मल्टीस्लाइस: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 29: Line 29:
   \Psi({\mathbf{r}}) &= \Psi_{0}({\mathbf{r}}) + \int{G({\mathbf{r,r'}})V({\mathbf{r'}})\Psi({\mathbf{r'}})d{\mathbf{r'}}}
   \Psi({\mathbf{r}}) &= \Psi_{0}({\mathbf{r}}) + \int{G({\mathbf{r,r'}})V({\mathbf{r'}})\Psi({\mathbf{r'}})d{\mathbf{r'}}}
  \end{align}</math>
  \end{align}</math>
कहाँ <math>G(\mathbf{r,r'})</math> ग्रीन का कार्य है जो एक बिंदु पर इलेक्ट्रॉन तरंग समारोह के आयाम का प्रतिनिधित्व करता है <math>\mathbf{r}</math> बिंदु पर एक स्रोत के कारण <math>\mathbf{r'}</math>.


इसलिए एक घटना के लिए रूप की समतल तरंग <math>\Psi(r)=\exp(i\mathbf{k\cdot r})</math> श्रोडिंगर समीकरण के रूप में लिखा जा सकता है
जहां <math>G(\mathbf{r,r'})</math> ग्रीन का कार्य है जो एक बिंदु <math>\mathbf{r'}</math> पर एक स्रोत के कारण बिंदु पर <math>\mathbf{r}</math> पर इलेक्ट्रॉन तरंग फलन के आयाम का प्रतिनिधित्व करता है।
 
इसलिए <math>\Psi(r)=\exp(i\mathbf{k\cdot r})</math> के रूप की एक घटना समतल तरंग के लिए श्रोडिंगर समीकरण को


{{NumBlk|:|
{{NumBlk|:|
Line 39: Line 40:
  \end{align}</math>|{{EquationRef|1}}}}
  \end{align}</math>|{{EquationRef|1}}}}


हम फिर समन्वय अक्ष को इस प्रकार से चुनते हैं कि घटना बीम प्रतिदर्श में (0,0,0) पर टकराती है <math>\hat{z}</math>-दिशा, यानी, <math display="inline">\mathbf{k} = (0, 0, k)</math>. अब हम एक तरंग फलन पर विचार करते हैं <math>\Psi(r)=\phi(\mathbf{r}) \exp(i\mathbf{k\cdot r})</math> एक मॉड्यूलेशन फ़ंक्शन के साथ <math>\phi({\mathbf{r}})</math> आयाम के लिए। समीकरण ({{EquationNote|1}}) तब मॉडुलन फलन के लिए एक समीकरण बन जाता है, अर्थात,
के रूप में लिखा जा सकता है।
 
इसके बाद हम निर्देशांक अक्ष को इस प्रकार से चुनते हैं कि आपतित किरण प्रतिदर्श पर (0,0,0) <math>\hat{z}</math>-दिशा में टकराती है, अर्थात, <math display="inline">\mathbf{k} = (0, 0, k)</math>अब हम आयाम के लिए मॉडुलन फलन <math>\phi({\mathbf{r}})</math> के साथ एक तरंग-फलन <math>\Psi(r)=\phi(\mathbf{r}) \exp(i\mathbf{k\cdot r})</math> पर विचार करते हैं।। समीकरण ({{EquationNote|1}}) तब मॉडुलन फलन के लिए एक समीकरण बन जाता है, अर्थात,


<math>\begin{align}
<math>\begin{align}
   \phi({\mathbf{r}}) &= 1 - \frac{m}{2\pi\hbar^2}\int{\frac{\exp[ik|{\mathbf{r-r'}}|-i{\mathbf{k}}\cdot({\mathbf{r-r'}})]}{|{\mathbf{r-r'}}|}V({\mathbf{r'})\phi({\mathbf{r'}})}dr'}
   \phi({\mathbf{r}}) &= 1 - \frac{m}{2\pi\hbar^2}\int{\frac{\exp[ik|{\mathbf{r-r'}}|-i{\mathbf{k}}\cdot({\mathbf{r-r'}})]}{|{\mathbf{r-r'}}|}V({\mathbf{r'})\phi({\mathbf{r'}})}dr'}
   \end{align}</math>.
   \end{align}</math>


अब हम उस समन्वय प्रणाली के संबंध में प्रतिस्थापन करते हैं जिसका हमने पालन किया है, अर्थात,
अअब हम उस समन्वय प्रणाली के संबंध में प्रतिस्थापन करते हैं जिसका हमने पालन किया है, अर्थात,


<math>\begin{align}
<math>\begin{align}
Line 52: Line 55:
     &\approx (z-z') +  ({\mathbf{X-X'}})^2/{2(z-z')}
     &\approx (z-z') +  ({\mathbf{X-X'}})^2/{2(z-z')}
\end{align}</math>
\end{align}</math>
कहाँ <math>\boldsymbol{X}=\begin{pmatrix}x\\y\end{pmatrix}</math>.
 
जहां <math>\boldsymbol{X}=\begin{pmatrix}x\\y\end{pmatrix}</math>


इस प्रकार
इस प्रकार
Line 61: Line 65:
   \end{align}</math>,
   \end{align}</math>,


कहाँ <math>\lambda = 2\pi /k</math> ऊर्जा के साथ इलेक्ट्रॉनों की तरंग दैर्ध्य है <math>E = \hbar^2k^2/{2m}</math> और <math>\begin{align}
जहां <math>\lambda = 2\pi /k</math> ऊर्जा <math>E = \hbar^2k^2/{2m}</math> के साथ इलेक्ट्रॉनों की तरंग दैर्ध्य है और <math>\begin{align}
       \sigma = \pi/E\lambda
       \sigma = \pi/E\lambda
   \end{align}</math> परस्पर क्रिया स्थिर है। अब तक हमने सामग्री में बिखराव को संबोधित किए बिना तरंग यांत्रिकी का गणितीय सूत्रीकरण स्थापित किया है। आगे हमें अनुप्रस्थ प्रसार को संबोधित करने की आवश्यकता है, जो फ्रेस्नेल प्रसार समारोह के संदर्भ में किया जाता है
   \end{align}</math> अन्योन्यक्रिया स्थिरांक है। अब तक हमने पदार्थ में प्रकीर्णन को संबोधित किए बिना तरंग यांत्रिकी का गणितीय सूत्रीकरण स्थापित किया है। आगे हमें अनुप्रस्थ प्रसार को संबोधित करने की आवश्यकता है, जो फ्रेस्नेल प्रसार फलन


<math>\begin{align}
<math>\begin{align}
       p({\mathbf{X}},z) = \frac{1}{iz\lambda} \exp\left(ik\frac{{\mathbf{X}}^2}{2z}\right)
       p({\mathbf{X}},z) = \frac{1}{iz\lambda} \exp\left(ik\frac{{\mathbf{X}}^2}{2z}\right)
   \end{align}</math>.
   \end{align}</math>के संदर्भ में किया जाता है।


प्रत्येक स्लाइस की मोटाई जिस पर पुनरावृति की जाती है, सामान्यतः छोटी होती है और परिणामस्वरूप स्लाइस के भीतर संभावित क्षेत्र को स्थिर होने के लिए अनुमानित किया जा सकता है <math>V({\mathbf{X'}},z)</math>. इसके बाद, मॉडुलन समारोह के रूप में प्रतिनिधित्व किया जा सकता है:
प्रत्येक प्रखंड की मोटाई जिस पर पुनरावृति की जाती है, सामान्यतः छोटी होती है और परिणामस्वरूप प्रखंड के भीतर संभावित क्षेत्र को निरंतर <math>V({\mathbf{X'}},z)</math> होने का अनुमान लगाया जा सकता है। इसके बाद, मॉडुलन फलन को इस प्रकार दर्शाया जा सकता है:


