बल्कि सिद्धांत को अपनी शर्तों पर भी बल मिलता है।


सामान्य प्रबल सिद्धांतों में सबसे कमजोर रूप में है,
सामान्य प्रबल सिद्धांतों में सबसे कमजोर रूप में है,
* 'रोसेर की गिनती का एक्सिओम्स प्राकृतिक संख्याओं का समुच्चय एक दृढ़ता से कैंटोरियन समुच्चय होता है।
* 'रोसेर की गिनती का एक्सिओम्स प्राकृतिक संख्याओं का समुच्चय एक दृढ़ता से कैंटोरियन समुच्चय होता है।


यह देखने के लिए कि एनएफयू में प्राकृतिक संख्याओं को कैसे परिभाषित किया गया है, [[प्राकृतिक संख्याओं की सेट-सिद्धांतीय परिभाषा|प्राकृतिक संख्याओं की समुच्चय सिद्धांतीय परिभाषा]] को परिभाषित किया गया है। रोसर द्वारा दिए गए इस एक्सिओम्स का मूल रूप समुच्चय <math>\{m|1\leqslant m\leqslant n\}</math> है, प्रत्येक प्राकृतिक संख्या n के लिए n सदस्य हैं। यह सहज रूप से स्पष्ट है कि एनएफयू में जो सिद्ध होता है वह समुच्चय <math>\{m|1\leqslant m\leqslant n\}</math> होता है <math>T^2(n)</math> सदस्य(जहां कार्डिनल्स पर टी ऑपरेशन द्वारा परिभाषित किया गया है <math>T(|A|) = |P_1(A)|</math>;यह प्राकृतिक संख्याओं सहित एक कार्डिनल के प्रकार को बढ़ाता है। किसी भी कार्डिनल नंबर के लिए जोर देने के लिए <math>T(|A|) = |A|</math> यह प्रमाणित करने के लिए बराबर है कि उस कार्डिनलिटी के समुच्चय a कैंटोरियन के रूप में होता है, भाषा के सामान्य दुरुपयोग से हम ऐसे कार्डिनल्स को कैंटोरियन कार्डिनल्स के रूप में संदर्भित करते हैं। यह स्पष्ट है कि यह कथन कि प्रत्येक प्राकृतिक संख्या कैंटोरियन के रूप में होता है, यह इस कथन के समतुल्य है कि सभी प्राकृतिक संख्याओं का का समुच्चय दृढ़ता से कैंटोरियन है।
यह देखने के लिए कि एनएफयू में प्राकृतिक संख्याओं को कैसे परिभाषित किया गया है, [[प्राकृतिक संख्याओं की सेट-सिद्धांतीय परिभाषा|प्राकृतिक संख्याओं की समुच्चय सिद्धांतीय परिभाषा]] को परिभाषित किया गया है। रोसर द्वारा दिए गए इस एक्सिओम्स का मूल रूप समुच्चय <math>\{m|1\leqslant m\leqslant n\}</math> है, प्रत्येक प्राकृतिक संख्या n के लिए n सदस्य हैं। यह सहज रूप से स्पष्ट है कि एनएफयू में जो सिद्ध होता है वह समुच्चय <math>\{m|1\leqslant m\leqslant n\}</math> होता है <math>T^2(n)</math> सदस्य(जहां कार्डिनल्स पर टी ऑपरेशन द्वारा परिभाषित किया गया है <math>T(|A|) = |P_1(A)|</math>;यह प्राकृतिक संख्याओं सहित एक कार्डिनल के प्रकार को बढ़ाता है। किसी भी कार्डिनल नंबर के लिए जोर देने के लिए <math>T(|A|) = |A|</math> यह प्रमाणित करने के लिए बराबर है कि उस कार्डिनलिटी के समुच्चय a कैंटोरियन के रूप में होता है, भाषा के सामान्य दुरुपयोग से हम ऐसे कार्डिनल्स को कैंटोरियन कार्डिनल्स के रूप में संदर्भित करते हैं। यह स्पष्ट है कि यह कथन कि प्रत्येक प्राकृतिक संख्या कैंटोरियन के रूप में होता है, यह इस कथन के समतुल्य है कि सभी प्राकृतिक संख्याओं का का समुच्चय दृढ़ता से कैंटोरियन है।


गिनती एनएफयू के अनुरूप होती है, लेकिन इसकी निरंतरता की शक्ति में योग्य वृद्धि होती है, जैसा कि कोई अंकगणित के क्षेत्र में अपेक्षा नहीं करता है, लेकिन उच्च समुच्चय सिद्धांत में एनएफयू + अनंतता को सिद्ध करती है कि प्रत्येक <math>\beth_n</math> के रूप में उपस्थित होते है, लेकिन ऐसा नहीं है <math>\beth_{\omega}</math> उपस्थित एनएफयू + काउंटिंग से अनंत तक सिद्ध होता है और आगे प्रत्येक <math>\beth_{\beth_n}</math>के के लिए n के अस्तित्व को सिद्ध करता है लेकिन <math>\beth_{\beth_{\omega}}</math>के अस्तित्व को नहीं सिद्ध करता है।([[बेथ नंबर]] देखें)।
गिनती एनएफयू के अनुरूप होती है, लेकिन इसकी निरंतरता की शक्ति में योग्य वृद्धि होती है, जैसा कि कोई अंकगणित के क्षेत्र में अपेक्षा नहीं करता है, लेकिन उच्च समुच्चय सिद्धांत में एनएफयू + अनंतता को सिद्ध करती है कि प्रत्येक <math>\beth_n</math> के रूप में उपस्थित होते है, लेकिन ऐसा नहीं है <math>\beth_{\omega}</math> उपस्थित एनएफयू + काउंटिंग से अनंत तक सिद्ध होता है और आगे प्रत्येक <math>\beth_{\beth_n}</math>के के लिए n के अस्तित्व को सिद्ध करता है लेकिन <math>\beth_{\beth_{\omega}}</math>के अस्तित्व को नहीं सिद्ध करता है।([[बेथ नंबर]] देखें)।


गणना का तात्पर्य तुरंत है कि किसी को स्तरीकरण के प्रयोजनों के लिए प्राकृतिक संख्याओं के समुच्चय <math>N</math> तक सीमित चरों को प्रकार निर्दिष्ट करने की आवश्यकता नहीं है; यह एक प्रमेय है कि एक प्रबलतया से कैंटोरियन समुच्चय   की शक्ति समुच्चय प्रबलतया से कैंटोरियन के रूप में है, इसलिए यह आवश्यक नहीं है कि चर के प्रकार निर्धारित किए जायें जो प्राकृतिक संख्याओं के किसी भी पुनरावृत्त शक्ति समुच्चय तक सीमित हों, अथवा वास्तविक संख्याओं के समुच्चय तथा वास्तविक संख्याओं के समुच्चय जैसे परिचित समुच्चयों के समुच्चय को वास्तविक संख्याओं के समुच्चय तक सीमित हों। सिंगलटन ब्रैकेट्स के साथ प्राकृतिक संख्या मान या संबंधित प्रकार के मान के लिए ज्ञात चर की व्याख्या न करने की सुविधा या टी संक्रिया को स्तरीकृत समुच्चय परिभाषा के लिए लागू करने की सुविधा के मुकाबले अभ्यास में समुच्चय की सामर्थ्य कम महत्वपूर्ण है
गणना का तात्पर्य तुरंत है कि किसी को स्तरीकरण के प्रयोजनों के लिए प्राकृतिक संख्याओं के समुच्चय <math>N</math> तक सीमित चरों को प्रकार निर्दिष्ट करने की आवश्यकता नहीं है; यह एक प्रमेय है कि एक प्रबलतया से कैंटोरियन समुच्चय की शक्ति समुच्चय प्रबलतया से कैंटोरियन के रूप में है, इसलिए यह आवश्यक नहीं है कि चर के प्रकार निर्धारित किए जायें जो प्राकृतिक संख्याओं के किसी भी पुनरावृत्त शक्ति समुच्चय तक सीमित हों, अथवा वास्तविक संख्याओं के समुच्चय तथा वास्तविक संख्याओं के समुच्चय जैसे परिचित समुच्चयों के समुच्चय को वास्तविक संख्याओं के समुच्चय तक सीमित हों। सिंगलटन ब्रैकेट्स के साथ प्राकृतिक संख्या मान या संबंधित प्रकार के मान के लिए ज्ञात चर की व्याख्या न करने की सुविधा या टी संक्रिया को स्तरीकृत समुच्चय परिभाषा के लिए लागू करने की सुविधा के मुकाबले अभ्यास में समुच्चय की सामर्थ्य कम महत्वपूर्ण है


गिनती का तात्पर्य अनंत है; नीचे दिए गए एक्सिओम्स में से प्रत्येक को अनंत के प्रबल वेरिएंट के प्रभाव को प्राप्त करने के लिए एनएफयू + इन्फिनिटी से जुड़ने की आवश्यकता होती है; [[अली केयर]] ने एनएफयू + ब्रह्मांड के मॉडल में इनमें से कुछ एक्सिओम्स की शक्ति की जांच की है।
गिनती का तात्पर्य अनंत है; नीचे दिए गए एक्सिओम्स में से प्रत्येक को अनंत के प्रबल वेरिएंट के प्रभाव को प्राप्त करने के लिए एनएफयू + इन्फिनिटी से जुड़ने की आवश्यकता होती है; [[अली केयर]] ने एनएफयू + ब्रह्मांड के मॉडल में इनमें से कुछ एक्सिओम्स की शक्ति की जांच की है।


ऊपर निर्मित प्रकार का एक मॉडल केवल इस स्थिति में गिनती करता है कि ऑटोमोर्फिज्म जे ज़र्मेलो समुच्चय सिद्धांत के अंतर्निहित गैर -मानक मॉडल में सभी प्राकृतिक संख्याओं को ठीक करता है।
ऊपर निर्मित प्रकार का एक मॉडल केवल इस स्थिति में गिनती करता है कि ऑटोमोर्फिज्म जे ज़र्मेलो समुच्चय सिद्धांत के अंतर्निहित गैर -मानक मॉडल में सभी प्राकृतिक संख्याओं को ठीक करता है।


अगला प्रबल एक्सिओम्स के रूप में है जिस पर हम विचार करते हैं वह है
अगला प्रबल एक्सिओम्स के रूप में है जिस पर हम विचार करते हैं वह है
* 'प्रबलतया से कैंटोरियन पृथक्करण का एक्सिओम्स : किसी भी प्रबलतया से कैंटोरियन समुच्चय ए और किसी भी सूत्र के लिए <math>\phi</math> आवश्यक नहीं कि स्तरीकृत! समुच्चय <math>\{x\in A|\;\phi\}</math> के अस्तित्व में उपस्थित होते है।
* 'प्रबलतया से कैंटोरियन पृथक्करण का एक्सिओम्स : किसी भी प्रबलतया से कैंटोरियन समुच्चय ए और किसी भी सूत्र के लिए <math>\phi</math> आवश्यक नहीं कि स्तरीकृत! समुच्चय <math>\{x\in A|\;\phi\}</math> के अस्तित्व में उपस्थित होते है।


तत्काल परिणामों में अस्थिर परिस्थितियों के लिए गणितीय प्रेरण के रूप में सम्मलित होते है, जो गिनती का परिणाम नहीं है; लेकिन सभी प्राकृतिक संख्याओं पर प्रेरण के सभी अस्थिर उदाहरण के रूप में नहीं हैं।
तत्काल परिणामों में अस्थिर परिस्थितियों के लिए गणितीय प्रेरण के रूप में सम्मलित होते है, जो गिनती का परिणाम नहीं है; लेकिन सभी प्राकृतिक संख्याओं पर प्रेरण के सभी अस्थिर उदाहरण के रूप में नहीं हैं।


