प्रवर संवहन मैक्सवेल मॉडल: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 51: | Line 51: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 23/03/2023]] | [[Category:Created On 23/03/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 10:20, 20 April 2023
ऊपरी-संवहित मैक्सवेल (यूसीएम) मॉडल ऊपरी-संवहित समय व्युत्पन्न का उपयोग करके बड़े विकृतियों के स्थितियों में मैक्सवेल पदार्थ का एक सामान्यीकरण है। मॉडल का प्रस्ताव जेम्स जी ओल्ड्रोयड ने दिया था। अवधारणा का नाम जेम्स क्लर्क मैक्सवेल के नाम पर रखा गया है।
मॉडल को इस प्रकार लिखा जा सकता है:
जहाँ :
- तनाव (भौतिकी) टेन्सर है;
- विश्राम का समय है;
- तनाव टेन्सर का ऊपरी संवहन समय व्युत्पन्न है:
- द्रव वेग है
- भौतिक श्यानता स्थिर सरल अपरुपण है;
- तनाव दर टेंसर है।
स्थिर अपरुपण की स्थिति
इस स्थितियों के लिए अपरुपण तनाव के केवल दो घटक गैर-शून्य हो गए:
और
जहाँ अपरुपण दर है।
इस प्रकार, ऊपरी-संवहित मैक्सवेल मॉडल सरल अपरुपण के लिए पूर्वअनुमान करता है कि अपरुपण तनाव अपरुपण दर और सामान्य तनाव के पहले अंतर के समानुपाती होता है अपरुपण दर के वर्ग के समानुपाती है, सामान्य तनावों का दूसरा अंतर () सदैव शून्य होता है। दूसरे शब्दों में, यूसीएम सामान्य तनावों के पहले अंतर की उपस्थिति की पूर्वअनुमान करता है किंतु अपरुपण श्यानता के गैर-न्यूटोनियन व्यवहार और न ही सामान्य तनावों के दूसरे अंतर की पूर्वअनुमान करता है।
सामान्यतः सामान्य तनावों के पहले अंतर का द्विघात व्यवहार और सामान्य तनावों का कोई दूसरा अंतर नहीं है, मध्यम अपरुपण दरों पर बहुलक पिघलने का यथार्थवादी व्यवहार है, किंतु निरंतर श्यानता अवास्तविक है और मॉडल की उपयोगिता को सीमित करती है।
स्थिर अपरूपण के प्रारंभ की स्थिति
इस स्थितियों के लिए अपरुपण तनाव के केवल दो घटक गैर-शून्य हो गए:
और
ऊपर दिए गए समीकरण तनावों का वर्णन करते हैं जो धीरे-धीरे स्थिर-अवस्था मानो को शून्य से बढ़ाते हैं।
समीकरण तभी प्रयुक्त होता है, जब अपरुपण प्रवाह में वेग प्रोफ़ाइल पूरी तरह से विकसित हो। फिर अपरुपण दर चैनल की ऊंचाई पर स्थिर रहती है। यदि स्टार्ट-अप फॉर्म को शून्य वेग वितरण की गणना करनी है, तो पीडीई का पूरा समूह हल करना होगा।
स्थिर स्थिति अक्षीय विस्तार या अक्षीय संपीड़न की स्थिति
इस स्थितियों के लिए यूसीएम निम्नलिखित समीकरण द्वारा गणना किए गए सामान्य तनाव पूर्वअनुमान करता है:
जहाँ बढ़ाव दर है।
समीकरण बढ़ाव की श्यानता की पूर्वअनुमान करता है (न्यूटोनियन तरल पदार्थों के लिए समान) कम बढ़ाव दर () के स्थिति में तेजी से विकृति के साथ गाढ़ा होने के साथ स्थिर स्थिति श्यानता आ रही है अनंत कुछ दीर्घवृत्तीय दर () और कुछ संपीड़न दर () पर। यह व्यवहार यथार्थवादी प्रतीत होता है।
छोटी विकृति का स्थिति
छोटे विरूपण के स्थितियों में ऊपरी संवहन व्युत्पन्न द्वारा प्रारंभ की गई गैर-रैखिकता गायब हो जाती है और मॉडल मैक्सवेल पदार्थ का एक सामान्य मॉडल बन गया है।
संदर्भ
- Macosko, Christopher (1993). Rheology. Principles, Measurements and Applications. VCH Publisher. ISBN 1-56081-579-5.