<math>\begin{align}
<math>\begin{align}
       \phi({\mathbf{X}},z_{n+1}) = \int p({\mathbf{X}}-{\mathbf{X'}}, z_{n+1}-z_{n}) \phi({\mathbf{X}},z_{n})\exp\left(-i\sigma\int\limits_{z_{n}}^{z_{n+1}}V({\mathbf{X'}},z')dz'\right)dX'
       \phi({\mathbf{X}},z_{n+1}) = \int p({\mathbf{X}}-{\mathbf{X'}}, z_{n+1}-z_{n}) \phi({\mathbf{X}},z_{n})\exp\left(-i\sigma\int\limits_{z_{n}}^{z_{n+1}}V({\mathbf{X'}},z')dz'\right)dX'
   \end{align}</math>
   \end{align}</math>
इसलिए हम अगले स्लाइस में मॉड्यूलेशन फ़ंक्शन का प्रतिनिधित्व कर सकते हैं
 
इसलिए हम अगले स्लाइस


<math>\begin{align}
<math>\begin{align}
     \phi_{n+1} = \phi({\mathbf{X}},z_{n+1}) = [q_{n}\phi_{n}]*p_{n}  
     \phi_{n+1} = \phi({\mathbf{X}},z_{n+1}) = [q_{n}\phi_{n}]*p_{n}  
   \end{align}</math>
   \end{align}</math>
जहां, * दृढ़ संकल्प का प्रतिनिधित्व करता है, <math>p_{n}=p({\mathbf{X}},z_{n+1}-z_{n})</math> और <math>q_{n}({\mathbf{X}})</math> स्लाइस के संचरण फ़ंक्शन को परिभाषित करता है।
 
में मॉडुलन फलन का प्रतिनिधित्व कर सकते हैं जहां, * दृढ़ संवलन का प्रतिनिधित्व करता है, <math>p_{n}=p({\mathbf{X}},z_{n+1}-z_{n})</math> और <math>q_{n}({\mathbf{X}})</math> प्रखंड के संचरण फलन को परिभाषित करता है।


<math>\begin{align}
<math>\begin{align}
       q_{n}({\mathbf{X}})  =  \exp \{-i\sigma \int \limits_{z_{n}}^{z_{n+1}}  V({\mathbf{X}},z')dz'\}
       q_{n}({\mathbf{X}})  =  \exp \{-i\sigma \int \limits_{z_{n}}^{z_{n+1}}  V({\mathbf{X}},z')dz'\}
   \end{align}</math>
   \end{align}</math>
इसलिए, उपरोक्त प्रक्रिया का पुनरावृत्ति अनुप्रयोग संदर्भ में प्रतिदर्श की पूर्ण व्याख्या प्रदान करेगा। इसके अतिरिक्त, यह दोहराया जाना चाहिए कि संभावित क्षमता को मानने के अतिरिक्त प्रतिदर्श की आवधिकता पर कोई अनुमान नहीं लगाया गया है <math>V(\mathbf{X},z)</math> टुकड़े के भीतर एकसमान है। नतीजतन, यह स्पष्ट है कि सिद्धांत रूप में यह विधि किसी भी प्रणाली के लिए काम करेगी। यद्यपि, अनावर्ती प्रणाली के लिए जिसमें बीम दिशा के साथ क्षमता तेजी से भिन्न होगी, स्लाइस की मोटाई काफी कम होनी चाहिए और इसलिए उच्च कम्प्यूटेशनल व्यय का परिणाम होगा।
 
इसलिए, उपरोक्त प्रक्रिया का पुनरावृत्ति अनुप्रयोग संदर्भ में प्रतिदर्श की पूर्ण व्याख्या प्रदान करेगा। इसके अतिरिक्त, यह दोहराया जाना चाहिए कि प्रतिदर्श की आवधिकता पर यह मानने के अतिरिक्त कोई धारणा नहीं बनाई गई है कि संभावित <math>V(\mathbf{X},z)</math> प्रखंड के भीतर एक समान है। परिणामस्वरूप, यह स्पष्ट है कि सिद्धांत रूप में यह विधि किसी भी प्रणाली के लिए काम करेगी। यद्यपि, अनावर्ती प्रणाली के लिए जिसमें बीम दिशा के साथ क्षमता तीव्रता से भिन्न होगी, प्रखंड की मोटाई अत्यधिक कम होनी चाहिए और इसलिए उच्च कम्प्यूटेशनल व्यय का परिणाम होगा।


{| class="wikitable"
{| class="wikitable"
! align="right"| Data Points
! align="right" | दत्तानुसारी बिन्दु
!<math>\mathbf{log_2}</math>N  
!<math>\mathbf{log_2}</math>N  
! Discrete FT  
! विविक्त FT  
! Fast FT
! तीव्र FT
! Ratio
! अनुपात
|-
|-
|64 ||6 ||4,096 ||384 ||10.7
|64 ||6 ||4,096 ||384 ||10.7
Line 124: Line 131:
|22,528  
|22,528  
|186.2
|186.2
|+ Table 1 - Computational efficiency of Discrete Fourier Transform compared to Fast Fourier Transform
|+ तालिका 1 - तीव्र फूरियर परिवर्तन की तुलना में विविक्त फूरियर परिवर्तन की कम्प्यूटेशनल दक्षता
|}
|}


Line 130: Line 137:
== व्यावहारिक विचार ==
== व्यावहारिक विचार ==


मूल आधार फास्ट फूरियर ट्रांसफॉर्म (एफएफटी) का उपयोग करके परमाणुओं की प्रत्येक परत से विवर्तन की गणना करना और चरण झंझरी शब्द से प्रत्येक को गुणा करना है। तरंग को फिर एक प्रचारक द्वारा गुणा किया जाता है, विपरीत फूरियर ट्रांसफॉर्म किया जाता है, फिर से एक चरण झंझरी शब्द से गुणा किया जाता है, और प्रक्रिया दोहराई जाती है। FFTs का उपयोग विशेष रूप से ब्लॉख तरंग विधि पर एक महत्वपूर्ण कम्प्यूटेशनल लाभ की अनुमति देता है, क्योंकि FFT एल्गोरिदम में सम्मिलित है <math> N \log N</math> ब्लॉख तरंग समाधान की विकर्ण समस्या की तुलना में कदम जो कि स्केल करता है <math>N^2</math> कहाँ <math>N</math> प्रणाली में परमाणुओं की संख्या है। (कम्प्यूटेशनल समय की तुलना के लिए तालिका 1 देखें)।
मूल आधार तीव्र फूरियर परिवर्तन (एफएफटी) का उपयोग करके परमाणुओं की प्रत्येक परत से विवर्तन की गणना करना और चरण ग्रेटिंग पद से प्रत्येक को गुणा करना है। तरंग को फिर एक प्रचारक द्वारा गुणा किया जाता है, विपरीत फूरियर परिवर्तन किया जाता है, फिर से एक चरण ग्रेटिंग पद से गुणा किया जाता है, और प्रक्रिया दोहराई जाती है। एफएफटी का उपयोग विशेष रूप से ब्लॉख तरंग विधि पर एक महत्वपूर्ण कम्प्यूटेशनल लाभ की अनुमति देता है, क्योंकि एफएफटी एल्गोरिदम में ब्लॉख तरंग हल की विकर्ण समस्या की तुलना में <math> N \log N</math> चरण सम्मिलित होते हैं जो कि <math>N^2</math> के रूप में मापता है, प्रणाली में परमाणुओं की संख्या <math>N</math> है। (कम्प्यूटेशनल समय की तुलना के लिए तालिका 1 देखें)।