यह एक्सिओम्स आश्चर्यजनक रूप से प्रबल रूप में होता है। [[रॉबर्ट सोलोवे]] के अप्रकाशित कार्य से पता चलता है कि सिद्धांत की निरंतरता शक्ति एनएफयू * = एनएफयू + गिनती + प्रबलतया से कैंटोरियन पृथक्करण ज़र्मेलो समुच्चय सिद्धांत + <math>\Sigma_2</math> प्रतिस्थापन के समान है।
यह एक्सिओम्स आश्चर्यजनक रूप से प्रबल रूप में होता है। [[रॉबर्ट सोलोवे]] के अप्रकाशित कार्य से पता चलता है कि सिद्धांत की निरंतरता शक्ति एनएफयू * = एनएफयू + गिनती + प्रबलतया से कैंटोरियन पृथक्करण ज़र्मेलो समुच्चय सिद्धांत + <math>\Sigma_2</math> प्रतिस्थापन के समान है।


यह एक्सिओम्स ऊपर निर्मित पसंद के साथ एक मॉडल के रूप में है, यदि ऑर्डिनल जो जे द्वारा तय किए गए हैं और यदि ज़र्मेलो समुच्चय सिद्धांत के अंतर्निहित गैर -मानक मॉडल में जे द्वारा तय किए गए केवल ऑर्डिनल पर हावी होता है और ऐसे किसी भी क्रम के शक्ति समुच्चय भी मानक के रूप में हैं। यह स्थिति पर्याप्त है लेकिन आवश्यक नहीं है।
यह एक्सिओम्स ऊपर निर्मित पसंद के साथ एक मॉडल के रूप में है, यदि ऑर्डिनल जो जे द्वारा तय किए गए हैं और यदि ज़र्मेलो समुच्चय सिद्धांत के अंतर्निहित गैर -मानक मॉडल में जे द्वारा तय किए गए केवल ऑर्डिनल पर हावी होता है और ऐसे किसी भी क्रम के शक्ति समुच्चय भी मानक के रूप में हैं। यह स्थिति पर्याप्त है लेकिन आवश्यक नहीं है।


अगला है
अगला है
* 'कैंटोरियन समुच्चय का एक्सिओम्स ': प्रत्येक कैंटोरियन समुच्चय दृढ़ता से कैंटोरियन के रूप में है।  
* 'कैंटोरियन समुच्चय का एक्सिओम्स ': प्रत्येक कैंटोरियन समुच्चय दृढ़ता से कैंटोरियन के रूप में है।


यह बहुत ही सरल कथन अत्यंत मजबूत है। सोलोवे ने सिद्धांत एनएफयूए = एनएफयू + इन्फिनिटी + कैंटोरियन समुच्चय के साथ जेडएफसी + एक स्कीमा के साथ प्रत्येक ठोस प्राकृतिक संख्या n के लिए एक n मेंहलो कार्डिनल के अस्तित्व पर जोर देते हुए सिद्धांत की स्थिरता शक्ति का सटीक तुल्यता दिखाया है। अली इनायत ने दिखाया है कि अच्छी तरह से स्थापित विस्तारित संबंधों के कैंटोरियन तुल्यता वर्गों का सिद्धांत जो जेडएफसी के संचयी पदानुक्रम के प्रारंभिक खंड की एक प्राकृतिक तस्वीर देता है, सीधे n मेंहलो कार्डिनल्स के साथ जेडएफसी के विस्तार की व्याख्या करता है। जिसमें एक मॉडल देने के लिए इस सिद्धांत के एक मॉडल पर एक क्रमपरिवर्तन प्रोद्योगिकीय लागू की जाती है, जिसमें आनुवंशिक रूप से दृढ़ता से कैंटोरियन सामान्य सदस्यता संबंध मॉडल के साथ जेडएफसी के प्रबल विस्तार को समुच्चय करता है।
यह बहुत ही सरल कथन अत्यंत मजबूत है। सोलोवे ने सिद्धांत एनएफयूए = एनएफयू + इन्फिनिटी + कैंटोरियन समुच्चय के साथ जेडएफसी + एक स्कीमा के साथ प्रत्येक ठोस प्राकृतिक संख्या n के लिए एक n मेंहलो कार्डिनल के अस्तित्व पर जोर देते हुए सिद्धांत की स्थिरता शक्ति का सटीक तुल्यता दिखाया है। अली इनायत ने दिखाया है कि अच्छी तरह से स्थापित विस्तारित संबंधों के कैंटोरियन तुल्यता वर्गों का सिद्धांत जो जेडएफसी के संचयी पदानुक्रम के प्रारंभिक खंड की एक प्राकृतिक तस्वीर देता है, सीधे n मेंहलो कार्डिनल्स के साथ जेडएफसी के विस्तार की व्याख्या करता है। जिसमें एक मॉडल देने के लिए इस सिद्धांत के एक मॉडल पर एक क्रमपरिवर्तन प्रोद्योगिकीय लागू की जाती है, जिसमें आनुवंशिक रूप से दृढ़ता से कैंटोरियन सामान्य सदस्यता संबंध मॉडल के साथ जेडएफसी के प्रबल विस्तार को समुच्चय करता है।


यह एक्सिओम्स पसंद के साथ ऊपर निर्मित प्रकार के एक मॉडल में रखता है, यदि जेएफसी के अंतर्निहित गैर-मानक मॉडल में जे द्वारा तय किए गए ऑर्डिनल मॉडल के अध्यादेशों के प्रारंभिक उचित वर्ग खंड के रूप में हैं।
यह एक्सिओम्स पसंद के साथ ऊपर निर्मित प्रकार के एक मॉडल में रखता है, यदि जेएफसी के अंतर्निहित गैर-मानक मॉडल में जे द्वारा तय किए गए ऑर्डिनल मॉडल के अध्यादेशों के प्रारंभिक उचित वर्ग खंड के रूप में हैं।


आगे विचार करें
आगे विचार करें
* 'कैंटोरियन पृथक्करण का एक्सिओम्स ': किसी भी कैंटोरियन समुच्चय के लिए और किसी भी सूत्र के लिए <math>\phi</math> आवश्यक नहीं कि स्तरीकृत! समुच्चय <math>\{x\in A|\phi\}</math> के रूप में उपस्थित है।
* 'कैंटोरियन पृथक्करण का एक्सिओम्स ': किसी भी कैंटोरियन समुच्चय के लिए और किसी भी सूत्र के लिए <math>\phi</math> आवश्यक नहीं कि स्तरीकृत! समुच्चय <math>\{x\in A|\phi\}</math> के रूप में उपस्थित है।


यह दो पूर्ववर्ती एक्सिओम्स के प्रभाव को जोड़ती है और वास्तव में इससे भी अधिक प्रबल होती है, ठीक है कि कैसे ज्ञात नहीं है। अप्रतिबंधित गणितीय प्रेरण यह सिद्ध करने में सक्षम बनाता है कि प्रत्येक एन के लिए एन-महलो कार्डिनल के रूप में होते है, जो कि कैंटोरियन समुच्चय दिए गए हैं, जो जेडएफसी का विस्तार देता है जो पिछले एक की तुलना में भी अधिक प्रबल है, जो केवल यह प्रमाणित करता है कि प्रत्येक ठोस प्राकृतिक संख्या के लिए एन-माह्लोस हैं, गैर-मानक काउंटर उदाहरणों की संभावना को खुला छोड़ते है।
यह दो पूर्ववर्ती एक्सिओम्स के प्रभाव को जोड़ती है और वास्तव में इससे भी अधिक प्रबल होती है, ठीक है कि कैसे ज्ञात नहीं है। अप्रतिबंधित गणितीय प्रेरण यह सिद्ध करने में सक्षम बनाता है कि प्रत्येक एन के लिए एन-महलो कार्डिनल के रूप में होते है, जो कि कैंटोरियन समुच्चय दिए गए हैं, जो जेडएफसी का विस्तार देता है जो पिछले एक की तुलना में भी अधिक प्रबल है, जो केवल यह प्रमाणित करता है कि प्रत्येक ठोस प्राकृतिक संख्या के लिए एन-माह्लोस हैं, गैर-मानक काउंटर उदाहरणों की संभावना को खुला छोड़ते है।


यह एक्सिओम्स ऊपर वर्णित प्रकार के एक मॉडल के रूप में होता है, यदि J द्वारा तय किया गया प्रत्येक क्रमिक मानक है और J द्वारा तय किए गए एक क्रमिक का प्रत्येक शक्ति समुच्चय भी जेडएफसी के अंतर्निहित मॉडल में मानक के रूप में है। फिर, यह स्थिति पर्याप्त है लेकिन आवश्यक रूप में नहीं है।
यह एक्सिओम्स ऊपर वर्णित प्रकार के एक मॉडल के रूप में होता है, यदि J द्वारा तय किया गया प्रत्येक क्रमिक मानक है और J द्वारा तय किए गए एक क्रमिक का प्रत्येक शक्ति समुच्चय भी जेडएफसी के अंतर्निहित मॉडल में मानक के रूप में है। फिर, यह स्थिति पर्याप्त है लेकिन आवश्यक रूप में नहीं है।


एक अध्यादेश को कैंटोरियन कहा जाता है यदि यह टी द्वारा तय किया जाता है और दृढ़ता से कैंटोरियन यदि यह केवल कैंटोरियन ऑर्डिनल्स पर हावी होता है, इसका अर्थ है कि यह स्वयं कैंटोरियन ऊपर निर्मित प्रकार के मॉडल में, एनएफयू के कैंटोरियन ऑर्डिनल्स जे द्वारा तय किए गए ऑर्डिनल्स के अनुरूप हैं। वे एक वस्तु नहीं हैं क्योंकि दो सिद्धांतों में क्रमिक संख्याओं की विभिन्न परिभाषाओं का उपयोग किया जाता है।
एक अध्यादेश को कैंटोरियन कहा जाता है यदि यह टी द्वारा तय किया जाता है और दृढ़ता से कैंटोरियन यदि यह केवल कैंटोरियन ऑर्डिनल्स पर हावी होता है, इसका अर्थ है कि यह स्वयं कैंटोरियन ऊपर निर्मित प्रकार के मॉडल में, एनएफयू के कैंटोरियन ऑर्डिनल्स जे द्वारा तय किए गए ऑर्डिनल्स के अनुरूप हैं। वे एक वस्तु नहीं हैं क्योंकि दो सिद्धांतों में क्रमिक संख्याओं की विभिन्न परिभाषाओं का उपयोग किया जाता है।


कैंटोरियन समुच्चय के लिए शक्ति के बराबर है
कैंटोरियन समुच्चय के लिए शक्ति के बराबर है
* 'बड़े अध्यादेशों का एक्सिओम्स ': प्रत्येक गैर-कैटलरियन ऑर्डिनल के लिए <math>\alpha</math> एक प्राकृतिक संख्या n के रूप में होता है जैसे कि <math>T^n(\Omega) < \alpha</math> है।
* 'बड़े अध्यादेशों का एक्सिओम्स ': प्रत्येक गैर-कैटलरियन ऑर्डिनल के लिए <math>\alpha</math> एक प्राकृतिक संख्या n के रूप में होता है जैसे कि <math>T^n(\Omega) < \alpha</math> है।


