चुंबकीय द्विध्रुवीय: Difference between revisions
No edit summary |
|||
Line 25: | Line 25: | ||
{{See also|चुंबकीय ध्रुव की परिभाषा}} | {{See also|चुंबकीय ध्रुव की परिभाषा}} | ||
एक द्विध्रुव विद्युत पाश और चुंबकीय ध्रुव के लिए दो प्रारूप, स्रोत से दूर चुंबकीय क्षेत्र के लिए समान पुर्वानुमान लगाते हैं। यद्यपि, स्रोत क्षेत्र के अंदर वे अलग-अलग पुर्वानुमान लगाते हैं। ध्रुवों के मध्य चुंबकीय क्षेत्र चुंबकीय क्षण के विपरीत दिशा में होता है जो ऋणात्मक आवेश से धनात्मक आवेश की ओर इंगित करता है, जबकि विद्युत पाश के अंदर यह उसी दिशा में होता | एक द्विध्रुव विद्युत पाश और चुंबकीय ध्रुव के लिए दो प्रारूप, स्रोत से दूर चुंबकीय क्षेत्र के लिए समान पुर्वानुमान लगाते हैं। यद्यपि, स्रोत क्षेत्र के अंदर वे अलग-अलग पुर्वानुमान लगाते हैं। ध्रुवों के मध्य चुंबकीय क्षेत्र चुंबकीय क्षण के विपरीत दिशा में होता है जो ऋणात्मक आवेश से धनात्मक आवेश की ओर इंगित करता है, जबकि विद्युत पाश के अंदर यह उसी दिशा में होता है। स्पष्ट रूप से, इन क्षेत्रों की सीमाएँ भी भिन्न होते है क्योंकि स्रोत शून्य आकार में सिकुड़ जाते हैं। यह अंतर तभी आशय रखता है जब किसी चुंबकीय क्षेत्रो के अंदर की गणना करने के लिए द्विध्रुवीय सीमा का उपयोग किया जाता है। | ||
यदि एक विद्युत पाश को छोटा करके एक चुंबकीय द्विध्रुव का निर्माण किया जाता है, लेकिन विद्युत और क्षेत्र के उत्पाद को स्थिर रखते हुए, सीमित क्षेत्र है | यदि एक विद्युत पाश को छोटा करके एक चुंबकीय द्विध्रुव का निर्माण किया जाता है, लेकिन विद्युत और क्षेत्र के उत्पाद को स्थिर रखते हुए, सीमित क्षेत्र है |
Revision as of 12:13, 9 April 2023
विद्युत चुंबकत्व में, एक चुंबकीय द्विध्रुवीय विद्युत प्रवाह के बंद लूप ध्रुवों की युग्मों की सीमा होती है क्योंकि चुंबकीय क्षण को स्थिर रखते हुए स्रोत का आकार शून्य हो जाता है। यह वैद्युत द्विध्रुव आघूर्ण का चुंबकीय अनुरूप है, परन्तु सादृश्य पूर्ण नहीं है। विशेष रूप से, एक वास्तविक चुंबकीय एकल ध्रुव, किसी विद्युत आवेश के चुंबकीय समानान्तर प्रकृति में कभी नहीं देखा गया है। यद्यपि, चुंबकीय एकल ध्रुव क्वासीकण को कुछ संघनित पदार्थ प्रणालियों के आकस्मिक गुणों के रूप में देखा गया है।[2] इसके अतिरिक्त, चुंबकीय द्विध्रुव आघूर्ण का एक रूप मौलिक क्वांटम गुण-प्राथमिक कणो के भौतिकी चक्रण से जुड़ा है।
चुंबकीय एकल ध्रुव उपस्थित नहीं होता हैं, क्योंकि किसी भी स्थिर चुंबकीय स्रोत से बड़ी दूरी पर चुंबकीय क्षेत्र उसी द्विध्रुवीय क्षण के साथ एक द्विध्रुवीय क्षेत्र जैसा दिखता है। उच्च-क्रम के स्रोतों के लिए कोई द्विध्रुव क्षण नहीं होता है, उनका क्षेत्र द्विध्रुव क्षेत्र के सापेक्ष में तेजी से दूरी के साथ शून्य की ओर घटता है।
चुंबकीय द्विध्रुव आघूर्ण द्वारा उत्पन्न बाह्य चुंबकीय क्षेत्र
पारम्परिक भौतिकी में, एक द्विध्रुव के चुंबकीय क्षेत्र की गणना एक विद्युत पाश या आवेशों के एक युग्म की सीमा के रूप में किया जाता है क्योंकि चुंबकीय क्षण m को बनाए रखते हुए स्रोत एक बिंदु तक सिकुड़ जाता है। विद्युत पाश के लिए, यह सीमा चुंबकीय सदिश क्षमता सरलता से प्राप्त होता है:[3]
जहाँ μ0 निर्वात पारगम्यता स्थिर है और 4π r2 त्रिज्या के गोले की सतह है तब r चुंबकीय प्रवाह घनत्व बी-क्षेत्र की शक्ति है।[3]
वैकल्पिक रूप से पहले चुंबकीय ध्रुव सीमा से चुंबकीय अदिश क्षमता प्राप्त कर सकता हैं,
और इसलिए चुंबकीय क्षेत्र की शक्ति या एच-क्षेत्र की शक्ति है।
चुंबकीय क्षण की धुरी के बारे में घूर्णन के अंतर्गत चुंबकीय क्षेत्र की शक्ति सममित है। गोलाकार निर्देशांक में, , और चुंबकीय क्षण के साथ z- अक्ष के साथ अनुयोजित किया जाता है, तो क्षेत्र की शक्ति को और अधिक सरलता से व्यक्त किया जा सकता है
एक द्विध्रुव का आंतरिक चुंबकीय क्षेत्र