मल्टीस्लाइस गणना करने में सबसे महत्वपूर्ण कदम यूनिट सेल की स्थापना करना और उपयुक्त स्लाइस मोटाई का निर्धारण करना है। सामान्य तौर पर, प्रतिरूपों को अनुकरण करने के लिए उपयोग की जाने वाली यूनिट सेल यूनिट सेल से अलग होगी जो किसी विशेष सामग्री की क्रिस्टल संरचना को परिभाषित करती है। एलियासिंग प्रभावों के कारण इसका प्राथमिक कारण एफएफटी गणनाओं में रैपराउंड त्रुटियों के कारण होता है। यूनिट सेल में अतिरिक्त "पैडिंग" जोड़ने की आवश्यकता ने नामकरण "सुपर सेल" अर्जित किया है और इन अतिरिक्त पिक्सेल को मूल यूनिट सेल में जोड़ने की आवश्यकता कम्प्यूटेशनल मूल्य पर आती है।
मल्टीस्लाइस गणना करने में सबसे महत्वपूर्ण चरण एकक कोष्ठिका की स्थापना करना और उपयुक्त प्रखंड मोटाई का निर्धारण करना है। सामान्यतः , प्रतिरूपों को अनुकरण करने के लिए उपयोग की जाने वाली एकक कोष्ठिका एकक कोष्ठिका से अलग होगी जो किसी विशेष पदार्थ की क्रिस्टल संरचना को परिभाषित करती है। उपघटन प्रभावों के कारण इसका प्राथमिक कारण एफएफटी गणनाओं में परिवेष्टन त्रुटियों के कारण होता है। एकक कोष्ठिका में अतिरिक्त "स्थूल समंजन" जोड़ने की आवश्यकता ने नामकरण "महाकोष्ठिका" अर्जित किया है और इन अतिरिक्त चित्रांश को मूल एकक कोष्ठिका में जोड़ने की आवश्यकता कम्प्यूटेशनल मान पर आती है।


बहुत पतली स्लाइस की मोटाई चुनने के प्रभाव को समझाने के लिए, एक साधारण उदाहरण पर विचार करें। फ्रेस्नेल प्रचारक एक ठोस में z दिशा (घटना बीम की दिशा) में इलेक्ट्रॉन तरंगों के प्रसार का वर्णन करता है:
बहुत पतली प्रखंड की मोटाई चुनने के प्रभाव को समझाने के लिए, एक साधारण उदाहरण पर विचार करें। फ्रेस्नेल प्रचारक एक ठोस में z दिशा (घटना बीम की दिशा) में इलेक्ट्रॉन तरंगों के प्रसार का वर्णन करता है:


<math>\tilde{\phi}(\mathbf{u},z) = \tilde{\phi}(\mathbf{u},z=0)\exp(\pi i \lambda \mathbf{u}^2 z)</math>
<math>\tilde{\phi}(\mathbf{u},z) = \tilde{\phi}(\mathbf{u},z=0)\exp(\pi i \lambda \mathbf{u}^2 z)</math>
कहाँ <math>\mathbf{u}</math> पारस्परिक जाली समन्वय है, z प्रतिदर्श में गहराई है, और लैम्ब्डा इलेक्ट्रॉन तरंग की तरंग दैर्ध्य है (संबंध द्वारा तरंग वेक्टर से संबंधित) <math>k = 2\pi / \lambda</math>). चित्र [अंजीर:स्लाइसठोसनेस] प्रतिदर्श में परमाणु विमानों द्वारा विवर्तित होने वाले तरंग-मोर्चों का वेक्टर आरेख दिखाता है। लघु-कोण सन्निकटन के मामले में (<math>\theta \sim</math> 100 mRad) हम चरण बदलाव को अनुमानित कर सकते हैं <math>\Delta z</math>. 100 mRad के लिए त्रुटि <math>d - S </math> के बाद से 0.5% के आदेश पर है <math>\cos(0.1) = 0.995</math>. छोटे कोणों के लिए यह सन्निकटन इस बात पर ध्यान दिए बिना रहता है कि कितने स्लाइस हैं, यद्यपि एक का चयन करना <math>\Delta z</math> मल्टीस्लाइस अनुकार के लिए जाली पैरामीटर (या पेरोव्स्काइट्स के मामले में आधा जाली पैरामीटर) से अधिक होने के परिणामस्वरूप लापता परमाणु होंगे जो क्रिस्टल क्षमता में होने चाहिए।


[[File:MultisliceThickness.png|thumb|बहु टुकड़ा मोटाई]]अतिरिक्त व्यावहारिक चिंताएं हैं कि कैसे प्रभावी रूप से इनलेस्टिक और डिफ्यूज़ प्रकीर्णन, क्वांटाइज्ड एक्साइटमेंट्स (जैसे प्लास्मोन्स, फोनन, एक्साइटन), आदि जैसे प्रभावों को सम्मिलित किया जाए। एक कोड था जो एक सुसंगत कार्य दृष्टिकोण के माध्यम से इन चीजों को ध्यान में रखता था। <ref name ="Physik">{{cite thesis|type=Ph.D.|title=छवि सिमुलेशन के लिए एक जुटना समारोह दृष्टिकोण|publisher=Vom Fachbereich Physik Technischen Universitat Darmstadt|author=Heiko Muller|year=2000}}</ref> येट अदर मल्टीस्लाइस (YAMS) कहा जाता है, लेकिन कोड अब डाउनलोड या खरीद के लिए उपलब्ध नहीं है।
जहां <math>\mathbf{u}</math> पारस्परिक जाली समन्वय है, z प्रतिदर्श में गहराई है, और लैम्ब्डा इलेक्ट्रॉन तरंग की तरंग दैर्ध्य है (संबंध <math>k = 2\pi / \lambda</math> द्वारा तरंग सदिश से संबंधित )। चित्र [चित्र:स्लाइस मोटाई] प्रतिदर्श में परमाणु तलों द्वारा विवर्तित होने वाले तरंगाग्र का सदिश आरेख दिखाता है। लघु-कोण सन्निकटन (<math>\theta \sim</math> 100 mRad) की स्थिति में हम चरण बदलाव को <math>\Delta z</math> के रूप में अनुमानित कर सकते हैं। 100 mRad के लिए त्रुटि <math>d - S </math> 0.5% के क्रम में <math>\cos(0.1) = 0.995</math> है। छोटे कोणों के लिए यह सन्निकटन इस बात पर ध्यान दिए बिना होता है कि कितने प्रखंड हैं, यद्यपि मल्टीस्लाइस अनुकार के लिए जाली पैरामीटर (या पेरावस्काइट की स्थिति में अर्ध जाली पैरामीटर) से अधिक <math>\Delta z</math> का चयन करने से अनुपस्थित परमाणुओं का परिणाम होगा जो क्रिस्टल क्षमता में होना चाहिए।
 
[[File:MultisliceThickness.png|thumb|बहु टुकड़ा मोटाई]]अतिरिक्त व्यावहारिक चिंताएं हैं कि कैसे प्रभावी रूप से अप्रत्यास्थ और विसरित प्रकीर्णन, क्वान्टित उत्तेजना (जैसे प्रद्रव्येक, फ़ोनान, ऐक्साइटॉन), आदि जैसे प्रभावों को सम्मिलित किया जाए। एक कोड था जो इन बातों को सुसंगत कार्य दृष्टिकोण के माध्यम से ध्यान में रखता था<ref name ="Physik">{{cite thesis|type=Ph.D.|title=छवि सिमुलेशन के लिए एक जुटना समारोह दृष्टिकोण|publisher=Vom Fachbereich Physik Technischen Universitat Darmstadt|author=Heiko Muller|year=2000}}</ref>जिसे अभी तक एक और मल्टीस्लाइस(वाईएएमएस) कहा जाता है, परन्तु कोड अब डाउनलोड या खरीद के लिए उपलब्ध नहीं है।