याद करें कि <math>\Omega</math> सभी ऑर्डिनल्स पर प्राकृतिक क्रमबद्ध प्रकार है। यहाँ कैंटोरियन समुच्चय का अर्थ है, यदि हमारे पास विकल्प है लेकिन किसी भी स्थिति में स्थिरता की शक्ति के स्तर के रूप में होती है। यह उल्लेखनीय है कि कोई भी परिभाषित कर सकता है <math>T^n(\Omega)</math>: यह nth शब्द है <math>s_n</math> लंबाई n के क्रम के किसी भी परिमित अनुक्रम की तरह <math>s_0 = \Omega</math>, <math>s_{i+1} = T(s_i)</math> है, प्रत्येक उपयुक्त के लिए यह परिभाषा पूरी तरह से असंरचित है। <math>T^n(\Omega)</math> की विशिष्टता से सिद्ध किया जा सकता है, उन n के लिए जिसके लिए यह उपस्थित है और इस धारणा के बारे में एक निश्चित मात्रा में सामान्य ज्ञान के तर्क को बाहर किया जा सकता है, यह दिखाने के लिए पर्याप्त है कि बड़े ऑर्डिनल्स का अर्थ पसंद की उपस्थिति में कैंटोरियन समुच्चय है। इस एक्सिओम्स के जटिल औपचारिक कथन के अतिरिक्त यह एक बहुत ही स्वाभाविक धारणा के रूप में है, जो टी की कार्रवाई को यथासंभव सरल बनाने के लिए होती है।
याद करें कि <math>\Omega</math> सभी ऑर्डिनल्स पर प्राकृतिक क्रमबद्ध प्रकार है। यहाँ कैंटोरियन समुच्चय का अर्थ है, यदि हमारे पास विकल्प है लेकिन किसी भी स्थिति में स्थिरता की शक्ति के स्तर के रूप में होती है। यह उल्लेखनीय है कि कोई भी परिभाषित कर सकता है <math>T^n(\Omega)</math>: यह nth शब्द है <math>s_n</math> लंबाई n के क्रम के किसी भी परिमित अनुक्रम की तरह <math>s_0 = \Omega</math>, <math>s_{i+1} = T(s_i)</math> है, प्रत्येक उपयुक्त के लिए यह परिभाषा पूरी तरह से असंरचित है। <math>T^n(\Omega)</math> की विशिष्टता से सिद्ध किया जा सकता है, उन n के लिए जिसके लिए यह उपस्थित है और इस धारणा के बारे में एक निश्चित मात्रा में सामान्य ज्ञान के तर्क को बाहर किया जा सकता है, यह दिखाने के लिए पर्याप्त है कि बड़े ऑर्डिनल्स का अर्थ पसंद की उपस्थिति में कैंटोरियन समुच्चय है। इस एक्सिओम्स के जटिल औपचारिक कथन के अतिरिक्त यह एक बहुत ही स्वाभाविक धारणा के रूप में है, जो टी की कार्रवाई को यथासंभव सरल बनाने के लिए होती है।


ऊपर निर्मित प्रकार का एक मॉडल बड़े ऑर्डिनल्स को संतुष्ट करता है, यदि J द्वारा स्थानांतरित किए गए ऑर्डिनल्स वास्तव में ऑर्डिनल के रूप में हैं जो कुछ हावी हैं <math>j^{-i}(\alpha)</math> जेडएफसी के अंतर्निहित गैर -मानक मॉडल के रूप में होते है।
ऊपर निर्मित प्रकार का एक मॉडल बड़े ऑर्डिनल्स को संतुष्ट करता है, यदि J द्वारा स्थानांतरित किए गए ऑर्डिनल्स वास्तव में ऑर्डिनल के रूप में हैं जो कुछ हावी हैं <math>j^{-i}(\alpha)</math> जेडएफसी के अंतर्निहित गैर -मानक मॉडल के रूप में होते है।


'''लघु अध्यादेशों का एक्सिओम्स''' : किसी भी सूत्र φ के लिए, एक समुच्चय ए है, जैसे कि ए के तत्व जो दृढ़ता से कैंटोरियन ऑर्डिनल्स हैं, वास्तव में दृढ़ता से कैंटोरियन ऑर्डिनल के रूप में हैं जैसे कि φ हैं।
'''लघु अध्यादेशों का एक्सिओम्स''' : किसी भी सूत्र φ के लिए, एक समुच्चय ए है, जैसे कि ए के तत्व जो दृढ़ता से कैंटोरियन ऑर्डिनल्स हैं, वास्तव में दृढ़ता से कैंटोरियन ऑर्डिनल के रूप में हैं जैसे कि φ हैं।


सोलोवे ने एनएफयूबी = एनएफयू + इन्फिनिटी + कैंटोरियन समुच्चय + मोर्स केली समुच्चय थ्योरी के साथ स्मॉल ऑर्डिनल्स की स्थिरता शक्ति में सटीक समानता दिखाई है और यह दावा किया है कि सभी ऑर्डिनल्स का उचित वर्ग ऑर्डिनल एक [[कमजोर कॉम्पैक्ट कार्डिनल]] के रूप में है। यह वास्तव में बहुत ''प्रबल ''है इसके ''अतिरिक्त ''एनएफयूबी- ''जो '' कैंटोरियन समुच्चय'' के साथ एनएफयूबी के रूप में है और'' एनएफयूबी को समान ''शक्ति के रूप में देखा जाता है''।
सोलोवे ने एनएफयूबी = एनएफयू + इन्फिनिटी + कैंटोरियन समुच्चय + मोर्स केली समुच्चय थ्योरी के साथ स्मॉल ऑर्डिनल्स की स्थिरता शक्ति में सटीक समानता दिखाई है और यह दावा किया है कि सभी ऑर्डिनल्स का उचित वर्ग ऑर्डिनल एक [[कमजोर कॉम्पैक्ट कार्डिनल]] के रूप में है। यह वास्तव में बहुत ''प्रबल ''है इसके ''अतिरिक्त ''एनएफयूबी- ''जो'' कैंटोरियन समुच्चय'' के साथ एनएफयूबी के रूप में है और'' एनएफयूबी को समान ''शक्ति के रूप में देखा जाता है''।


ऊपर निर्मित प्रकार का एक मॉडल इस एक्सिओम्स को संतुष्ट करे''ता है''। यदि '' J '' द्वारा तय किए गए ऑर्डिनल्स का प्रत्येक संग्रह जेडएफसी के अंतर्निहित नॉन -स्टैंडर्ड मॉडल में 'J' 'द्वारा तय किए गए ऑर्डिनल के साथ ऑर्डिनल्स के कुछ समुच्चय के फेसेस है।
ऊपर निर्मित प्रकार का एक मॉडल इस एक्सिओम्स को संतुष्ट करे''ता है''। यदि ''J'' द्वारा तय किए गए ऑर्डिनल्स का प्रत्येक संग्रह जेडएफसी के अंतर्निहित नॉन -स्टैंडर्ड मॉडल में 'J' 'द्वारा तय किए गए ऑर्डिनल के साथ ऑर्डिनल्स के कुछ समुच्चय के फेसेस है।


इससे भी प्रबल सिद्धांत एनएफयूएम = एनएफयू + इन्फिनिटी + लार्ज ऑर्डिनल्स + स्मॉल ऑर्डिनल्स है। ''यह मोर्स-केली समुच्चय सिद्धांत के बराबर है, जो कक्षाओं पर एक विधेय के साथ है, जो उचित वर्ग के अध्यादेश पर एक पूर्ण गैर-व्यावहारिक [[अल्ट्राफिल्टर]] के रूप में होती है। वास्तव में, यह मोर्स -केली समुच्चय सिद्धांत है + उचित वर्ग ऑर्डिनल एक औसत अंकित का कार्डिनल है!''
इससे भी प्रबल सिद्धांत एनएफयूएम = एनएफयू + इन्फिनिटी + लार्ज ऑर्डिनल्स + स्मॉल ऑर्डिनल्स है। ''यह मोर्स-केली समुच्चय सिद्धांत के बराबर है, जो कक्षाओं पर एक विधेय के साथ है, जो उचित वर्ग के अध्यादेश पर एक पूर्ण गैर-व्यावहारिक [[अल्ट्राफिल्टर]] के रूप में होती है। वास्तव में, यह मोर्स -केली समुच्चय सिद्धांत है + उचित वर्ग ऑर्डिनल एक औसत अंकित का कार्डिनल है!''


यहां प्रोद्योगिकीय विवरण का मुख्य बिंदु नहीं हैं, जो कि एनएफयू के दावे के संदर्भ में उचित और स्वाभाविक रूप में होता है, जेडएफसी संदर्भ में अनंतता के बहुत प्रबल एक्सिओम्स के लिए शक्ति के बराबर हो जाते हैं। यह तथ्य ऊपर वर्णित एनएफयू के मॉडल के अस्तित्व और इन एक्सिओम्स को संतुष्ट करने के बीच संबंध से संबंधित होता है और जेडएफसी के मॉडल के अस्तित्व में विशेष गुण वाले ऑटोमोर्फिज्म को संतुष्ट करता है।
यहां प्रोद्योगिकीय विवरण का मुख्य बिंदु नहीं हैं, जो कि एनएफयू के दावे के संदर्भ में उचित और स्वाभाविक रूप में होता है, जेडएफसी संदर्भ में अनंतता के बहुत प्रबल एक्सिओम्स के लिए शक्ति के बराबर हो जाते हैं। यह तथ्य ऊपर वर्णित एनएफयू के मॉडल के अस्तित्व और इन एक्सिओम्स को संतुष्ट करने के बीच संबंध से संबंधित होता है और जेडएफसी के मॉडल के अस्तित्व में विशेष गुण वाले ऑटोमोर्फिज्म को संतुष्ट करता है।


== यह भी देखें ==
== यह भी देखें ==
* [[वैकल्पिक सेट सिद्धांत|वैकल्पिक समुच्चय सिद्धांत]]
* [[वैकल्पिक सेट सिद्धांत|वैकल्पिक समुच्चय सिद्धांत]]
* [[स्वयंसिद्ध सेट सिद्धांत|एक्सिओम्स समुच्चय सिद्धांत]]
* [[स्वयंसिद्ध सेट सिद्धांत|एक्सिओम्स समुच्चय सिद्धांत]]
* समुच्चय सिद्धांत में गणित का कार्यान्वयन
* समुच्चय सिद्धांत में गणित का कार्यान्वयन
* [[सकारात्मक सेट सिद्धांत|सकारात्मक समुच्चय सिद्धांत]]  
* [[सकारात्मक सेट सिद्धांत|सकारात्मक समुच्चय सिद्धांत]]
* प्राकृतिक संख्याओं की सैद्धांतिक परिभाषा निर्धारित करते है
* प्राकृतिक संख्याओं की सैद्धांतिक परिभाषा निर्धारित करते है



Revision as of 23:38, 9 April 2023

गणितीय तर्क में न्यू फ़ाउंडेशन (एनएफ) एक एक्सिओम्स समुच्चय सिद्धांत के रूप में होता है, जिसकी कल्पना विलार्ड वैन ओरमन क्वीन ने प्रिंसिपिया मैथेमेटिका के प्रकार के सिद्धांत के सरलीकरण के रूप में की है। क्विन ने पहली बार अपने 1937 के लेख न्यू फाउंडेशन फॉर मैथमेटिकल लॉजिक के रूप में नाम में एनएफ प्रस्तावित किया। इस प्रविष्टि में से अधिकांश जेन्सन [1] और होम्स (1998) द्वारा स्पष्ट किए जाने के कारण एनएफ के एक महत्वपूर्ण संस्करण यूरेलेमेंट्स एनएफयू के साथ एनएफ पर चर्चा करते हैं। 1940 में और 1951 में एक संशोधन में क्वीन ने एनएफ का एक विस्तार प्रस्तुत किया गया जिसे कभी-कभी गणितीय तर्क या एमएल कहा जाता है, जिसमें वर्ग समुच्चय सिद्धांत के साथ -साथ समुच्चय (गणित) भी सम्मलित होता है।

