विकिरण अपघटन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Dissociation of molecules by ionizing radiation}}
{{Short description|Dissociation of molecules by ionizing radiation}}
रेडिओलिसिस आयनीकरण [[विकिरण]] द्वारा [[अणुओं]] का पृथक्करण (रसायन विज्ञान) है। यह उच्च-ऊर्जा प्रवाह के संपर्क में आने के परिणामस्वरूप कई [[रासायनिक बंध|रासायनिक बंधों]] की दरार है। इस संदर्भ में विकिरण आयनकारी से जुड़ा हुआ है| रेडियोलिसिस इसलिए भिन्न है, उदाहरण के लिए, Cl<sub>2</sub> अणु के दो Cl-रेडिकल (रसायन विज्ञान) में [[ photodissociation | फोटोलिसिस]], जहाँ ([[पराबैंगनी]] या दृश्यमान स्पेक्ट्रम) प्रकाश का उपयोग किया जाता है।
रेडिओलिसिस आयनीकरण [[विकिरण]] द्वारा [[अणुओं]] का पृथक्करण (रसायन विज्ञान) होता है। यह उच्च-ऊर्जा प्रवाह के संपर्क में आने के परिणामस्वरूप कई [[रासायनिक बंध|रासायनिक बंधों]] की सीमा है। इस संदर्भ में विकिरण आयनकारी से जुड़ा हुआ है| रेडियोलिसिस इसीलिए भिन्न है, उदाहरण के लिए, Cl<sub>2</sub> अणु के दो Cl-रेडिकल (रसायन विज्ञान) में [[ photodissociation | फोटोलिसिस]], जहाँ ([[पराबैंगनी]] या दृश्यमान स्पेक्ट्रम) प्रकाश का उपयोग किया जाता है।


उदाहरण के लिए, पानी [[अल्फा विकिरण]] के अंतर्गत हाइड्रोजन रेडिकल (रसायन विज्ञान) और [[हाइड्रॉक्सिल रेडिकल]] में भिन्न हो जाता है, पानी के आयनीकरण के विपरीत जो [[हाइड्रोजन आयन]] और[[ हीड्राकसीड | हाइड्रोक्साइड]] आयन उत्पन्न करता है।{{Citation needed|date=August 2008}} आयनकारी विकिरण के अंतर्गत सान्द्र विलयनों का रसायन अत्यंत जटिल होता है। रेडिओलिसिस स्थानीय रूप से[[ रिडॉक्स | रिडॉक्स]] स्थितियों, यौगिकों की [[आयन प्रजाति]] और [[घुलनशीलता]] को संशोधित कर सकता है|
उदाहरण के लिए, पानी [[अल्फा विकिरण]] के अंतर्गत हाइड्रोजन रेडिकल (रसायन विज्ञान) और [[हाइड्रॉक्सिल रेडिकल]] में भिन्न हो जाता है, पानी के आयनीकरण के विपरीत जो [[हाइड्रोजन आयन]] और[[ हीड्राकसीड | हाइड्रोक्साइड]] आयन उत्पन्न करता है।{{Citation needed|date=August 2008}} आयनकारी विकिरण के अंतर्गत सान्द्र विलयनों का रसायन अत्यंत जटिल होता है। रेडिओलिसिस स्थानीय रूप से[[ रिडॉक्स | रिडॉक्स]] स्थितियों, यौगिकों की [[आयन प्रजाति]] और [[घुलनशीलता]] को संशोधित कर सकता है|