== उपलब्ध सॉफ्टवेयर ==
== उपलब्ध सॉफ्टवेयर ==


प्रतिरूपों के मल्टीस्लाइस अनुकार करने के लिए कई सॉफ्टवेयर पैकेज उपलब्ध हैं। इनमें NCEMSS, NUMIS, MacTempas और Kirkland सम्मिलित हैं। अन्य कार्यक्रम स्थित हैं लेकिन दुर्भाग्य से कई का रखरखाव नहीं किया गया है (उदाहरण के लिए लॉरेंस बर्कले नेशनल लैब के माइक ओ'कीफ द्वारा SHRLI81 और Accerlys के Cerius2)। मल्टीस्लाइस कोड का एक संक्षिप्त कालक्रम तालिका 2 में दिया गया है, यद्यपि यह किसी भी प्रकार से संपूर्ण नहीं है।
प्रतिरूपों के मल्टीस्लाइस अनुकार करने के लिए कई सॉफ्टवेयर पैकेज उपलब्ध हैं। इनमें एनसीईएमएसएस, एनयूएमआईएस, मैकटेम्पस और किर्कलैंड सम्मिलित हैं। अन्य प्रोग्राम स्थित हैं परन्तु दुर्भाग्य से कई का रखरखाव नहीं किया गया है (उदाहरण के लिए लॉरेंस बर्कले राष्ट्रीय प्रयोगशाला के माइक ओ'कीफ द्वारा शर्ली81 और एक्सेरलीस के सीरियस2)। मल्टीस्लाइस कोड का एक संक्षिप्त कालानुक्रम तालिका 2 में दिया गया है, यद्यपि यह किसी भी प्रकार से संपूर्ण नहीं है।


{| class="wikitable"
{| class="wikitable"
! align="right" |Code Name
! align="right" |कोड नाम
! Author
! लेखक
! Year Released
! प्रकाशित वर्ष
|-
|-
|SHRLI
|शर्ली
|O’Keefe
|ओ'कीफ
|1978
|1978
|-
|-
|TEMPAS
|टेम्पस
|Kilaas
|किलास
|1987
|1987
|-
|-
|[http://www.numis.northwestern.edu/Software/ NUMIS]
|[http://www.numis.northwestern.edu/Software/ एनयूएमआईएस]
|Marks
|मार्क्स
|1987
|1987
|-
|-
|[http://www.numis.northwestern.edu/edm/ NCEMSS]
|[http://www.numis.northwestern.edu/edm/ एनसीईएमएसएस]
|O’Keefe & Kilaas
|ओ'कीफ & किलास
|1988
|1988
|-
|-
|[https://www.totalresolution.com MacTEMPAS]
|[https://www.totalresolution.com मैकटेम्पस]
|Kilaas
|किलास
|1978
|1978
|-
|-
|TEMSIM
|तेमसिम
|Kirkland
|किर्कलैंड
|1988
|1988
|-
|-
|JMULTIS
|जमुलतीस
|Zuo
|ज़ुओ
|1990
|1990
|-
|-
|HREMResearch
|एचआरईएमरिसर्च
|Ishizuka
|इशिज़ुका
|2001
|2001
|-
|-
|JEMS
|जेम्स
|Stadelmann
|स्टैडेलमैन
|2004
|2004
|+Table 2 - Timeline of various Multislice Codes
|+तालिका 2 - विभिन्न मल्टीस्लाइस कोड की समयरेखा
|}
|}


Line 195: Line 203:
=== एनसीईएमएसएस ===
=== एनसीईएमएसएस ===


यह पैकेज नेशनल सेंटर फॉर हाई रेजोल्यूशन इलेक्ट्रॉन सूक्ष्मदर्शी से जारी किया गया था। यह प्रोग्राम माउस-ड्राइव ग्राफिकल यूजर इंटरफेस का उपयोग करता है और लॉरेंस बर्कले नेशनल लेबोरेटरी के डॉ. रोर किलास और डॉ. माइक ओ'कीफ द्वारा लिखा गया है। जबकि कोड अब विकसित नहीं हुआ है, कार्यक्रम नॉर्थवेस्टर्न यूनिवर्सिटी के प्रोफेसर लॉरेंस मार्क्स द्वारा लिखित इलेक्ट्रॉन डायरेक्ट मेथड्स (ईडीएम) पैकेज के माध्यम से उपलब्ध है। डेबी-वॉलर कारक | डेबी-वॉलर कारकों को फैलाना प्रकीर्णन के लिए एक पैरामीटर के रूप में सम्मिलित किया जा सकता है, यद्यपि सटीकता अस्पष्ट है (यानी डेबी-वॉलर कारक का एक अच्छा अनुमान आवश्यक है)।
यह पैकेज नेशनल सेंटर फॉर हाई रेजोल्यूशन इलेक्ट्रॉन सूक्ष्मदर्शी से जारी किया गया था। यह प्रोग्राम माउस-ड्राइव ग्राफिकल यूजर इंटरफेस का उपयोग करता है और लॉरेंस बर्कले नेशनल लेबोरेटरी के डॉ. रोर किलास और डॉ. माइक ओ'कीफ द्वारा लिखा गया है। जबकि कोड अब विकसित नहीं हुआ है, कार्यक्रम नॉर्थवेस्टर्न यूनिवर्सिटी के प्रोफेसर लॉरेंस मार्क्स द्वारा लिखित इलेक्ट्रॉन डायरेक्ट मेथड्स (ईडीएम) पैकेज के माध्यम से उपलब्ध है। डेबी-वॉलर कारक | डेबी-वॉलर कारकों को फैलाना प्रकीर्णन के लिए एक पैरामीटर के रूप में सम्मिलित किया जा सकता है, यद्यपि सटीकता अस्पष्ट है (अर्थात डेबी-वॉलर कारक का एक अच्छा अनुमान आवश्यक है)।


=== पैसा ===
=== पैसा ===
{{redirect|NUMIS|the British financial institution|Numis}}
{{redirect|NUMIS|the British financial institution|Numis}}
नॉर्थवेस्टर्न यूनिवर्सिटी मल्टीस्लाइस एंड इमेजिंग प्रणाली ([http://www.numis.northwestern.edu/Software/ NUMIS]) एक पैकेज है जिसे नॉर्थवेस्टर्न यूनिवर्सिटी के प्रोफेसर लॉरेंस मार्क्स ने लिखा है। यह कमांड लाइन इंटरफेस (सीएलआई) का उपयोग करता है और यूनिक्स पर आधारित है। इस कोड का उपयोग करने के लिए एक संरचना फ़ाइल को इनपुट के रूप में प्रदान किया जाना चाहिए, जो इसे उन्नत उपयोगकर्ताओं के लिए आदर्श बनाता है। NUMIS मल्टीस्लाइस प्रोग्राम एक क्रिस्टल के तल पर इलेक्ट्रॉनों के वेवफंक्शन की गणना करके और विभिन्न उपकरण-विशिष्ट मापदंडों को ध्यान में रखते हुए प्रतिरूप का अनुकरण करके पारंपरिक मल्टीस्लाइस एल्गोरिदम का उपयोग करते हैं। <math>C_s</math> और अभिसरण। यह प्रोग्राम उपयोग करने के लिए अच्छा है यदि किसी के पास पहले से ही ऐसी सामग्री के लिए संरचना फ़ाइलें हैं जो अन्य गणनाओं में उपयोग की गई हैं (उदाहरण के लिए, घनत्व कार्यात्मक सिद्धांत)। इन संरचना फ़ाइलों का उपयोग सामान्य एक्स-रे संरचना कारकों के लिए किया जा सकता है जो तब NUMIS में PTBV रूटीन के लिए इनपुट के रूप में उपयोग किए जाते हैं। सूक्ष्मदर्शी पैरामीटर्स को MICROVB रूटीन के जरिए बदला जा सकता है।
नॉर्थवेस्टर्न यूनिवर्सिटी मल्टीस्लाइस एंड इमेजिंग प्रणाली ([http://www.numis.northwestern.edu/Software/ एनयूएमआईएस]) एक पैकेज है जिसे नॉर्थवेस्टर्न यूनिवर्सिटी के प्रोफेसर लॉरेंस मार्क्स ने लिखा है। यह कमांड लाइन इंटरफेस (सीएलआई) का उपयोग करता है और यूनिक्स पर आधारित है। इस कोड का उपयोग करने के लिए एक संरचना फ़ाइल को इनपुट के रूप में प्रदान किया जाना चाहिए, जो इसे उन्नत उपयोगकर्ताओं के लिए आदर्श बनाता है। एनयूएमआईएस मल्टीस्लाइस प्रोग्राम एक क्रिस्टल के तल पर इलेक्ट्रॉनों के वेवफंक्शन की गणना करके और विभिन्न उपकरण-विशिष्ट मापदंडों को ध्यान में रखते हुए प्रतिरूप का अनुकरण करके पारंपरिक मल्टीस्लाइस एल्गोरिदम का उपयोग करते हैं। <math>C_s</math> और अभिसरण। यह प्रोग्राम उपयोग करने के लिए अच्छा है यदि किसी के पास पहले से ही ऐसी पदार्थ के लिए संरचना फ़ाइलें हैं जो अन्य गणनाओं में उपयोग की गई हैं (उदाहरण के लिए, घनत्व कार्यात्मक सिद्धांत)। इन संरचना फ़ाइलों का उपयोग सामान्य एक्स-रे संरचना कारकों के लिए किया जा सकता है जो तब एनयूएमआईएस में PTBV रूटीन के लिए इनपुट के रूप में उपयोग किए जाते हैं। सूक्ष्मदर्शी पैरामीटर्स को MICROVB रूटीन के जरिए बदला जा सकता है।