न्यू फ़ाउंडेशन में एक सार्वभौमिक समुच्चय के रूप में होता है, इसलिए यह एक गैर-स्थापित समुच्चय सिद्धांत के रूप में है।[2] कहने का तात्पर्य यह है कि, यह एक एक्सिओम्स समुच्चय सिद्धांत के रूप में होता है, जो सदस्यता की अनंत अवरोही श्रृंखलाओं जैसे xn ∈ xn-1 ∈ … ∈ x2 ∈ x1 की अनुमति देता है, यह केवल स्तरीकरण (गणित) की अनुमति देकर रसेल के विरोधाभास से बचता है। एक विशिष्ट समुच्चय सिद्धांत अच्छी तरह से गठित सूत्र को विनिर्देश के एक्सिओम्स स्कीमा का उपयोग करके परिभाषित किया जाना है। उदाहरण के लिए, x ∈ y एक स्तरीकृत सूत्र है, लेकिन x ∈ x नहीं है।

न्यू फ़ाउंडेशन रसेलियन अनरेमिफाइड समुच्चय सिद्धांत (टीएसटी) से निकटता से संबंधित है, जो कि इस प्रकार के रैखिक पदानुक्रम के साथ प्रिंसिपिया मैथमेटिका के सिद्धांत का एक सुव्यवस्थित संस्करण के रूप में है।

टाइप सिद्धांत टीएसटी

रसेलियन अप्रकाशित टाइप किए गए समुच्चय सिद्धांत टीएसटी के प्राचीन विधेय समानता () और सदस्यता () के रूप में होता है। टीएसटी में एक प्रकार का रेखीय पदानुक्रम होता है, जिसे टाइप 0 में वैयक्तिक का समावेश अनिर्धारित होता है प्रत्येक (मेटा-) प्राकृतिक संख्या के लिए n टाइप n+1 ऑब्जेक्ट्स टाइप n ऑब्जेक्ट्स के समुच्चय के रूप में होते हैं, टाइप n के समुच्चय में टाइप n-1 के सदस्य होते हैं। पहचान से जुड़ी वस्तुओं का प्रकार समान होना चाहिए।

टीएसटी जैसे बहु-वर्गीकृत सिद्धांत में सूत्र लिखते समय, कुछ टिप्पणी सामान्यता उनके प्रकारों को निरूपित करने के लिए चर में जोड़े जाते हैं। टीएसटी में टाइप इंडेक्स को सुपरस्क्रिप्ट के रूप में लिखने का चलन है क्योंकि सुपरस्क्रिप्ट टाइप n के एक चर को दर्शाता है। इस प्रकार निम्नलिखित दो परमाणु सूत्रों ने टाइपिंग नियम और का सफलतापूर्वक वर्णन करते हैं। क्विनियन समुच्चय सिद्धांत प्रकारों को निरूपित करने के लिए इस तरह के सुपरस्क्रिप्ट की आवश्यकता को समाप्त करना चाहता है।

टीएसटी के एक्सिओम्स हैं,

  • विस्तार की स्वच्छता: एक ही सदस्यों के साथ समान सकारात्मक प्रकार के समुच्चय समान रूप में होते है,
  • एक्सिओम्स स्कीमा व्यापकार्थ के रूप में होते है,
यदि एक सूत्र है, फिर समुच्चय के रूप में उपस्थित होते है।
दूसरे शब्दों में, किसी भी सूत्र को देखते हुए , सूत्र एक एक्सिओम्स के रूप में उपस्थित होते है, जहां समुच्चय का प्रतिनिधित्व करता है और मुक्त चर और बाध्य चर के रूप में नहीं होते है।

इस प्रकार का सिद्धांत प्रिन्सिपिया मैथेमेटिका में पहले दिए गए सिद्धांत की तुलना में बहुत कम जटिल रूप में है, जिसमें उन संबंधों (गणित) के प्रकार के रूप में सम्मलित होते है, जिनके तर्क आवश्यक रूप में नहीं थे कि सभी एक ही प्रकार के हों। 1914 में, नॉर्बर्ट वीनर ने दिखाया कि समुच्चय के एक समुच्चय के रूप में क्रमबद्ध किए गए जोड़े को कैसे कोडित किया जाए, जिससे यहां वर्णित समुच्चयो के रैखिक पदानुक्रम के पक्ष में संबंध प्रकारों को समाप्त करना संभव हो सके।

क्विनियन समुच्चय सिद्धांत

एक्सिओम्स और स्तरीकरण

न्यू फ़ाउंडेशन (एनएफ) के अच्छी तरह से बनाए गए सूत्र टीएसटी के अच्छी तरह से बनाए गए सूत्र के समान होते है, लेकिन टाइप एनोटेशन के साथ मिट जाते हैं। एनएफ के एक्सिओम्स के रूप में होते है।

  • विस्तार: एक ही तत्वों के साथ दो ऑब्जेक्ट एक ही ऑब्जेक्ट के रूप में होते है।
  • पृथक्करण: टीएसटी कॉम्प्रिहेंशन के सभी उदाहरण एक टाइप इंडेक्स के साथ सूचकांकों को गिरा दिया गया और चर के बीच नई पहचान प्रस्तुत किए बिना होती है।

कन्वेंशन द्वारा, एनएफ के पृथक्करण स्कीमा के एक्सिओम्स को स्तरीकृत सूत्र की अवधारणा का उपयोग करके बताया गया है और प्रकारों के लिए कोई सीधा संदर्भ नहीं होता है। एक सूत्र को स्तरीकृत कहा जाता है कि यदि सिंटैक्स के टुकड़ों से लेकर प्राकृतिक संख्याओं तक कोई फलन f रूप में उपस्थित होता है, जैसे कि किसी भी परमाणु सबफॉर्मुला के लिए का हमारे पास f (y) = f (x) + 1 के रूप में है, जबकि किसी भी परमाणु सबफॉर्मुला के लिए का , हमारे पास f (x) = f (y) के रूप में है। व्यापकार्थ के रूप में होता है प्रत्येक स्तरीकृत सूत्र के लिए उपस्थित होता है।

यहां तक कि स्तरीकरण (गणित) की धारणा में निहित प्रकारों के अप्रत्यक्ष संदर्भ को समाप्त किया जाता है। थियोडोर हेल्परिन ने 1944 में दिखाया कि कॉम्प्रिहेंशन इसके उदाहरणों के एक परिमित संयोजन के बराबर होता है,[3] जिससे कि एनएफ को किसी भी प्रकार की धारणा के संदर्भ के बिना बारीक रूप से एक्सिओम्स किया जा सके।

नैवी समुच्चय सिद्धांत में उन लोगों के समान समस्याओं को समझना प्रतीत हो सकता है, लेकिन यह स्थिति नहीं है। उदाहरण के लिए असंभव रसेल के वर्ग का अस्तित्व एनएफ का एक्सिओम्स नहीं है, क्योंकि स्तरीकृत नहीं किया जा सकता है।

क्रमबद्ध जोड़े

संबंध (गणित) और फलन को सामान्य विधियो से क्रमबद्ध किए गए जोड़े के समुच्चय के रूप में टीएसटी और एनएफ और एनएफयू के रूप में परिभाषित किया गया है। क्रमबद्ध की गई जोड़ी की सामान्य परिभाषा पहली बार 1921 में कुराटोव्स्की संग्रहाध्यक्ष द्वारा प्रस्तावित की गयी अर्थात् = , में एनएफ और संबंधित सिद्धांतों के लिए एक मह्त्वपूर्ण त्रुटि के रूप में है, परिणामस्वरूप क्रमबद्ध की गई जोड़ी में आवश्यक रूप से इसके तर्कों के प्रकार a और b की तुलना में एक प्रकार से दो अधिक है। इसलिए स्तरीकरण के निर्धारण के प्रयोजनों के लिए, एक कार्य अपने क्षेत्र के सदस्यों की तुलना में तीन प्रकार से अधिक है।

यदि किसी जोड़े को इस प्रकार परिभाषित किया जा सके कि इसका प्रकार उसके तर्कों के समान होते हैं, जिसके परिणामस्वरूप उसके प्रकार के क्रम वाले जोड़े में एक-दूसरे से संबंध या क्रिया उसके क्षेत्र के सदस्यों की तुलना में एक प्रकार से अधिक होती है,.इसलिए एनएफ और संबद्ध सिद्धांतों में प्रायः विलार्ड वैन ओरमन क्वीन की समुच्चय की सैद्धांतिक परिभाषा दी गयी है। जिससे कि एक प्रकार का क्रमबद्ध युग्म उत्पन्न होता है। जो एक क्रमबद्ध की गई जोड़ी क्वीन-रॉसर परिभाषा को प्रमाणित करता है। टाइप-लेवल क्रमबद्ध की गई जोड़ी होम्स (1998) के क्रमबद्ध की गई जोड़ी और उसके बाएं और दाएं प्रक्षेपण (गणित) को प्राचीन के रूप में लाता है। चूंकि, क्विन की परिभाषा प्रत्येक तत्व A और B पर समुच्चय प्रचालन पर निर्भर करती है और इसलिए सीधे तौर पर एनएफयू में काम नहीं करती.है।

एक वैकल्पिक दृष्टिकोण के रूप में, होम्स क्रमित जोड़ी (a, b) को एक प्राचीन धारणा के साथ-साथ इसके बाएँ और दाएँ प्रक्षेपण के रूप में लेता है। जैसे ऐसे फलन करता है एनएफयू के होम्स के अक्षीयकरण में, बोध स्कीमा जो अस्तित्व पर जोर देती है, किसी भी स्तरीकृत सूत्र के लिए को एक प्रमेय माना जाता है और बाद में सिद्ध किया जाता है, इसलिए x1 जैसे भावों को उचित परिभाषा नहीं माना जाता है। सौभाग्य से, क्या क्रमबद्ध जोड़ी परिभाषा के अनुसार टाइप-लेवल के रूप में है या धारणा के अनुसार, सामान्तया प्राचीन के रूप में लिया जाता है, इससे कोई फर्क नहीं पड़ता है।

उपयोगी बड़े समुच्चयो की स्वीकार्यता

एनएफ और एनएफयू + इन्फिनिटी + चॉइस, नीचे वर्णित और ज्ञात सुसंगत दो प्रकार के समुच्चयो के निर्माण की अनुमति देते हैं, जो कि जेडएफसी और इसके उचित विस्तारण के लिए अस्वीकृत रूप में हैं क्योंकि वे बहुत बड़े रूप में होते है। कुछ समुच्चय सिद्धांत उचित वर्गों के शीर्षक के अनुसार इन संस्थाओं को स्वीकार करते हैं।

  • यूनिवर्सल समुच्चय वी एक स्तरीकृत सूत्र के रूप में होते है, सार्वभौमिक समुच्चय v = {x |x = x} अभिबोध के रूप में उपस्थित होते है। एक तत्काल परिणाम यह है कि सभी समुच्चयो में पूरक समुच्चय सिद्धांत होते हैं और एनएफ के अनुसार पूरे समुच्चय थ्योरिटिक ब्रह्मांड में एक बूलियन बीजगणित संरचना के रूप में होती है।
  • मौलिक संख्या और क्रमसूचक संख्या नंबर एनएफ और टीएसटी में, एन तत्वों वाले सभी समुच्चयो का समुच्चय यहां का परिपत्र तर्क केवल स्पष्ट रूप में उपस्थित है। इसलिए प्रमुख नंबरों की फ्रेज की परिभाषा एनएफ और एनएफयू में काम करती है, एक प्रमुख नंबर विषमता के संबंध (गणित) के अनुसार समुच्चयो की समानता वर्ग के रूप में होती है, समुच्चय ए और बी विषम रूप में होते है यदि उनके बीच एक द्विभाजन उपस्थित होते है, तो हम जिस स्थिति में हम लिखते हैं। इसी तरह, एक क्रमिक संख्या सुव्यवस्थित समुच्चय का तुल्यता वर्ग के रूप में होता है ।

