[[Image:Weichert.svg|right|thumb|300px| मैक्सवेल-वीचर्ट मॉडल का योजनाबद्ध]]सामान्यीकृत मैक्सवेल मॉडल को मैक्सवेल-विचर्ट मॉडल के रूप में भी जाना जाता है ([[जेम्स क्लर्क मैक्सवेल]] और ई विचर्ट के बाद)<ref name=Wiechert1>Wiechert, E (1889); "<!--Original spelling-->Ueber elastische Nachwirkung", Dissertation, Königsberg University, Germany</ref><ref name=Wiechert2>Wiechert, E (1893); "Gesetze der elastischen Nachwirkung für constante Temperatur", Annalen der Physik, Vol. 286, [https://doi.org/10.1002/andp.18932861011 issue 10, p. 335–348] and [https://doi.org/10.1002/andp.18932861110 issue 11, p. 546–570]</ref>) चिपचिपापन के लिए रैखिक मॉडल का सबसे सामान्य रूप है। इस मॉडल में कई [[मैक्सवेल सामग्री]] समानांतर में इकट्ठी की जाती हैं। यह ध्यान में रखा जाता है कि [[आराम का समय|छूट एक बार में नहीं, '''का समय''']] '''एक बार में नहीं होता है,''' बल्कि समय के एक सेट में होता है। अलग-अलग लंबाई के आणविक खंडों की उपस्थिति के कारण, छोटे वाले लंबे समय से कम योगदान देते हैं, एक अलग-अलग समय वितरण होता है। वीचर्ट मॉडल वितरण को सही रूप से दर्शाने के लिए जितने आवश्यक हैं उतने स्प्रिंग-डैशपॉट मैक्सवेल तत्व होने से यह दिखाता है। दाईं ओर का आंकड़ा सामान्यीकृत वीचर्ट मॉडल दिखाता है।<ref name=Roylance>Roylance, David (2001); "Engineering Viscoelasticity", 14-15</ref><ref name=Tschoegl>Tschoegl, Nicholas W. (1989); "The Phenomenological Theory of Linear Viscoelastic Behavior", 119-126</ref> '''वीचर्ट मॉडल वितरण को सही रूप से दर्शाने के लिए जितने आवश्यक हैं उतने स्प्रिंग-डैशपॉट मैक्सवेल तत्व होने से यह दिखाता है। दाईं ओर का आंकड़ा सामान्यीकृत वीचर्ट मॉडल दिखाता है।'''
[[Image:Weichert.svg|right|thumb|300px| मैक्सवेल-वीचर्ट मॉडल का योजनाबद्ध]]सामान्यीकृत मैक्सवेल मॉडल को मैक्सवेल-विचर्ट मॉडल के रूप में भी जाना जाता है ([[जेम्स क्लर्क मैक्सवेल]] और ई विचर्ट के बाद)<ref name=Wiechert1>Wiechert, E (1889); "<!--Original spelling-->Ueber elastische Nachwirkung", Dissertation, Königsberg University, Germany</ref><ref name=Wiechert2>Wiechert, E (1893); "Gesetze der elastischen Nachwirkung für constante Temperatur", Annalen der Physik, Vol. 286, [https://doi.org/10.1002/andp.18932861011 issue 10, p. 335–348] and [https://doi.org/10.1002/andp.18932861110 issue 11, p. 546–570]</ref>) चिपचिपापन के लिए रैखिक मॉडल का सबसे सामान्य रूप है। इस मॉडल में कई [[मैक्सवेल सामग्री]] समानांतर में इकट्ठी की जाती हैं। यह ध्यान में रखा जाता है कि [[आराम का समय|छूट एक बार में नहीं,]] बल्कि समय के सेट में होता है। अलग-अलग लंबाई के आणविक खंडों की उपस्थिति के कारण, छोटे वाले लंबे समय से कम योगदान देते हैं, अलग-अलग समय वितरण होता है। वीचर्ट मॉडल वितरण को सही रूप से दर्शाने के लिए जितने आवश्यक हैं उतने स्प्रिंग-डैशपॉट मैक्सवेल तत्व होने से यह दिखाता है। दाईं ओर का आंकड़ा सामान्यीकृत वीचर्ट मॉडल दिखाता है।<ref name=Roylance>Roylance, David (2001); "Engineering Viscoelasticity", 14-15</ref><ref name=Tschoegl>Tschoegl, Nicholas W. (1989); "The Phenomenological Theory of Linear Viscoelastic Behavior", 119-126</ref>
Line 210:
Line 210:
=== तरल पदार्थ ===
=== तरल पदार्थ ===
दिया गया <math>N+1</math> मोडुली के साथ तत्व <math>E_i</math>, चिपचिपापन <math>\eta_i</math>, और विश्राम का समय <math>\tau_i=\frac{\eta_i}{E_i}</math>
दिया गया <math>N+1</math> मोडुली के साथ तत्व <math>E_i</math>, चिपचिपापन <math>\eta_i</math>, और विश्राम का समय <math>\tau_i=\frac{\eta_i}{E_i}</math>
तरल पदार्थ के मॉडल के लिए सामान्य रूप निम्न द्वारा दिया गया है:
तरल पदार्थ के मॉडल के लिए सामान्य रूप निम्न द्वारा दिया गया है:
सामान्यीकृत मैक्सवेल मॉडल को मैक्सवेल-विचर्ट मॉडल के रूप में भी जाना जाता है (जेम्स क्लर्क मैक्सवेल और ई विचर्ट के बाद)[1][2]) चिपचिपापन के लिए रैखिक मॉडल का सबसे सामान्य रूप है। इस मॉडल में कई मैक्सवेल सामग्री समानांतर में इकट्ठी की जाती हैं। यह ध्यान में रखा जाता है कि छूट एक बार में नहीं, बल्कि समय के सेट में होता है। अलग-अलग लंबाई के आणविक खंडों की उपस्थिति के कारण, छोटे वाले लंबे समय से कम योगदान देते हैं, अलग-अलग समय वितरण होता है। वीचर्ट मॉडल वितरण को सही रूप से दर्शाने के लिए जितने आवश्यक हैं उतने स्प्रिंग-डैशपॉट मैक्सवेल तत्व होने से यह दिखाता है। दाईं ओर का आंकड़ा सामान्यीकृत वीचर्ट मॉडल दिखाता है।[3][4]