=== मैकटेम्पस ===
=== मैकटेम्पस ===
Line 216: Line 224:
=== स्टेम-सेल ===
=== स्टेम-सेल ===


यह इटली में इंस्टीट्यूट फॉर नैनोसाइंस (CNR) के डॉ विन्सेन्ज़ो ग्रिलो द्वारा लिखा गया एक कोड है। यह कोड अनिवार्य रूप से अधिक अतिरिक्त सुविधाओं के साथ किर्कलैंड द्वारा लिखे गए मल्टीस्लाइस कोड के लिए एक ग्राफिकल फ्रंटएंड है। इनमें जटिल क्रिस्टलीय संरचनाएं उत्पन्न करने, HAADF प्रतिरूपों का अनुकरण करने और STEM जांच को मॉडल करने के साथ-साथ सामग्री में तनाव के मॉडलिंग के उपकरण सम्मिलित हैं। प्रतिरूप विश्लेषण के लिए उपकरण (जैसे GPA) और फ़िल्टरिंग भी उपलब्ध हैं।
यह इटली में इंस्टीट्यूट फॉर नैनोसाइंस (CNR) के डॉ विन्सेन्ज़ो ग्रिलो द्वारा लिखा गया एक कोड है। यह कोड अनिवार्य रूप से अधिक अतिरिक्त सुविधाओं के साथ किर्कलैंड द्वारा लिखे गए मल्टीस्लाइस कोड के लिए एक ग्राफिकल फ्रंटएंड है। इनमें जटिल क्रिस्टलीय संरचनाएं उत्पन्न करने, HAADF प्रतिरूपों का अनुकरण करने और STEM जांच को मॉडल करने के साथ-साथ पदार्थ में तनाव के मॉडलिंग के उपकरण सम्मिलित हैं। प्रतिरूप विश्लेषण के लिए उपकरण (जैसे GPA) और फ़िल्टरिंग भी उपलब्ध हैं।
नई सुविधाओं के साथ कोड को अक्सर अपडेट किया जाता है और एक उपयोगकर्ता मेलिंग सूची को बनाए रखा जाता है। उनकी [http://tem-s3.nano.cnr.it/?page_id=2 वेबसाइट] पर निःशुल्क उपलब्ध है।
नई सुविधाओं के साथ कोड को अक्सर अपडेट किया जाता है और एक उपयोगकर्ता मेलिंग सूची को बनाए रखा जाता है। उनकी [http://tem-s3.nano.cnr.it/?page_id=2 वेबसाइट] पर निःशुल्क उपलब्ध है।



Revision as of 12:41, 13 April 2023

मल्टीस्लाइस एल्गोरिदम पदार्थ के साथ एक इलेक्ट्रॉन बीम की प्रत्यास्थ अन्योन्यक्रिया के अनुकरण के लिए एक विधि है, जिसमें सभी विभिन्न प्रकीर्णन प्रभाव सम्मिलित हैं। काउली द्वारा पुस्तक में विधि की समीक्षा की गई है।[1] एल्गोरिदम का उपयोग उच्च विभेदन संचरण इलेक्ट्रॉन सूक्ष्मदर्शी सूक्ष्मचित्र के अनुकरण में किया जाता है, और प्रायोगिक प्रतिरूपों के विश्लेषण के लिए एक उपयोगी उपकरण के रूप में कार्य करता है।[2] यहां हम प्रासंगिक पार्श्व की जानकारी, तकनीक के सैद्धांतिक आधार, उपयोग किए गए सन्निकटन और इस तकनीक को लागू करने वाले कई सॉफ्टवेयर पैकेजों का वर्णन करते हैं। इसके अतिरिक्त, हम तकनीक के कुछ लाभों और सीमाओं और महत्वपूर्ण विचारों को चित्रित करते हैं जिन्हें वास्तविक संसार के उपयोग के लिए ध्यान में रखा जाना चाहिए।

पार्श्व

मल्टीस्लाइस विधि ने इलेक्ट्रॉन क्रिस्टलिकी में व्यापक अनुप्रयोग पाया है। एक क्रिस्टल संरचना से इसके प्रतिरूप या विवर्तन प्रतिरूप के प्रतिचित्रण को अपेक्षाकृत ठीक रूप से समझा और प्रलेखित किया गया है। यद्यपि, इलेक्ट्रॉन सूक्ष्मचित्र प्रतिरूपों से क्रिस्टल संरचना तक विपरीत प्रतिचित्रण सामान्यतः अधिक जटिल होती है। तथ्य यह है कि प्रतिरूपों त्रि-आयामी क्रिस्टल संरचना के द्वि-आयामी अनुमान हैं, इन अनुमानों की तुलना सभी संभावित क्रिस्टल संरचनाओं से करना नीरस बनाता है। इसलिए, विभिन्न क्रिस्टल संरचना के परिणामों के अनुकरण में संख्यात्मक तकनीकों का उपयोग इलेक्ट्रॉन सूक्ष्मदर्शी और क्रिस्टलिकी के क्षेत्र का अभिन्न अंग है। इलेक्ट्रॉन सूक्ष्मचित्र का अनुकरण करने के लिए कई सॉफ्टवेयर पैकेज स्थित हैं।

साहित्य में स्थित दो व्यापक रूप से उपयोग की जाने वाली अनुकार तकनीकें हैं: हंस बेथे के डेविसन-जर्मर प्रयोग के मूल सैद्धांतिक उपचार से प्राप्त ब्लॉख तरंग विधि और मल्टीस्लाइस विधि। इस पत्र में, हम मुख्य रूप से विवर्तन प्रतिरूप के अनुकरण के लिए मल्टीस्लाइस विधि पर ध्यान केंद्रित करेंगे, जिसमें कई प्रत्यास्थ प्रकीर्णन प्रभाव सम्मिलित हैं। स्थित अधिकांश पैकेज इलेक्ट्रॉन सूक्ष्मदर्शी प्रतिरूप और पता अभिमुखता जैसे चरण विपरीत और विवर्तन विपरीत को निर्धारित करने के लिए इलेक्ट्रॉन लेंस विपथन प्रभाव को सम्मिलित करने के लिए फूरियर विश्लेषण के साथ मल्टीस्लाइस एल्गोरिदम को लागू करते हैं। संचरण ज्यामिति में एक पतली क्रिस्टलीय खंड के रूप में इलेक्ट्रॉन सूक्ष्मदर्शी के प्रतिदर्शों के लिए, इन सॉफ्टवेयर पैकेजों का उद्देश्य क्रिस्टल क्षमता का एक प्रतिचित्र प्रदान करना है, यद्यपि यह विपरीत प्रक्रिया कई प्रत्यास्थ प्रकीर्णन की उपस्थिति से बहुत जटिल है।