परिमित एक्सिओम्स

थिओडोर हैल्परिन ने 1944 में दिखाया कि अभिबोध इसके उदाहरणों के परिमित संयोजन के बराबर होता है। इसलिए एनएफ को सूक्ष्म रूप से एक्सिओम्स किया जा सकता है। इस तरह के परिमित एक्सिओम्स का एक लाभ यह है कि यह स्तरीकरण की धारणा के माध्यम से प्रकारों के अप्रत्यक्ष संदर्भ को समाप्त कर देता है। मेटामैथ वेबसाइट पर न्यू फ़ाउंडेशन के लिए मेटामैथ डेटाबेस हैल्परिन के परिमित एक्सिओम्स को लागू करता है।[4][5]

होम्स का मानना ​​है कि स्तरीकृत अभिबोध का एक्सिओम्स है, जबकि एक शक्तिशाली उपकरण, एक परिमित एक्सिओम्स में अक्षीयकरण की तुलना में बिल्कुल भी सहज नहीं होता है, जो सभी प्राकृतिक बुनियादी निर्माणों के अनुरूप हैं। इसलिए, एनएफयू के अपने परिचय में उन्होंने उन प्राकृतिक बुनियादी निर्माणों को एक्सिओम्स के रूप में लेने का विकल्प चुना और बाद में एक प्रमेय के रूप में स्तरीकृत समझ को साबित किया।

कार्टेशियन क्लोजर

श्रेणी जिसकी वस्तुएं एनएफ के समुच्चय के रूप में होती है और जिनके तीर आकृती उन समुच्चयो के बीच के फलन के रूप में हैं, कार्टेशियन क्लोजर श्रेणी नहीं होती है;[6] चूंकि एनएफ में कार्टेशियन क्लोजर होने का अभाव होता है, इसलिए प्रत्येक फलन को न्यूरिंग नहीं किया जा सकता है क्योंकि कोई भी सहज रूप से उम्मीद कर सकता है और एनएफ एक टॉपोज़ के रूप में नहीं है।

स्थिरता की समस्या और संबंधित आंशिक परिणाम

कई वर्षों के लिए, एनएफ के साथ बड़ी समस्या यह रही है कि यह किसी भी अन्य प्रसिद्ध एक्सिओम्स प्रणाली के साथ समरूपता सिद्ध नहीं हुआ है जिसमें अंकगणित को मॉडल किया जा सकता है।एनएफ पसंद के एक्सिओम्स को रोक देता है, और इस तरह अनंत (स्पेकर, 1953) के एक्सिओम्स सिद्ध होता है।लेकिन यह भी जाना जाता है (रोनाल्ड जेन्सेन, 1969) जो कि यूरेलमेंट्स (कई अलग -अलग वस्तुओं की कमी वाले सदस्यों की कमी) की अनुमति देता है, एनएफयू की पैप्रमाणित र करता है, एक सिद्धांत जो मीनो अंकगणित के सापेक्ष सुसंगत है;यदि अनंत और पसंद को जोड़ा जाता है, तो परिणामी सिद्धांत में अनंत या बंधे हुए ज़रमेलो समुच्चय सिद्धांत के साथ टाइप सिद्धांत के समान स्थिरता की शक्ति होती है।(एनएफयू एक प्रकार के सिद्धांत TSTU से मेल खाती है, जहां टाइप 0 में urelements हैं, न कि केवल एक खाली समुच्चय ।) एनएफ के अन्य अपेक्षाकृत सुसंगत वेरिएंट हैं।

एनएफयू, मोटे तौर पर बोल रहा है, एनएफ की तुलना में कमजोर है, क्योंकि एनएफ में, ब्रह्मांड का शक्ति समुच्चय ही ब्रह्मांड है, जबकि एनएफयू में, ब्रह्मांड का शक्ति समुच्चय ब्रह्मांड की तुलना में सख्ती से छोटा हो सकता है (ब्रह्मांड का शक्ति समुच्चय सम्मलित हैकेवल समुच्चय , जबकि ब्रह्मांड में urelements हो सकते हैं)।यह आवश्यक रूप से एनएफयू + पसंद में स्थिति ा है।

अर्नस्ट स्पेकर ने दिखाया है कि एनएफ टीएसटी + AMB के साथ समानता है, जहां AMB 'विशिष्ट अस्पष्टता' की एक्सिओम्स योजना है जो प्रमाणित करता है किसी भी सूत्र के लिए , प्रत्येक प्रकार के सूचकांक को बढ़ाकर प्राप्त सूत्र होने के नाते एक - एक करके।एनएफ एक प्रकार के शिफ्टिंग ऑटोमोर्फिज्म के साथ संवर्धित सिद्धांत के साथ भी समानतापूर्ण है, एक ऑपरेशन जो एक द्वारा एक प्रकार को बढ़ाता है, अगले उच्च प्रकार पर प्रत्येक प्रकार की मैपिंग करता है, और समानता और सदस्यता संबंधों को संरक्षित करता है (और जो कॉम्प्रिहेंशन के उदाहरणों में उपयोग नहीं किया जा सकता है: यहसिद्धांत के लिए बाहरी है)।एनएफ के संबंधित टुकड़ों के बारे में टीएसटी के विभिन्न टुकड़ों के लिए समान परिणाम हैं।

उसी वर्ष (1969) में कि रोनाल्ड जेन्सेन ने एनएफयू सुसंगत सिद्ध किया, ग्रिशिन सिद्ध हुआ एक जैसा। पूर्ण विस्तार (कोई urelements) और कॉम्प्रिहेंशन के उन उदाहरणों के साथ एनएफ का टुकड़ा है जो केवल तीन प्रकारों का उपयोग करके स्तरीकृत किया जा सकता है।यह सिद्धांत गणित के लिए एक बहुत ही अजीब माध्यम है (चूंकि इस अजीबता को कम करने के लिए प्रयास किए गए हैं), मोटे तौर पर क्योंकि एक क्रमबद्ध जोड़ी के लिए कोई स्पष्ट परिभाषा नहीं है।इस अजीबता के बावजूद, बहुत रोचक है क्योंकि टीएसटी के प्रत्येक अनंत मॉडल को तीन प्रकारों तक सीमित कर दिया गया है जो एएमबी को संतुष्ट करता है।इसलिए ऐसे प्रत्येक मॉडल के लिए, का एक मॉडल है एक ही सिद्धांत के साथ।यह चार प्रकारों के लिए नहीं है: एनएफ के रूप में एक ही सिद्धांत है, और हमें पता नहीं है कि चार प्रकारों के साथ टीएसटी का एक मॉडल कैसे प्राप्त किया जाए जिसमें एएमबी धारण करता है।

1983 में, मार्सेल क्रेबी ने एनएफआई नामक एक प्रणाली को लगातार सिद्ध किया, जिनके एक्सिओम्स अप्रतिबंधित विस्तार हैं और कॉम्प्रिहेंशन के उन उदाहरणों में जिसमें कोई भी चर नहीं दिया गया है, जो समुच्चय की तुलना में अधिक प्रकार से अधिक नहीं है।यह एक प्रभावशाली प्रतिबंध है, चूंकि एनएफआई एक विधेय सिद्धांत नहीं है: यह प्राकृतिक संख्याओं के समुच्चय को परिभाषित करने के लिए पर्याप्त प्रभाव को स्वीकार करता है (सभी आगमनात्मक समुच्चयो के चौराहे के रूप में परिभाषित किया गया है; ध्यान दें कि आगमनात्मक समुच्चय उसी प्रकार के होते हैं जैसे समुच्चय समुच्चय के रूप में होता है।प्राकृतिक संख्याओं को परिभाषित किया गया है)।Crabbé ने NFI के एक उप सिद्धांत पर भी चर्चा की, जिसमें केवल पैरामीटर (मुक्त चर और बाध्य चर) को कॉम्प्रिहेंशन के एक उदाहरण द्वारा उपस्थित समुच्चय के प्रकार को निर्धारित करने की अनुमति दी जाती है।उन्होंने परिणाम विधेय एनएफ (एनएफपी) कहा;यह निश्चित रूप से, संदेह है कि क्या स्व-सदस्यीय ब्रह्मांड के साथ कोई भी सिद्धांत वास्तव में भविष्य कहनेवाला है।क्या होम्स है [date missing] दिखाया गया है कि एनएफपी में समानता के एक्सिओम्स ता के बिना प्रिंसिपिया मैथेमेटिका के प्रकारों के विधेय सिद्धांत के रूप में एक ही स्थिरता की शक्ति है।

2015 के बाद से, ZF के सापेक्ष एनएफ की स्थिरता के रान्डेल होम्स द्वारा कई उम्मीदवार प्रमाण Arxiv और तर्कशास्त्री के होम पेज पर उपलब्ध हैं।होम्स टीएसटी के एक 'अजीब' संस्करण की समानता को प्रदर्शित करता है, अर्थात् टीटीटीλ - 'λ- प्रकारों के साथ पेचीदा प्रकार का सिद्धांत' - एनएफ के साथ।होम्स नेक्स्ट से पता चलता है कि टीटीटीλ ZFA के सापेक्ष सुसंगत है, अर्थात्, परमाणुओं के साथ ZF लेकिन पसंद के बिना।होम्स ZFA+C, अर्थात्, ZF के साथ परमाणुओं और पसंद के साथ, ZFA के एक वर्ग मॉडल में निर्माण करके इसे प्रदर्शित करता है, जिसमें 'कार्डिनल्स के पेचीदा जाले' सम्मलित हैं।उम्मीदवार के प्रमाण सभी लंबे हैं, लेकिन अभी तक एनएफ समुदाय द्वारा किसी भी अपूरणीय दोषों की पहचान नहीं की गई है।

कैसे एनएफ (u) समुच्चय -सिद्धांतवादी विरोधाभासों से बचता है

एनएफ समुच्चय सिद्धांत के तीन प्रसिद्ध विरोधाभासों से स्पष्ट है।वह एनएफयू, एक स्थिरता (मीनो अंकगणित के सापेक्ष) सिद्धांत, भी विरोधाभासों से बचता है इस तथ्य में किसी का विश्वास बढ़ा सकता है।

रसेल का विरोधाभास: एक स्तरीकृत सूत्र नहीं है, इसलिए का अस्तित्व कॉम्प्रिहेंशन के किसी भी उदाहरण द्वारा मुखर नहीं है।क्वीन ने कहा कि उन्होंने इस विरोधाभास के साथ एनएफ का निर्माण किया।

सबसे बड़े कार्डिनल नंबर के कैंटर के विरोधाभास में कैंटर के प्रमेय के आवेदन को सार्वभौमिक समुच्चय का शोषण करता है।कैंटर का प्रमेय कहता है (जेडएफसी को देखते हुए) कि सत्ता स्थापित किसी भी समुच्चय की से बड़ा है (से कोई इंजेक्टिव फलन (एक-से-एक मानचित्र) नहीं हो सकता है में )।अब निश्चित रूप से एक इंजेक्शन कार्य है में , यदि सार्वभौमिक समुच्चय है!संकल्प के लिए आवश्यक है कि कोई यह देखता है प्रकार के सिद्धांत में कोई अर्थ नहीं है: का प्रकार के प्रकार से अधिक है ।सही ढंग से टाइप किया गया संस्करण (जो अनिवार्य रूप से समान कारणों के लिए प्रकारों के सिद्धांत में एक प्रमेय है कि कैंटर के प्रमेय का मूल रूप ज़रमेलो -फ्रेनकेल समुच्चय सिद्धांत में काम करता है) , कहाँ एक-तत्व सबसमुच्चय का समुच्चय है ।ब्याज के इस प्रमेय का विशिष्ट उदाहरण है : समुच्चय की तुलना में कम एक-तत्व समुच्चय हैं (और सामान्य वस्तुओं की तुलना में बहुत कम एक-तत्व समुच्चय , यदि हम एनएफयू में हैं)।स्पष्ट द्विभाजन ब्रह्मांड से एक-तत्व समुच्चय तक एक समुच्चय नहीं है;यह एक समुच्चय नहीं है क्योंकि इसकी परिभाषा अप्रतिबंधित है।ध्यान दें कि एनएफयू के सभी ज्ञात मॉडल में यह स्थिति ा है ;च्वाइस किसी को न केवल यह सिद्ध करने की अनुमति देता है कि urelements हैं, बल्कि इसके बीच कई कार्डिनल हैं और