== जल अपघटन ==
== जल अपघटन ==
सभी विकिरण-आधारित रासायनिक प्रतिक्रियाओं का अध्ययन किया गया है, जिनमें से अत्यधिक महत्वपूर्ण पानी का अपघटन है।<ref>{{cite journal |author=Marie Curie |title= Traité de radioactivité, pp. v–xii. Published by Gauthier-Villars in Paris, 1910.|title-link= Traité de radioactivité}}</ref> विकिरण के संपर्क में आने पर, पानी [[हाइड्रोजन पेरोक्साइड]], [[फ्री-रेडिकल जोड़|हाइड्रोजन रेडिकल्स]] और [[ओजोन]] जैसे मिश्रित ऑक्सीजन यौगिकों में टूटने के क्रम से गुजरता है, जो ऑक्सीजन में पुनः परिवर्तित होने पर बड़ी मात्रा में ऊर्जा छोड़ता है। इनमें से कुछ विस्फोटक हैं। यह अपघटन मुख्य रूप से [[अल्फा कण|अल्फा कणों]] द्वारा निर्मित होता है, जिसे पानी की अत्यंत पतली परतों द्वारा पूर्ण प्रकार से अवशोषित किया जा सकता है।
सभी विकिरण-आधारित रासायनिक प्रतिक्रियाओं का अध्ययन किया गया है, जिनमें से अत्यधिक महत्वपूर्ण पानी का अपघटन है।<ref>{{cite journal |author=Marie Curie |title= Traité de radioactivité, pp. v–xii. Published by Gauthier-Villars in Paris, 1910.|title-link= Traité de radioactivité}}</ref> विकिरण के संपर्क में आने पर, पानी [[हाइड्रोजन पेरोक्साइड]], [[फ्री-रेडिकल जोड़|हाइड्रोजन रेडिकल्स]] और [[ओजोन]] जैसे मिश्रित ऑक्सीजन यौगिकों में विभक्त होने के क्रम में निकलता है, जो ऑक्सीजन में पुनः परिवर्तित होने पर बड़ी मात्रा में ऊर्जा त्याग देता है। इनमें से कुछ विस्फोटक हैं। यह अपघटन मुख्य रूप से [[अल्फा कण|अल्फा कणों]] द्वारा निर्मित होता है, जिसे पानी की अत्यंत पतली परतों द्वारा पूर्ण प्रकार से अवशोषित किया जा सकता है।


संक्षेप में, पानी के रेडियोलिसिस को इस प्रकार लिखा जा सकता है-<ref>{{cite journal |last1=Le Caër |first1=Sophie |title=Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation |journal= Water|volume=3 |pages=235–253 |date=2011 |doi=10.3390/w3010235 |doi-access=free }}</ref>
संक्षेप में, पानी के रेडियोलिसिस को इस प्रकार लिखा जा सकता है-<ref>{{cite journal |last1=Le Caër |first1=Sophie |title=Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation |journal= Water|volume=3 |pages=235–253 |date=2011 |doi=10.3390/w3010235 |doi-access=free }}</ref>
Line 13: Line 13:
== अनुप्रयोग ==
== अनुप्रयोग ==


=== परमाणु ऊर्जा संयंत्रों में क्षरण की भविष्यवाणी और रोकथाम ===
=== परमाणु ऊर्जा संयंत्रों में क्षरण की भविष्यवाणी और नियंत्रण ===
ऐसा माना जाता है कि हल्के-पानी रिएक्टर के आंतरिक शीतलक लूप में विकिरणित पानी में उपस्थित हाइड्रॉक्सिल की बढ़ी हुई एकाग्रता को परमाणु ऊर्जा संयंत्रों को डिजाइन करते समय ध्यान में रखा जाना चाहिए, जिससे कि [[जंग]] से होने वाली शीतलक हानि को रोका जा सके।
ऐसा माना जाता है कि हल्के-पानी रिएक्टर के आंतरिक शीतलक लूप में विकिरणित पानी में उपस्थित हाइड्रॉक्सिल की बढ़ी हुई एकाग्रता को परमाणु ऊर्जा संयंत्रों को डिजाइन करते समय ध्यान में रखा जाना चाहिए, जिससे कि [[जंग]] से होने वाली शीतलक हानि को नियंत्रित किया जा सकता है।


=== हाइड्रोजन उत्पादन ===
=== हाइड्रोजन उत्पादन ===

Revision as of 01:09, 19 April 2023

रेडिओलिसिस आयनीकरण विकिरण द्वारा अणुओं का पृथक्करण (रसायन विज्ञान) होता है। यह उच्च-ऊर्जा प्रवाह के संपर्क में आने के परिणामस्वरूप कई रासायनिक बंधों की सीमा है। इस संदर्भ में विकिरण आयनकारी से जुड़ा हुआ है| रेडियोलिसिस इसीलिए भिन्न है, उदाहरण के लिए, Cl2 अणु के दो Cl-रेडिकल (रसायन विज्ञान) में फोटोलिसिस, जहाँ (पराबैंगनी या दृश्यमान स्पेक्ट्रम) प्रकाश का उपयोग किया जाता है।