मल्टीस्लाइस सिद्धांत के रूप में जाना जाने वाला पहला विवरण काउली और मूडी द्वारा उत्कृष्ट लेख में दिया गया था।[3] इस कार्य में, लेखक क्वांटम यांत्रिक तर्कों को लागू किए बिना भौतिक प्रकाशिकी दृष्टिकोण का उपयोग करके इलेक्ट्रॉनों के प्रकीर्णन का वर्णन करते हैं। इन पुनरावृत्त समीकरणों के कई अन्य व्युत्पन्न तब से वैकल्पिक विधियों का उपयोग करके दिए गए हैं, जैसे कि ग्रीन्स प्रकार्य, अवकल समीकरण, प्रकीर्णन आव्यूह या पाथ समाकल विधि।

संख्यात्मक संगणना के लिए काउली और मूडी के मल्टीस्लाइस सिद्धांत से एक कंप्यूटर एल्गोरिदम के विकास का सारांश गुडमैन और मूडी द्वारा रिपोर्ट किया गया था।[4] उन्होंने मल्टीस्लाइस के अन्य योगों के संबंध पर भी विस्तार से चर्चा की। विशेष रूप से, ज़सेनहॉस के प्रमेय का उपयोग करते हुए, यह लेख मल्टीस्लाइस से 1. श्रोएडिंगर्स समीकरण (मल्टीस्लाइस से व्युत्पन्न), 2. डार्विन के डिफरेंशियल इक्वेशन, व्यापक रूप से विवर्तन कंट्रास्ट टीईएम इमेज अनुकार के लिए उपयोग किया जाता है - मल्टीस्लाइस से प्राप्त हॉवी-व्हेलन समीकरण . 3. स्टर्की की प्रकीर्णन आव्यूह विधि। 4. मुक्त स्थान प्रसार स्थिति , 5. चरण ग्रेटिंग सन्निकटन, 6. एक नवीन ठोस-चरण ग्रेटिंग सन्निकटन, जिसका कभी भी उपयोग नहीं किया गया है, 7. विभिन्न प्रकीर्णन के लिए मूडी का बहुपद व्यंजक, 8. फेनमैन पाथ-समाकल सूत्रीकरण

, और 9. मल्टीस्लाइस का बोर्न शृंखला से संबंध। एल्गोरिदम के बीच संबंध स्थान (2013) की धारा 5.11 में संक्षेपित है,[5] (चित्र 5.9 देखें)।

सिद्धांत

यहां प्रस्तुत मल्टीस्लाइस एल्गोरिदम का रूप पेंग, दुदारेव और व्हेलन 2003 से अनुकूलित किया गया है।[6] मल्टीस्लाइस एल्गोरिदम श्रोडिंगर तरंग समीकरण को हल करने की एक विधि है:

1957 में, काउली और मूडी ने दिखाया कि विवर्तित बीम के आयाम का मूल्यांकन करने के लिए श्रोडिंगर समीकरण को विश्लेषणात्मक रूप से हल किया जा सकता है।[3] इसके बाद, गतिशील विवर्तन के प्रभावों की गणना की जा सकती है और परिणामी अनुकारित प्रतिरूप गतिशील परिस्थितियों में सूक्ष्मदर्शी से ली गई वास्तविक प्रतिरूप के साथ ठीक समानता प्रदर्शित करेगी। इसके अतिरिक्त, मल्टीस्लाइस एल्गोरिदम संरचना की आवधिकता के विषय में कोई धारणा नहीं बनाता है और इस प्रकार इसका उपयोग अनावर्ती प्रणाली की एचआरईएम प्रतिरूपों को अनुकरण करने के लिए भी किया जा सकता है।

निम्नलिखित खंड में मल्टीस्लाइस एल्गोरिदम का गणितीय सूत्रीकरण सम्मिलित होगा। श्रोडिंगर समीकरण को घटना और प्रकिर्णत तरंग के रूप में भी दर्शाया जा सकता है:

जहां ग्रीन का कार्य है जो एक बिंदु पर एक स्रोत के कारण बिंदु पर पर इलेक्ट्रॉन तरंग फलन के आयाम का प्रतिनिधित्व करता है।

इसलिए के रूप की एक घटना समतल तरंग के लिए श्रोडिंगर समीकरण को

 

 

 

 

(1)

के रूप में लिखा जा सकता है।

इसके बाद हम निर्देशांक अक्ष को इस प्रकार से चुनते हैं कि आपतित किरण प्रतिदर्श पर (0,0,0) -दिशा में टकराती है, अर्थात, । अब हम आयाम के लिए मॉडुलन फलन के साथ एक तरंग-फलन पर विचार करते हैं।। समीकरण (1) तब मॉडुलन फलन के लिए एक समीकरण बन जाता है, अर्थात,

अअब हम उस समन्वय प्रणाली के संबंध में प्रतिस्थापन करते हैं जिसका हमने पालन किया है, अर्थात,

जहां

इस प्रकार

,

जहां ऊर्जा के साथ इलेक्ट्रॉनों की तरंग दैर्ध्य है और अन्योन्यक्रिया स्थिरांक है। अब तक हमने पदार्थ में प्रकीर्णन को संबोधित किए बिना तरंग यांत्रिकी का गणितीय सूत्रीकरण स्थापित किया है। आगे हमें अनुप्रस्थ प्रसार को संबोधित करने की आवश्यकता है, जो फ्रेस्नेल प्रसार फलन

के संदर्भ में किया जाता है।

प्रत्येक प्रखंड की मोटाई जिस पर पुनरावृति की जाती है, सामान्यतः छोटी होती है और परिणामस्वरूप प्रखंड के भीतर संभावित क्षेत्र को निरंतर होने का अनुमान लगाया जा सकता है। इसके बाद, मॉडुलन फलन को इस प्रकार दर्शाया जा सकता है:

इसलिए हम अगले स्लाइस

में मॉडुलन फलन का प्रतिनिधित्व कर सकते हैं जहां, * दृढ़ संवलन का प्रतिनिधित्व करता है, और प्रखंड के संचरण फलन को परिभाषित करता है।

इसलिए, उपरोक्त प्रक्रिया का पुनरावृत्ति अनुप्रयोग संदर्भ में प्रतिदर्श की पूर्ण व्याख्या प्रदान करेगा। इसके अतिरिक्त, यह दोहराया जाना चाहिए कि प्रतिदर्श की आवधिकता पर यह मानने के अतिरिक्त कोई धारणा नहीं बनाई गई है कि संभावित प्रखंड के भीतर एक समान है। परिणामस्वरूप, यह स्पष्ट है कि सिद्धांत रूप में यह विधि किसी भी प्रणाली के लिए काम करेगी। यद्यपि, अनावर्ती प्रणाली के लिए जिसमें बीम दिशा के साथ क्षमता तीव्रता से भिन्न होगी, प्रखंड की मोटाई अत्यधिक कम होनी चाहिए और इसलिए उच्च कम्प्यूटेशनल व्यय का परिणाम होगा।

दत्तानुसारी बिन्दु N विविक्त FT तीव्र FT अनुपात
64 6 4,096 384 10.7
128 7 16,384 896 18.3
256 8 65,536 2,048 32
512 9 262,144 4,608 56.9
1,024 10 1,048,576 10,240 102.4
2,048 11 4,194,304 22,528 186.2
तालिका 1 - तीव्र फूरियर परिवर्तन की तुलना में विविक्त फूरियर परिवर्तन की कम्प्यूटेशनल दक्षता


व्यावहारिक विचार

मूल आधार तीव्र फूरियर परिवर्तन (एफएफटी) का उपयोग करके परमाणुओं की प्रत्येक परत से विवर्तन की गणना करना और चरण ग्रेटिंग पद से प्रत्येक को गुणा करना है। तरंग को फिर एक प्रचारक द्वारा गुणा किया जाता है, विपरीत फूरियर परिवर्तन किया जाता है, फिर से एक चरण ग्रेटिंग पद से गुणा किया जाता है, और प्रक्रिया दोहराई जाती है। एफएफटी का उपयोग विशेष रूप से ब्लॉख तरंग विधि पर एक महत्वपूर्ण कम्प्यूटेशनल लाभ की अनुमति देता है, क्योंकि एफएफटी एल्गोरिदम में ब्लॉख तरंग हल की विकर्ण समस्या की तुलना में चरण सम्मिलित होते हैं जो कि के रूप में मापता है, प्रणाली में परमाणुओं की संख्या है। (कम्प्यूटेशनल समय की तुलना के लिए तालिका 1 देखें)।