अब कुछ उपयोगी धारणाएं प्रस्तुत कर सकते हैं।एक समुच्चय जो सहज रूप से अपील को संतुष्ट करता है कहा जाता है कि कैंटोरियन: एक कैंटोरियन समुच्चय कैंटर के प्रमेय के सामान्य रूप को संतुष्ट करता है।एक समुच्चय जो आगे की स्थिति को संतुष्ट करता है , सिंगलटन (गणित) मानचित्र का प्रतिबंध (गणित), एक समुच्चय न केवल कैंटोरियन समुच्चय है, बल्कि 'दृढ़ता से कैंटोरियन' है।

सबसे बड़ी क्रमिक संख्या का ब्यूरली-फ़ॉर्टी विरोधाभास निम्नानुसार है।परिभाषित करें (भोले समुच्चय सिद्धांत के बाद) ऑर्डिनल को समाकृतिकता के अनुसार कल्याण के समतुल्य वर्गों के रूप में।ऑर्डिनल्स पर एक स्पष्ट प्राकृतिक सुव्यवस्थित है;चूंकि यह एक अच्छी तरह से क्रमबद्ध है ।यह सिद्ध करने के लिए सीधा है (ट्रांसफ़िनाइट इंडक्शन द्वारा) कि किसी दिए गए ऑर्डिनल से कम ऑर्डिनल पर प्राकृतिक क्रमबद्ध का क्रमबद्ध प्रकार है अपने आप।लेकिन इसका अर्थ है कि क्रमबद्ध का क्रमबद्ध प्रकार है और इसलिए सभी ऑर्डिनल्स के क्रमबद्ध प्रकार की तुलना में कड़ाई से कम है - लेकिन बाद वाला, परिभाषा के अनुसार है, अपने आप!

एनएफ (यू) में विरोधाभास का समाधान इस अवलोकन से प्रारंभ होता है कि क्रमबद्ध के क्रमबद्ध प्रकार से कम से कम की तुलना में एक उच्च प्रकार का है ।इसलिए एक प्रकार का स्तर क्रमबद्ध की गई जोड़ी इसके तर्कों के प्रकार से दो प्रकार अधिक है और सामान्य कुरातोव्स्की ने जोड़ी को चार प्रकारों अधिक से अधिक क्रमबद्ध किया है।किसी भी क्रमबद्ध प्रकार के लिए , हम एक क्रमबद्ध प्रकार को परिभाषित कर सकते हैं एक प्रकार अधिक: यदि , तब क्रमबद्ध का क्रमबद्ध प्रकार है ।टी ऑपरेशन की तुच्छता केवल एक प्रतीत होती है;यह दिखाना आसान है कि टी ऑर्डिनल्स पर एक कड़ाई से मोनोटोनिक कार्य (क्रमबद्ध -प्रेशरिंग) ऑपरेशन है।

अब क्रमबद्ध प्रकारों पर लेम्मा को एक स्तरीकृत तरीके से बहाल किया जा सकता है: ऑर्डिनल्स पर प्राकृतिक क्रमबद्ध का क्रमबद्ध प्रकार है या इस आधार पर किस जोड़ी का उपयोग किया जाता है (हम इसके बाद के स्तर की जोड़ी मानते हैं)।इससे कोई यह अनुमान लगा सकता है कि क्रमबद्ध टाइप ऑर्डिनल्स पर है , और इस तरह ।इसलिए टी ऑपरेशन एक फलन नहीं है;ऑर्डिनल्स से ऑर्डिनल्स के लिए एक कड़ाई से मोनोटोन समुच्चय मैप नहीं हो सकता है जो एक ऑर्डिनल नीचे की ओर भेजता है!चूंकि टी मोनोटोन है, इसलिए हमारे पास है , ऑर्डिनल्स में एक अवरोही अनुक्रम जो एक समुच्चय नहीं हो सकता है।

कोई यह प्रमाणित कर सकता है कि इस परिणाम से पता चलता है कि एनएफ (यू) का कोई भी मॉडल मानक नहीं है, क्योंकि एनएफयू के किसी भी मॉडल में ऑर्डिनल्स बाहरी रूप से अच्छी तरह से क्रमबद्ध नहीं हैं।किसी को इस पर एक स्थिति लेने की आवश्यकता नहीं है, लेकिन यह ध्यान दे सकता है कि यह एनएफयू का एक प्रमेय भी है कि एनएफयू के किसी भी समुच्चय मॉडल में गैर-अच्छी तरह से क्रमबद्ध किए गए ऑर्डिनल हैं;एनएफयू यह निष्कर्ष नहीं निकालता है कि ब्रह्मांड वी एक समुच्चय होने के बावजूद एनएफयू का एक मॉडल है, क्योंकि सदस्यता संबंध एक निर्धारित संबंध नहीं है।

एनएफयू में गणित के एक और विकास के लिए, जेडएफसी में उसी के विकास की तुलना के साथ, SET सिद्धांत में गणित के कार्यान्वयन को देखें।

प्रणाली एमएल के (गणितीय तर्क)

एमएल एनएफ का एक विस्तार है जिसमें उचित कक्षाएं के साथ -साथ समुच्चय भी सम्मलित हैं। विलार्ड वैन ओरमन क्वीन के गणितीय तर्क के 1940 के पहले संस्करण के समुच्चय सिद्धांत ने एनएफ से वॉन न्यूमैन-बर्नेज़-गॉडल समुच्चय सिद्धांत के उचित वर्गों से शादी की और उचित वर्गों के लिए अप्रतिबंधित कॉम्प्रिहेंशन का एक एक्सिओम्स स्कीमा सम्मलित किया।चूँकि J. Barkley Rosser (1942) यह सिद्ध हुआ कि गणितीय तर्क में प्रस्तुत प्रणाली Burali-Forti विरोधाभास के अधीन थी।यह परिणाम एनएफ पर लागू नहीं होता है। Hao Wang (1950) इस समस्या से बचने के लिए एमएल के लिए क्वीन के एक्सिओम्स में संशोधन करने का विधि दिखाया, और क्वीन ने 1951 में गणितीय तर्क के दूसरे और अंतिम संस्करण में परिणामी एक्सिओम्स ता को सम्मलित किया।

वांग ने सिद्ध किया कि यदि एनएफ संगत है तो संशोधित एमएल है, और यह भी दिखाया कि संशोधित एमएल की स्थिरता एनएफ की स्थिरता का अर्थ है।अर्थात्, एनएफ और संशोधित एमएल समान हैं।

एनएफयू के मॉडल

जहां Zermelo-Fraenkel समुच्चय सिद्धांत के मेटामेथेमाटिक्स के लिए प्रारंभिक बिंदु | Zermelo-Fraenkel समुच्चय सिद्धांत संचयी पदानुक्रम का आसान-से-रूपांतरण अंतर्ज्ञान है, एनएफ और एनएफयू की गैर-अच्छी तरह से-संस्थापक इस अंतर्ज्ञान को सीधे लागू नहीं करता है।चूंकि , पहले के चरणों में विकसित समुच्चयो से एक चरण में समुच्चय बनाने के अंतर्ज्ञान को सभी संभावित समुच्चयो से मिलकर एक चरण में समुच्चय बनाने की अनुमति देने के लिए संवर्धित किया जा सकता है, लेकिन पहले के चरणों में गठित समुच्चय , समुच्चय के एक अनुरूप पुनरावृत्ति गर्भाधान देते हैं।[7] थोक में एनएफयू के मॉडल के उत्पादन के लिए एक बहुत सरल विधि है।मॉडल सिद्धांत की प्रसिद्ध प्रोद्योगिकीय ों का उपयोग करते हुए, कोई व्यक्ति ज़रमेलो समुच्चय सिद्धांत के एक गैर-मानक मॉडल का निर्माण कर सकता है (मूल प्रोद्योगिकीय के लिए पूर्ण जेडएफसी के रूप में लगभग प्रबल कुछ भी नहीं है) जिस पर एक बाहरी ऑटोमोर्फिज्म j है (मॉडल का एक समुच्चय नहीं)जो एक रैंक (समुच्चय सिद्धांत) को स्थानांतरित करता है समुच्चय के संचयी पदानुक्रम की।हम सामान्यता के नुकसान के बिना मान सकते हैं ।हम स्वचालितता के बारे में बात करते हैं कि वे क्रमिक के अतिरिक्त रैंक को आगे बढ़ाते हैं क्योंकि हम यह नहीं मानना चाहते हैं कि मॉडल में प्रत्येक क्रमिक एक रैंक का सूचकांक है।

एनएफयू के मॉडल का डोमेन नॉन -स्टैंडर्ड रैंक होगा ।एनएफयू के मॉडल की सदस्यता संबंध होगा

अब यह सिद्ध हो सकता है कि यह वास्तव में एनएफयू का एक मॉडल है।होने देना एनएफयू की भाषा में एक स्तरीकृत सूत्र बनें।सूत्र में सभी चर के प्रकारों का एक असाइनमेंट चुनें जो इस तथ्य को गवाह है कि यह स्तरीकृत है।इस स्तरीकरण द्वारा चर को सौंपे गए सभी प्रकार की तुलना में एक प्राकृतिक संख्या n चुनें।

सूत्र का विस्तार करें एक सूत्र में एनएफयू के मॉडल में सदस्यता की परिभाषा का उपयोग करके ऑटोमोर्फिज्म जे के साथ ज़रमेलो समुच्चय सिद्धांत के गैर -मानक मॉडल की भाषा में।एक समीकरण या सदस्यता कथन के दोनों किनारों पर J की किसी भी शक्ति का अनुप्रयोग इसके सत्य मूल्य को संरक्षित करता है क्योंकि J एक स्वचालितता है।प्रत्येक परमाणु सूत्र में ऐसा आवेदन करें इस तरह से कि प्रत्येक चर x असाइन किया गया प्रकार मैं बिल्कुल के साथ होता है जे के आवेदन।यह एनएफयू सदस्यता बयानों से प्राप्त परमाणु सदस्यता बयानों के रूप के लिए संभव है, और सूत्र को स्तरीकृत किया जा रहा है।प्रत्येक परिमाणित वाक्य प्रपत्र में परिवर्तित किया जा सकता है (और इसी तरह अस्तित्वगत क्वांटिफायर के लिए)।इस परिवर्तन को प्रत्येक जगह ले जाएं और एक सूत्र प्राप्त करें जिसमें j को एक बाध्य चर पर कभी भी लागू नहीं किया जाता है।

किसी भी मुक्त चर y को चुनें निर्दिष्ट प्रकार i।आवेदन करना एक सूत्र प्राप्त करने के लिए पूरे सूत्र के लिए समान रूप से जिसमें y j के किसी भी आवेदन के बिना दिखाई देता है।अब उपस्थित है (क्योंकि j केवल मुक्त चर और स्थिरांक के लिए लागू होता है), संबंधित है , और वास्तव में वे y सम्मलित हैं जो मूल सूत्र को संतुष्ट करते हैं एनएफयू के मॉडल में। एनएफयू के मॉडल में यह एक्सटेंशन है (एनएफयू के मॉडल में सदस्यता की विभिन्न परिभाषा के लिए जे का अनुप्रयोग सही है)।यह स्थापित करता है कि स्तरीकृत कॉम्प्रिहेंशन एनएफयू के मॉडल में है।

यह देखने के लिए कि कमजोर एक्सटेंशनलिटी होल्ड सीधी है: प्रत्येक गैर -रिक्त तत्व का नॉन -स्टैंडर्ड मॉडल से एक अद्वितीय विस्तार विरासत में मिला, खाली समुच्चय अपने सामान्य विस्तार को भी विरासत में मिला है, और अन्य सभी ऑब्जेक्ट्स urelements हैं।