एक द्विध्रुव विद्युत पाश और चुंबकीय ध्रुव के लिए दो प्रारूप, स्रोत से दूर चुंबकीय क्षेत्र के लिए समान पुर्वानुमान लगाते हैं। यद्यपि, स्रोत क्षेत्र के अंदर वे अलग-अलग पुर्वानुमान लगाते हैं। ध्रुवों के मध्य चुंबकीय क्षेत्र चुंबकीय क्षण के विपरीत दिशा में होता है जो ऋणात्मक आवेश से धनात्मक आवेश की ओर इंगित करता है, जबकि विद्युत पाश के अंदर यह उसी दिशा में होता है। स्पष्ट रूप से, इन क्षेत्रों की सीमाएँ भी भिन्न होते है क्योंकि स्रोत शून्य आकार में सिकुड़ जाते हैं। यह अंतर तभी आशय रखता है जब किसी चुंबकीय क्षेत्रो के अंदर की गणना करने के लिए द्विध्रुवीय सीमा का उपयोग किया जाता है।
यदि एक विद्युत पाश को छोटा करके एक चुंबकीय द्विध्रुव का निर्माण किया जाता है, लेकिन विद्युत और क्षेत्र के उत्पाद को स्थिर रखते हुए, सीमित क्षेत्र है
जहाँ δ(r) तीन आयामों में डायराक डेल्टा फलन है। जो पिछले अनुभाग में व्यंजकों के विपरीत, यह सीमा द्विध्रुव के आंतरिक क्षेत्र के लिए सही है।
यदि एक उत्तरी ध्रुव और एक दक्षिणी ध्रुव को लेकर एक चुंबकीय द्विध्रुव का निर्माण किया जाता है, तो उन्हें एक साथ और निकट लाया जा सकता है, लेकिन चुंबकीय ध्रुव-आवेश और दूरी के उत्पाद को स्थिर रखते हुए, ये सीमांत
क्षेत्र B = μ0(H + M),से संबंधित हैं जहाँ
चुंबकीयकरण है।
दो चुंबकीय द्विध्रुवों के मध्य बल
बल F एक द्विध्रुव आघूर्ण द्वारा आरोपित m1 किसी दूसरे m2 पर एक सदिश द्वारा अंतरिक्ष में अलग किया गया r का उपयोग करके गणना की जा सकती है:[4]
जहाँ r द्विध्रुवों के बीच की दूरी है। m1 पर कार्य करने वाला बल विपरीत दिशा में है।
सूत्रबल से आघूर्ण प्राप्त किया जा सकता है
परिमित स्रोतों से द्विध्रुवीय क्षेत्र
वह चुंबकीय अदिश क्षमता ψ एक परिमित स्रोत द्वारा उत्पादित,परंतु इसके बाहर, एक बहुध्रुव विस्तार द्वारा दर्शाया जा सकता है। विस्तार में प्रत्येक शब्द एक विशिष्ट क्षण और स्रोत से दूरी r के साथ घटने की एक विशेषता दर के साथ जुड़ा हुआ है। एकल ध्रुव क्षणों में 1/r की कमी की दर होती है, द्विध्रुवीय क्षणों की 1/r2 दर होती है, चौगुनी क्षणों की दर 1/r3 होती है, और इसी प्रकार आदेश जितना ऊंचा होता है, क्षमता उतनी ही तेजी से गिरती है। चूंकि चुंबकीय स्रोतों में सबसे कम क्रम वाला शब्द द्विध्रुवीय शब्द है, यह बड़ी दूरी पर प्रभावी है। इसलिए, बड़ी दूरी पर कोई भी चुंबकीय स्रोत उसी चुंबकीय क्षण के द्विध्रुव की तरह दिखता है।
टिप्पणियाँ
- ↑ I.S. Grant, W.R. Phillips (2008). विद्युत चुंबकत्व (2nd ed.). Manchester Physics, John Wiley & Sons. ISBN 978-0-471-92712-9.
- ↑ Magnetic monopoles spotted in spin ices, September 3, 2009.
- ↑ 3.0 3.1 Chow 2006, pp. 146–150
- ↑ D.J. Griffiths (2007). इलेक्ट्रोडायनामिक्स का परिचय (3rd ed.). Pearson Education. p. 276. ISBN 978-81-7758-293-2.
- ↑ Furlani 2001, p. 140
- ↑ K.W. Yung; P.B. Landecker; D.D. Villani (1998). "दो चुंबकीय द्विध्रुवों के बीच बल के लिए एक विश्लेषणात्मक समाधान" (PDF). Retrieved November 24, 2012.
{{cite journal}}
: Cite journal requires|journal=
(help)
संदर्भ
- Chow, Tai L. (2006). Introduction to electromagnetic theory: a modern perspective. Jones & Bartlett Learning. ISBN 978-0-7637-3827-3.
- Jackson, John D. (1975). Classical Electrodynamics (2nd ed.). Wiley. ISBN 0-471-43132-X.
- Furlani, Edward P. (2001). Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications. Academic Press. ISBN 0-12-269951-3.
- Schill, R. A. (2003). "General relation for the vector magnetic field of a circular current loop: A closer look". IEEE Transactions on Magnetics. 39 (2): 961–967. Bibcode:2003ITM....39..961S. doi:10.1109/TMAG.2003.808597.