मल्टीस्लाइस गणना करने में सबसे महत्वपूर्ण चरण एकक कोष्ठिका की स्थापना करना और उपयुक्त प्रखंड मोटाई का निर्धारण करना है। सामान्यतः , प्रतिरूपों को अनुकरण करने के लिए उपयोग की जाने वाली एकक कोष्ठिका एकक कोष्ठिका से अलग होगी जो किसी विशेष पदार्थ की क्रिस्टल संरचना को परिभाषित करती है। उपघटन प्रभावों के कारण इसका प्राथमिक कारण एफएफटी गणनाओं में परिवेष्टन त्रुटियों के कारण होता है। एकक कोष्ठिका में अतिरिक्त "स्थूल समंजन" जोड़ने की आवश्यकता ने नामकरण "महाकोष्ठिका" अर्जित किया है और इन अतिरिक्त चित्रांश को मूल एकक कोष्ठिका में जोड़ने की आवश्यकता कम्प्यूटेशनल मान पर आती है।

बहुत पतली प्रखंड की मोटाई चुनने के प्रभाव को समझाने के लिए, एक साधारण उदाहरण पर विचार करें। फ्रेस्नेल प्रचारक एक ठोस में z दिशा (घटना बीम की दिशा) में इलेक्ट्रॉन तरंगों के प्रसार का वर्णन करता है:

जहां पारस्परिक जाली समन्वय है, z प्रतिदर्श में गहराई है, और लैम्ब्डा इलेक्ट्रॉन तरंग की तरंग दैर्ध्य है (संबंध द्वारा तरंग सदिश से संबंधित )। चित्र [चित्र:स्लाइस मोटाई] प्रतिदर्श में परमाणु तलों द्वारा विवर्तित होने वाले तरंगाग्र का सदिश आरेख दिखाता है। लघु-कोण सन्निकटन ( 100 mRad) की स्थिति में हम चरण बदलाव को के रूप में अनुमानित कर सकते हैं। 100 mRad के लिए त्रुटि 0.5% के क्रम में है। छोटे कोणों के लिए यह सन्निकटन इस बात पर ध्यान दिए बिना होता है कि कितने प्रखंड हैं, यद्यपि मल्टीस्लाइस अनुकार के लिए जाली पैरामीटर (या पेरावस्काइट की स्थिति में अर्ध जाली पैरामीटर) से अधिक का चयन करने से अनुपस्थित परमाणुओं का परिणाम होगा जो क्रिस्टल क्षमता में होना चाहिए।

बहु टुकड़ा मोटाई

अतिरिक्त व्यावहारिक चिंताएं हैं कि कैसे प्रभावी रूप से अप्रत्यास्थ और विसरित प्रकीर्णन, क्वान्टित उत्तेजना (जैसे प्रद्रव्येक, फ़ोनान, ऐक्साइटॉन), आदि जैसे प्रभावों को सम्मिलित किया जाए। एक कोड था जो इन बातों को सुसंगत कार्य दृष्टिकोण के माध्यम से ध्यान में रखता था[7]जिसे अभी तक एक और मल्टीस्लाइस(वाईएएमएस) कहा जाता है, परन्तु कोड अब डाउनलोड या खरीद के लिए उपलब्ध नहीं है।

उपलब्ध सॉफ्टवेयर

प्रतिरूपों के मल्टीस्लाइस अनुकार करने के लिए कई सॉफ्टवेयर पैकेज उपलब्ध हैं। इनमें एनसीईएमएसएस, एनयूएमआईएस, मैकटेम्पस और किर्कलैंड सम्मिलित हैं। अन्य प्रोग्राम स्थित हैं परन्तु दुर्भाग्य से कई का रखरखाव नहीं किया गया है (उदाहरण के लिए लॉरेंस बर्कले राष्ट्रीय प्रयोगशाला के माइक ओ'कीफ द्वारा शर्ली81 और एक्सेरलीस के सीरियस2)। मल्टीस्लाइस कोड का एक संक्षिप्त कालानुक्रम तालिका 2 में दिया गया है, यद्यपि यह किसी भी प्रकार से संपूर्ण नहीं है।

कोड नाम लेखक प्रकाशित वर्ष
शर्ली ओ'कीफ 1978
टेम्पस किलास 1987
एनयूएमआईएस मार्क्स 1987
एनसीईएमएसएस ओ'कीफ & किलास 1988
मैकटेम्पस किलास 1978
तेमसिम किर्कलैंड 1988
जमुलतीस ज़ुओ 1990
एचआरईएमरिसर्च इशिज़ुका 2001
जेम्स स्टैडेलमैन 2004
तालिका 2 - विभिन्न मल्टीस्लाइस कोड की समयरेखा


एसीईएम/जेसीएसईएम

यह सॉफ्टवेयर कॉर्नेल यूनिवर्सिटी के प्रोफेसर अर्ल किर्कलैंड द्वारा विकसित किया गया है। यह कोड एक इंटरैक्टिव जावा एप्लेट के रूप में स्वतंत्र रूप से उपलब्ध है और C/C++ में लिखे गए स्टैंडअलोन कोड के रूप में है। जावा एप्लेट एक बुनियादी असंगत रैखिक इमेजिंग सन्निकटन के तहत त्वरित परिचय और अनुकार के लिए आदर्श है। ACEM कोड किर्कलैंड द्वारा उसी नाम के एक उत्कृष्ट पाठ के साथ आता है जो विस्तार से इलेक्ट्रॉन सूक्ष्मचित्र (मल्टीस्लाइस सहित) के अनुकरण के लिए पार्श्व सिद्धांत और कम्प्यूटेशनल तकनीकों का वर्णन करता है। कई अनुकार के स्वचालित बैचिंग के लिए मुख्य C/C++ रूटीन एक कमांड लाइन इंटरफ़ेस (CLI) का उपयोग करते हैं। ACEM पैकेज में एक ग्राफिकल यूजर इंटरफेस भी सम्मिलित है जो नौसिखियों के लिए अधिक उपयुक्त है। एसीईएम में परमाणु प्रकीर्णन कारकों को गॉसियन और लोरेंत्ज़ियन के 12-पैरामीटर फिट द्वारा सापेक्षतावादी हार्ट्री-फॉक गणनाओं के लिए सटीक रूप से चित्रित किया गया है।

एनसीईएमएसएस

यह पैकेज नेशनल सेंटर फॉर हाई रेजोल्यूशन इलेक्ट्रॉन सूक्ष्मदर्शी से जारी किया गया था। यह प्रोग्राम माउस-ड्राइव ग्राफिकल यूजर इंटरफेस का उपयोग करता है और लॉरेंस बर्कले नेशनल लेबोरेटरी के डॉ. रोर किलास और डॉ. माइक ओ'कीफ द्वारा लिखा गया है। जबकि कोड अब विकसित नहीं हुआ है, कार्यक्रम नॉर्थवेस्टर्न यूनिवर्सिटी के प्रोफेसर लॉरेंस मार्क्स द्वारा लिखित इलेक्ट्रॉन डायरेक्ट मेथड्स (ईडीएम) पैकेज के माध्यम से उपलब्ध है। डेबी-वॉलर कारक | डेबी-वॉलर कारकों को फैलाना प्रकीर्णन के लिए एक पैरामीटर के रूप में सम्मिलित किया जा सकता है, यद्यपि सटीकता अस्पष्ट है (अर्थात डेबी-वॉलर कारक का एक अच्छा अनुमान आवश्यक है)।