मूल विचार यह है कि ऑटोमोर्फिज्म j शक्ति समुच्चय को कोड करता है हमारे ब्रह्मांड का इसकी बाहरी आइसोमॉर्फिक कॉपी में हमारे ब्रह्मांड के अंदर।ब्रह्मांड के सबसमुच्चय को कोडिंग नहीं करने वाली शेष वस्तुओं को urelements के रूप में माना जाता है।

यदि एक प्राकृतिक संख्या n है, एक को एनएफयू का एक मॉडल मिलता है जो प्रमाणित करता है कि ब्रह्मांड परिमित है (यह बाहरी रूप से अनंत है, निश्चित रूप से)।यदि अनंत है और पसंद का एक्सिओम्स जेडएफसी के गैर -मानक मॉडल में धारण करता है, एक एनएफयू + इन्फिनिटी + पसंद का एक मॉडल प्राप्त करता है।

एनएफयू में गणितीय नींव की आत्मनिर्भरता

दार्शनिक कारणों से, यह ध्यान रखना महत्वपूर्ण है कि इस प्रमाण को पूरा करने के लिए जेडएफसी या किसी भी संबंधित प्रणाली में काम करना आवश्यक नहीं है।गणित के लिए एक नींव के रूप में एनएफयू के उपयोग के विरुद्ध एक सामान्य तर्क यह है कि इस पर भरोसा करने के कारणों को उस अंतर्ज्ञान के साथ करना है जो जेडएफसी सही है।यह टीएसटी (वास्तव में TSTU) को स्वीकार करने के लिए पर्याप्त है।रूपरेखा में: टाइप सिद्धांत TSTU (प्रत्येक पॉजिटिव टाइप में urelements की अनुमति) को एक मेटाथेरी के रूप में लें और TSTU में TSTU के समुच्चय मॉडल के सिद्धांत पर विचार करें (ये मॉडल समुच्चय के अनुक्रम होंगे (मेटाथेरी में एक ही प्रकार के सभी) प्रत्येक के एम्बेडिंग के साथ में के शक्ति समुच्चय के कोडिंग एम्बेडिंग में एक प्रकार के प्रतिष्ठित तरीके से)।एक एम्बेडिंग को देखते हुए में (आधार प्रकार के सबसमुच्चय के साथ आधार प्रकार के तत्वों की पहचान करना), एम्बेडिंग को प्रत्येक प्रकार से अपने उत्तराधिकारी में प्राकृतिक तरीके से परिभाषित किया जा सकता है।इसे ट्रांसफ़िनेट अनुक्रमों के लिए सामान्यीकृत किया जा सकता है देखभाल के साथ।

ध्यान दें कि समुच्चय के ऐसे अनुक्रमों का निर्माण उस प्रकार के आकार तक सीमित है जिसमें उनका निर्माण किया जा रहा है;यह TSTU को अपनी स्वयं की स्थिरता सिद्ध करने से रोकता है (TSTU + INFINITY TSTU की स्थिरता सिद्ध कर सकता है; TSTU + INFINITY की स्थिरता को सिद्ध करने के लिए एक प्रकार का एक प्रकार की आवश्यकता है जिसमें कार्डिनलिटी का एक समुच्चय है , जो कि प्रबल मान्यताओं के बिना TSTU+अनंत में उपस्थित नहीं हो सकता है)।अब मॉडल सिद्धांत के समान परिणामों का उपयोग एनएफयू के एक मॉडल के निर्माण के लिए किया जा सकता है और यह सत्यापित किया जा सकता है कि यह एनएफयू का एक मॉडल है, उसी तरह से, साथ ही साथ 'के स्थान पर उपयोग किया जा रहा है सामान्य निर्माण में।अंतिम कदम यह देखना है कि चूंकि एनएफयू सुसंगत है, इसलिए हम अपने मेटाथेरी में पूर्ण प्रकारों के उपयोग को छोड़ सकते हैं, टीएसटीयू से एनएफयू तक मेटाथेरी को बूटस्ट्रैप कर सकते हैं।

ऑटोमोर्फिज्म जे के बारे में तथ्य

इस तरह के एक मॉडल का ऑटोमोर्फिज्म जे एनएफयू में कुछ प्राकृतिक परिचालनों से निकटता से संबंधित है। उदाहरण के लिए यदि डब्ल्यू गैर मानक मॉडल में एक अच्छी तरह से क्रमबद्ध होता है, तो हम यहां मान लेते हैं कि हम क्रमबद्ध की गई जोड़ी का उपयोग करते हैं जिससे कि दो सिद्धांतों में कार्यों की कोडिंग कुछ सीमा तक उपयुक्त रूप में होती है, जो एनएफयू में भी अच्छी तरह से व्यवस्थित है, ज़र्मेलो समुच्चय सिद्धांत के गैर-मानक मॉडल में अच्छी तरह से क्रमबद्ध हैं, लेकिन इसके विपरीत, मॉडल के निर्माण में यूरेलइमेंट्स के निर्माण के कारण नहीं हैं और डब्ल्यू में एनएफयू टाइप α है, फिर J (W) एनएफयू में टाइप T (α) का एक अच्छी तरह से क्रमबद्ध रूप में होता है।

वास्तव में, J को एनएफयू के मॉडल में एक फलन द्वारा कोडित किया जाता है। गैर -मानक मॉडल में फलन जो किसी भी तत्व के सिंगलटन को उसके एकमात्र तत्व में भेजता है, एनएफयू में एक फलन बन जाता है जो प्रत्येक सिंगलटन {x} को भेजता है, जहां x ब्रह्मांड में कोई भी वस्तु है, J (x) को इस फलन को एंडो कहते है और इसमें निम्नलिखित गुण होते है, एंडो सिंगलटन के सेट से समुच्चय के सेट में एक इंजेक्टिव फलन है, जो कि एंडो ({x}) = {एंडो ({y}) | y∈x} प्रत्येक समुच्चय x के लिए है। यह फलन ब्रह्मांड पर एक प्रकार के स्तर की सदस्यता संबंध को परिभाषित कर सकता है, एक मूल गैर -मानक मॉडल की सदस्यता संबंध को पुन: प्रस्तुत करता है।

अनंत के प्रबल एक्सिओम्स

इस खंड में, हमारे सामान्य आधार सिद्धांत एनएफयू + इन्फिनिटी + चॉइस में अनंत के विभिन्न प्रबल एक्सिओम्स को जोड़ने के प्रभाव पर विचार किया जाता है। सुसंगत रूप से ज्ञात इस आधार सिद्धांत में टीएसटी + इन्फिनिटी या जर्मेलो समुच्चय सिद्धांत के रूप में समान शक्ति विद्यमान होती है, जो कि बंधे हुए फार्मूले मैक लेन समुच्चय सिद्धांत तक सीमित है।

कोई इस आधार सिद्धांत को जेडएफसी संदर्भ से प्रचलित अनन्तता के प्रबल एक्सिओम्स को जोड़ सकता है, जैसे कि एक दुर्गम कार्डिनल के रूप में उपस्थित होते है, लेकिन कैंटोरियन और दृढ़ता से कैंटोरियन समुच्चयो के बारे में जोर देने के लिए यह स्वाभाविक है। ऐसे अभिकथनों से न केवल सामान्य प्रकार के बड़े कार्डिनल बन जाते हैं, बल्कि सिद्धांत को अपनी शर्तों पर भी बल मिलता है।

सामान्य प्रबल सिद्धांतों में सबसे कमजोर रूप में है,

  • 'रोसेर की गिनती का एक्सिओम्स प्राकृतिक संख्याओं का समुच्चय एक दृढ़ता से कैंटोरियन समुच्चय होता है।

यह देखने के लिए कि एनएफयू में प्राकृतिक संख्याओं को कैसे परिभाषित किया गया है, प्राकृतिक संख्याओं की समुच्चय सिद्धांतीय परिभाषा को परिभाषित किया गया है। रोसर द्वारा दिए गए इस एक्सिओम्स का मूल रूप समुच्चय है, प्रत्येक प्राकृतिक संख्या n के लिए n सदस्य हैं। यह सहज रूप से स्पष्ट है कि एनएफयू में जो सिद्ध होता है वह समुच्चय होता है सदस्य(जहां कार्डिनल्स पर टी ऑपरेशन द्वारा परिभाषित किया गया है ;यह प्राकृतिक संख्याओं सहित एक कार्डिनल के प्रकार को बढ़ाता है। किसी भी कार्डिनल नंबर के लिए जोर देने के लिए यह प्रमाणित करने के लिए बराबर है कि उस कार्डिनलिटी के समुच्चय a कैंटोरियन के रूप में होता है, भाषा के सामान्य दुरुपयोग से हम ऐसे कार्डिनल्स को कैंटोरियन कार्डिनल्स के रूप में संदर्भित करते हैं। यह स्पष्ट है कि यह कथन कि प्रत्येक प्राकृतिक संख्या कैंटोरियन के रूप में होता है, यह इस कथन के समतुल्य है कि सभी प्राकृतिक संख्याओं का का समुच्चय दृढ़ता से कैंटोरियन है।

गिनती एनएफयू के अनुरूप होती है, लेकिन इसकी निरंतरता की शक्ति में योग्य वृद्धि होती है, जैसा कि कोई अंकगणित के क्षेत्र में अपेक्षा नहीं करता है, लेकिन उच्च समुच्चय सिद्धांत में एनएफयू + अनंतता को सिद्ध करती है कि प्रत्येक के रूप में उपस्थित होते है, लेकिन ऐसा नहीं है उपस्थित एनएफयू + काउंटिंग से अनंत तक सिद्ध होता है और आगे प्रत्येक के के लिए n के अस्तित्व को सिद्ध करता है लेकिन के अस्तित्व को नहीं सिद्ध करता है।(बेथ नंबर देखें)।

गणना का तात्पर्य तुरंत है कि किसी को स्तरीकरण के प्रयोजनों के लिए प्राकृतिक संख्याओं के समुच्चय तक सीमित चरों को प्रकार निर्दिष्ट करने की आवश्यकता नहीं है; यह एक प्रमेय है कि एक प्रबलतया से कैंटोरियन समुच्चय की शक्ति समुच्चय प्रबलतया से कैंटोरियन के रूप में है, इसलिए यह आवश्यक नहीं है कि चर के प्रकार निर्धारित किए जायें जो प्राकृतिक संख्याओं के किसी भी पुनरावृत्त शक्ति समुच्चय तक सीमित हों, अथवा वास्तविक संख्याओं के समुच्चय तथा वास्तविक संख्याओं के समुच्चय जैसे परिचित समुच्चयों के समुच्चय को वास्तविक संख्याओं के समुच्चय तक सीमित हों। सिंगलटन ब्रैकेट्स के साथ प्राकृतिक संख्या मान या संबंधित प्रकार के मान के लिए ज्ञात चर की व्याख्या न करने की सुविधा या टी संक्रिया को स्तरीकृत समुच्चय परिभाषा के लिए लागू करने की सुविधा के मुकाबले अभ्यास में समुच्चय की सामर्थ्य कम महत्वपूर्ण है

गिनती का तात्पर्य अनंत है; नीचे दिए गए एक्सिओम्स में से प्रत्येक को अनंत के प्रबल वेरिएंट के प्रभाव को प्राप्त करने के लिए एनएफयू + इन्फिनिटी से जुड़ने की आवश्यकता होती है; अली केयर ने एनएफयू + ब्रह्मांड के मॉडल में इनमें से कुछ एक्सिओम्स की शक्ति की जांच की है।