पैसा

नॉर्थवेस्टर्न यूनिवर्सिटी मल्टीस्लाइस एंड इमेजिंग प्रणाली (एनयूएमआईएस) एक पैकेज है जिसे नॉर्थवेस्टर्न यूनिवर्सिटी के प्रोफेसर लॉरेंस मार्क्स ने लिखा है। यह कमांड लाइन इंटरफेस (सीएलआई) का उपयोग करता है और यूनिक्स पर आधारित है। इस कोड का उपयोग करने के लिए एक संरचना फ़ाइल को इनपुट के रूप में प्रदान किया जाना चाहिए, जो इसे उन्नत उपयोगकर्ताओं के लिए आदर्श बनाता है। एनयूएमआईएस मल्टीस्लाइस प्रोग्राम एक क्रिस्टल के तल पर इलेक्ट्रॉनों के वेवफंक्शन की गणना करके और विभिन्न उपकरण-विशिष्ट मापदंडों को ध्यान में रखते हुए प्रतिरूप का अनुकरण करके पारंपरिक मल्टीस्लाइस एल्गोरिदम का उपयोग करते हैं। और अभिसरण। यह प्रोग्राम उपयोग करने के लिए अच्छा है यदि किसी के पास पहले से ही ऐसी पदार्थ के लिए संरचना फ़ाइलें हैं जो अन्य गणनाओं में उपयोग की गई हैं (उदाहरण के लिए, घनत्व कार्यात्मक सिद्धांत)। इन संरचना फ़ाइलों का उपयोग सामान्य एक्स-रे संरचना कारकों के लिए किया जा सकता है जो तब एनयूएमआईएस में PTBV रूटीन के लिए इनपुट के रूप में उपयोग किए जाते हैं। सूक्ष्मदर्शी पैरामीटर्स को MICROVB रूटीन के जरिए बदला जा सकता है।

मैकटेम्पस

यह सॉफ्टवेयर विशेष रूप से लॉरेंस बर्कले नेशनल लेबोरेटरी के डॉ रोर किलास द्वारा मैक ओएस एक्स में चलाने के लिए विकसित किया गया है। यह एक उपयोगकर्ता के अनुकूल उपयोगकर्ता इंटरफ़ेस के लिए डिज़ाइन किया गया है और कई अन्य कोड (अंतिम अपडेट मई 2013) के सापेक्ष ठीक रूप से बनाए रखा गया है। यह यहां से (शुल्क के लिए) उपलब्ध है।

JMULTIS

यह मल्टीस्लाइस अनुकार के लिए एक सॉफ्टवेयर है जिसे फोरट्रान 77 में डॉ. जे. एम. ज़ूओ द्वारा लिखा गया था, जबकि वह प्रो. जॉन सी. एच. स्पेंस के मार्गदर्शन में एरिजोना स्टेट यूनिवर्सिटी में पोस्टडॉक रिसर्च फेलो थे। स्रोत कोड को इलेक्ट्रॉन माइक्रोडिफ़्रेक्शन की पुस्तक में प्रकाशित किया गया था।[8] ZnTe के लिए मल्टीस्लाइस और ब्लॉख तरंग अनुकार के बीच एक तुलना भी किताब में प्रकाशित हुई थी। 2000 के वर्ष में कई मल्टीस्लाइस एल्गोरिदम के बीच एक अलग तुलना की सूचना दी गई थी।[9]


क्यूएसटीईएम

क्वांटिटेटिव टीईएम/एसटीईएम (क्यूएसटीईएम) अनुकार सॉफ्टवेयर पैकेज जर्मनी में बर्लिन के हम्बोल्ट विश्वविद्यालय के प्रोफेसर क्रिस्टोफर कोच द्वारा लिखा गया था। HAADF, ADF, ABF-STEM, साथ ही पारंपरिक TEM और CBED के अनुकरण की अनुमति देता है। निष्पादन योग्य और स्रोत कोड कोच समूह वेबसाइट पर मुफ्त डाउनलोड के रूप में उपलब्ध हैं।

स्टेम-सेल

यह इटली में इंस्टीट्यूट फॉर नैनोसाइंस (CNR) के डॉ विन्सेन्ज़ो ग्रिलो द्वारा लिखा गया एक कोड है। यह कोड अनिवार्य रूप से अधिक अतिरिक्त सुविधाओं के साथ किर्कलैंड द्वारा लिखे गए मल्टीस्लाइस कोड के लिए एक ग्राफिकल फ्रंटएंड है। इनमें जटिल क्रिस्टलीय संरचनाएं उत्पन्न करने, HAADF प्रतिरूपों का अनुकरण करने और STEM जांच को मॉडल करने के साथ-साथ पदार्थ में तनाव के मॉडलिंग के उपकरण सम्मिलित हैं। प्रतिरूप विश्लेषण के लिए उपकरण (जैसे GPA) और फ़िल्टरिंग भी उपलब्ध हैं। नई सुविधाओं के साथ कोड को अक्सर अपडेट किया जाता है और एक उपयोगकर्ता मेलिंग सूची को बनाए रखा जाता है। उनकी वेबसाइट पर निःशुल्क उपलब्ध है।

डॉ. जांच

जूलिच रिसर्च सेंटर में अर्न्स्ट रुस्का केंद्र से डॉ. जुरी बार्टेल द्वारा लिखित उच्च-विभेदन स्कैनिंग और सुसंगत इमेजिंग संचरण इलेक्ट्रॉन सूक्ष्मदर्शी के लिए मल्टी-स्लाइस इमेज अनुकार। सॉफ़्टवेयर में एसटीईएम प्रतिरूप गणनाओं के प्रत्यक्ष दृश्य के लिए ग्राफिकल यूजर इंटरफेस संस्करण, साथ ही साथ अधिक व्यापक गणना कार्यों के लिए कमांड लाइन मॉड्यूल का एक बंडल सम्मिलित है। कार्यक्रमों को विज़ुअल सी++, फोरट्रान 90 और पर्ल का उपयोग करते हुए लिखा गया है। Microsoft Windows 32-बिट और 64-बिट ऑपरेटिंग प्रणाली के लिए निष्पादन योग्य बायनेरिज़ वेबसाइट पर निःशुल्क उपलब्ध हैं।

सीएलटीईएम

वारविक विश्वविद्यालय के डॉ. एडम डायसन और डॉ. जोनाथन पीटर्स द्वारा लिखित OpenCL त्वरित मल्टीस्लाइस सॉफ्टवेयर। clTEM अक्टूबर 2019 तक विकास के अधीन है।

cudaEM

cudaEM प्रो. स्टीफ़न पेनीकूक के समूह द्वारा विकसित बहु-स्लाइस अनुकार के लिए CUDA पर आधारित एक बहु-GPU सक्षम कोड है।

संदर्भ

  1. John M. Cowley (1995). Diffraction Physics, 3rd Ed. North Holland Publishing Company.
  2. Dr. Earl J. Kirkland. इलेक्ट्रॉन माइक्रोस्कोपी में उन्नत कंप्यूटिंग.
  3. 3.0 3.1 J. M. Cowley and A. F. Moodie (1957). "The Scattering of Electrons by Atoms and Crystals. I. A New Theoretical Approach". Acta Crystallographica. Vol. 10.
  4. P. Goodman and A. F. Moodie, Acta Crystallogr. 1974, A30, 280
  5. John C. H. Spence (2013). High-Resolution Electron Microscopy, 4th Ed. Oxford University Press.
  6. L. M. Peng, S. L. Dudarev and M. J. Whelan (2003). उच्च ऊर्जा इलेक्ट्रॉन विवर्तन और माइक्रोस्कोपी. Oxford Science Publications.
  7. Heiko Muller (2000). छवि सिमुलेशन के लिए एक जुटना समारोह दृष्टिकोण (Ph.D.). Vom Fachbereich Physik Technischen Universitat Darmstadt.
  8. Electron Microdiffraction, J.C. H. Spence and J. M. Zuo, Plenum, New York, 1992
  9. Koch, C. and J.M. Zuo, “Comparison of multislicecomputer programs for electron scattering simulations and the Bloch wavemethod”, Microscopy and Microanalysis,Vol. 6 Suppl. 2, 126-127, (2000).