ऊपर निर्मित प्रकार का एक मॉडल केवल इस स्थिति में गिनती करता है कि ऑटोमोर्फिज्म जे ज़र्मेलो समुच्चय सिद्धांत के अंतर्निहित गैर -मानक मॉडल में सभी प्राकृतिक संख्याओं को ठीक करता है।

अगला प्रबल एक्सिओम्स के रूप में है जिस पर हम विचार करते हैं वह है

  • 'प्रबलतया से कैंटोरियन पृथक्करण का एक्सिओम्स : किसी भी प्रबलतया से कैंटोरियन समुच्चय ए और किसी भी सूत्र के लिए आवश्यक नहीं कि स्तरीकृत! समुच्चय के अस्तित्व में उपस्थित होते है।

तत्काल परिणामों में अस्थिर परिस्थितियों के लिए गणितीय प्रेरण के रूप में सम्मलित होते है, जो गिनती का परिणाम नहीं है; लेकिन सभी प्राकृतिक संख्याओं पर प्रेरण के सभी अस्थिर उदाहरण के रूप में नहीं हैं।

यह एक्सिओम्स आश्चर्यजनक रूप से प्रबल रूप में होता है। रॉबर्ट सोलोवे के अप्रकाशित कार्य से पता चलता है कि सिद्धांत की निरंतरता शक्ति एनएफयू * = एनएफयू + गिनती + प्रबलतया से कैंटोरियन पृथक्करण ज़र्मेलो समुच्चय सिद्धांत + प्रतिस्थापन के समान है।

यह एक्सिओम्स ऊपर निर्मित पसंद के साथ एक मॉडल के रूप में है, यदि ऑर्डिनल जो जे द्वारा तय किए गए हैं और यदि ज़र्मेलो समुच्चय सिद्धांत के अंतर्निहित गैर -मानक मॉडल में जे द्वारा तय किए गए केवल ऑर्डिनल पर हावी होता है और ऐसे किसी भी क्रम के शक्ति समुच्चय भी मानक के रूप में हैं। यह स्थिति पर्याप्त है लेकिन आवश्यक नहीं है।

अगला है

  • 'कैंटोरियन समुच्चय का एक्सिओम्स ': प्रत्येक कैंटोरियन समुच्चय दृढ़ता से कैंटोरियन के रूप में है।

यह बहुत ही सरल कथन अत्यंत मजबूत है। सोलोवे ने सिद्धांत एनएफयूए = एनएफयू + इन्फिनिटी + कैंटोरियन समुच्चय के साथ जेडएफसी + एक स्कीमा के साथ प्रत्येक ठोस प्राकृतिक संख्या n के लिए एक n मेंहलो कार्डिनल के अस्तित्व पर जोर देते हुए सिद्धांत की स्थिरता शक्ति का सटीक तुल्यता दिखाया है। अली इनायत ने दिखाया है कि अच्छी तरह से स्थापित विस्तारित संबंधों के कैंटोरियन तुल्यता वर्गों का सिद्धांत जो जेडएफसी के संचयी पदानुक्रम के प्रारंभिक खंड की एक प्राकृतिक तस्वीर देता है, सीधे n मेंहलो कार्डिनल्स के साथ जेडएफसी के विस्तार की व्याख्या करता है। जिसमें एक मॉडल देने के लिए इस सिद्धांत के एक मॉडल पर एक क्रमपरिवर्तन प्रोद्योगिकीय लागू की जाती है, जिसमें आनुवंशिक रूप से दृढ़ता से कैंटोरियन सामान्य सदस्यता संबंध मॉडल के साथ जेडएफसी के प्रबल विस्तार को समुच्चय करता है।

यह एक्सिओम्स पसंद के साथ ऊपर निर्मित प्रकार के एक मॉडल में रखता है, यदि जेएफसी के अंतर्निहित गैर-मानक मॉडल में जे द्वारा तय किए गए ऑर्डिनल मॉडल के अध्यादेशों के प्रारंभिक उचित वर्ग खंड के रूप में हैं।

आगे विचार करें

  • 'कैंटोरियन पृथक्करण का एक्सिओम्स ': किसी भी कैंटोरियन समुच्चय के लिए और किसी भी सूत्र के लिए आवश्यक नहीं कि स्तरीकृत! समुच्चय के रूप में उपस्थित है।

यह दो पूर्ववर्ती एक्सिओम्स के प्रभाव को जोड़ती है और वास्तव में इससे भी अधिक प्रबल होती है, ठीक है कि कैसे ज्ञात नहीं है। अप्रतिबंधित गणितीय प्रेरण यह सिद्ध करने में सक्षम बनाता है कि प्रत्येक एन के लिए एन-महलो कार्डिनल के रूप में होते है, जो कि कैंटोरियन समुच्चय दिए गए हैं, जो जेडएफसी का विस्तार देता है जो पिछले एक की तुलना में भी अधिक प्रबल है, जो केवल यह प्रमाणित करता है कि प्रत्येक ठोस प्राकृतिक संख्या के लिए एन-माह्लोस हैं, गैर-मानक काउंटर उदाहरणों की संभावना को खुला छोड़ते है।

यह एक्सिओम्स ऊपर वर्णित प्रकार के एक मॉडल के रूप में होता है, यदि J द्वारा तय किया गया प्रत्येक क्रमिक मानक है और J द्वारा तय किए गए एक क्रमिक का प्रत्येक शक्ति समुच्चय भी जेडएफसी के अंतर्निहित मॉडल में मानक के रूप में है। फिर, यह स्थिति पर्याप्त है लेकिन आवश्यक रूप में नहीं है।

एक अध्यादेश को कैंटोरियन कहा जाता है यदि यह टी द्वारा तय किया जाता है और दृढ़ता से कैंटोरियन यदि यह केवल कैंटोरियन ऑर्डिनल्स पर हावी होता है, इसका अर्थ है कि यह स्वयं कैंटोरियन ऊपर निर्मित प्रकार के मॉडल में, एनएफयू के कैंटोरियन ऑर्डिनल्स जे द्वारा तय किए गए ऑर्डिनल्स के अनुरूप हैं। वे एक वस्तु नहीं हैं क्योंकि दो सिद्धांतों में क्रमिक संख्याओं की विभिन्न परिभाषाओं का उपयोग किया जाता है।

कैंटोरियन समुच्चय के लिए शक्ति के बराबर है

  • 'बड़े अध्यादेशों का एक्सिओम्स ': प्रत्येक गैर-कैटलरियन ऑर्डिनल के लिए एक प्राकृतिक संख्या n के रूप में होता है जैसे कि है।

याद करें कि सभी ऑर्डिनल्स पर प्राकृतिक क्रमबद्ध प्रकार है। यहाँ कैंटोरियन समुच्चय का अर्थ है, यदि हमारे पास विकल्प है लेकिन किसी भी स्थिति में स्थिरता की शक्ति के स्तर के रूप में होती है। यह उल्लेखनीय है कि कोई भी परिभाषित कर सकता है : यह nth शब्द है लंबाई n के क्रम के किसी भी परिमित अनुक्रम की तरह , है, प्रत्येक उपयुक्त के लिए यह परिभाषा पूरी तरह से असंरचित है। की विशिष्टता से सिद्ध किया जा सकता है, उन n के लिए जिसके लिए यह उपस्थित है और इस धारणा के बारे में एक निश्चित मात्रा में सामान्य ज्ञान के तर्क को बाहर किया जा सकता है, यह दिखाने के लिए पर्याप्त है कि बड़े ऑर्डिनल्स का अर्थ पसंद की उपस्थिति में कैंटोरियन समुच्चय है। इस एक्सिओम्स के जटिल औपचारिक कथन के अतिरिक्त यह एक बहुत ही स्वाभाविक धारणा के रूप में है, जो टी की कार्रवाई को यथासंभव सरल बनाने के लिए होती है।

ऊपर निर्मित प्रकार का एक मॉडल बड़े ऑर्डिनल्स को संतुष्ट करता है, यदि J द्वारा स्थानांतरित किए गए ऑर्डिनल्स वास्तव में ऑर्डिनल के रूप में हैं जो कुछ हावी हैं जेडएफसी के अंतर्निहित गैर -मानक मॉडल के रूप में होते है।

लघु अध्यादेशों का एक्सिओम्स : किसी भी सूत्र φ के लिए, एक समुच्चय ए है, जैसे कि ए के तत्व जो दृढ़ता से कैंटोरियन ऑर्डिनल्स हैं, वास्तव में दृढ़ता से कैंटोरियन ऑर्डिनल के रूप में हैं जैसे कि φ हैं।

सोलोवे ने एनएफयूबी = एनएफयू + इन्फिनिटी + कैंटोरियन समुच्चय + मोर्स केली समुच्चय थ्योरी के साथ स्मॉल ऑर्डिनल्स की स्थिरता शक्ति में सटीक समानता दिखाई है और यह दावा किया है कि सभी ऑर्डिनल्स का उचित वर्ग ऑर्डिनल एक कमजोर कॉम्पैक्ट कार्डिनल के रूप में है। यह वास्तव में बहुत प्रबल है इसके अतिरिक्त एनएफयूबी- जो कैंटोरियन समुच्चय के साथ एनएफयूबी के रूप में है और एनएफयूबी को समान शक्ति के रूप में देखा जाता है

ऊपर निर्मित प्रकार का एक मॉडल इस एक्सिओम्स को संतुष्ट करेता है। यदि J द्वारा तय किए गए ऑर्डिनल्स का प्रत्येक संग्रह जेडएफसी के अंतर्निहित नॉन -स्टैंडर्ड मॉडल में 'J' 'द्वारा तय किए गए ऑर्डिनल के साथ ऑर्डिनल्स के कुछ समुच्चय के फेसेस है।

इससे भी प्रबल सिद्धांत एनएफयूएम = एनएफयू + इन्फिनिटी + लार्ज ऑर्डिनल्स + स्मॉल ऑर्डिनल्स है। यह मोर्स-केली समुच्चय सिद्धांत के बराबर है, जो कक्षाओं पर एक विधेय के साथ है, जो उचित वर्ग के अध्यादेश पर एक पूर्ण गैर-व्यावहारिक अल्ट्राफिल्टर के रूप में होती है। वास्तव में, यह मोर्स -केली समुच्चय सिद्धांत है + उचित वर्ग ऑर्डिनल एक औसत अंकित का कार्डिनल है!

यहां प्रोद्योगिकीय विवरण का मुख्य बिंदु नहीं हैं, जो कि एनएफयू के दावे के संदर्भ में उचित और स्वाभाविक रूप में होता है, जेडएफसी संदर्भ में अनंतता के बहुत प्रबल एक्सिओम्स के लिए शक्ति के बराबर हो जाते हैं। यह तथ्य ऊपर वर्णित एनएफयू के मॉडल के अस्तित्व और इन एक्सिओम्स को संतुष्ट करने के बीच संबंध से संबंधित होता है और जेडएफसी के मॉडल के अस्तित्व में विशेष गुण वाले ऑटोमोर्फिज्म को संतुष्ट करता है।

यह भी देखें

टिप्पणियाँ

  1. Holmes, Randall, 1998. Elementary Set Theory with a Universal Set. Academia-Bruylant.
  2. Quine's New Foundations - Stanford Encyclopedia of Philosophy
  3. Hailperin, T (1944). "A set of axioms for logic". Journal of Symbolic Logic. 9 (1): 1–19. doi:10.2307/2267307. JSTOR 2267307. S2CID 39672836.
  4. Hailperin, T (1944). "A set of axioms for logic". Journal of Symbolic Logic. 9 (1): 1–19. doi:10.2307/2267307. JSTOR 2267307. S2CID 39672836.
  5. Fenton, Scott, 2015. New Foundations Explorer Home Page.
  6. Forster, Thomas (October 14, 2007). "Why the Sets of NF do not form a Cartesian-closed Category" (PDF). www.dpmms.cam.ac.uk.
  7. Forster (2008).


संदर्भ


बाहरी संबंध