उदाहरण के लिए, पानी अल्फा विकिरण के अंतर्गत हाइड्रोजन रेडिकल (रसायन विज्ञान) और हाइड्रॉक्सिल रेडिकल में भिन्न हो जाता है, पानी के आयनीकरण के विपरीत जो हाइड्रोजन आयन और हाइड्रोक्साइड आयन उत्पन्न करता है।[citation needed] आयनकारी विकिरण के अंतर्गत सान्द्र विलयनों का रसायन अत्यंत जटिल होता है। रेडिओलिसिस स्थानीय रूप से रिडॉक्स स्थितियों, यौगिकों की आयन प्रजाति और घुलनशीलता को संशोधित कर सकता है|

जल अपघटन

सभी विकिरण-आधारित रासायनिक प्रतिक्रियाओं का अध्ययन किया गया है, जिनमें से अत्यधिक महत्वपूर्ण पानी का अपघटन है।[1] विकिरण के संपर्क में आने पर, पानी हाइड्रोजन पेरोक्साइड, हाइड्रोजन रेडिकल्स और ओजोन जैसे मिश्रित ऑक्सीजन यौगिकों में विभक्त होने के क्रम में निकलता है, जो ऑक्सीजन में पुनः परिवर्तित होने पर बड़ी मात्रा में ऊर्जा त्याग देता है। इनमें से कुछ विस्फोटक हैं। यह अपघटन मुख्य रूप से अल्फा कणों द्वारा निर्मित होता है, जिसे पानी की अत्यंत पतली परतों द्वारा पूर्ण प्रकार से अवशोषित किया जा सकता है।

संक्षेप में, पानी के रेडियोलिसिस को इस प्रकार लिखा जा सकता है-[2]


अनुप्रयोग

परमाणु ऊर्जा संयंत्रों में क्षरण की भविष्यवाणी और नियंत्रण

ऐसा माना जाता है कि हल्के-पानी रिएक्टर के आंतरिक शीतलक लूप में विकिरणित पानी में उपस्थित हाइड्रॉक्सिल की बढ़ी हुई एकाग्रता को परमाणु ऊर्जा संयंत्रों को डिजाइन करते समय ध्यान में रखा जाना चाहिए, जिससे कि जंग से होने वाली शीतलक हानि को नियंत्रित किया जा सकता है।

हाइड्रोजन उत्पादन

हाइड्रोजन के उत्पादन के लिए अपरम्परागत प्रकारों में वर्तमान रुचि ने पानी के रेडिओलिटिक विभाजन को पुनः प्रारम्भ करने के लिए प्रेरित किया है, जहाँ पानी के साथ विभिन्न प्रकार के आयनीकरण विकिरण (α, β, और γ) की परस्पर क्रिया आणविक हाइड्रोजन का उत्पादन करती है। इस पुनर्मूल्यांकन को परमाणु रिएक्टरों से निकलने वाले ईंधन में निहित बड़ी मात्रा में विकिरण स्रोतों की वर्तमान उपलब्धता के कारण आगे बढ़ाया गया था। यह खर्च किया हुआ परमाणु ईंधन स्थायी निपटान या परमाणु पुनर्संसाधन की प्रतीक्षा में सामान्यतः पानी के कुंडों में जमा होता है। β और γ विकिरण के साथ पानी के विकिरण से उत्पन्न हाइड्रोजन की उपज कम है (G-मान = <1 अणु प्रति 100इलेक्ट्रॉन वोल्ट अवशोषित ऊर्जा) किन्तु यह प्रारंभिक रेडिओलिसिस के समय उत्पन्न होने वाली प्रजातियों के तीव्रता से पुनर्संयोजन के कारण होता है। यदि अशुद्धियाँ उपस्तिथ हैं या यदि ऐसी भौतिक स्थितियाँ निर्मित होती हैं जो रासायनिक संतुलन की स्थापना को बाधित करती हैं, तो हाइड्रोजन के शुद्ध उत्पादन को अधिक बढ़ाया जा सकता है।[3]

अन्य दृष्टिकोण सोडियम बोरेट को सोडियम बोरोहाइड्राइड में परिवर्तित करके खर्च किए गए ईंधन के पुनर्जनन के लिए ऊर्जा स्रोत के रूप में रेडियोधर्मी कचरे का उपयोग करता है। नियंत्रणों के उचित संयोजन को प्रारम्भ करके, स्थिर बोरोहाइड्राइड यौगिकों का उत्पादन किया जा सकता है और हाइड्रोजन ईंधन भंडारण माध्यम के रूप में उपयोग किया जा सकता है।

1976 में किए गए अध्ययन से यह ज्ञात हुआ कि रेडियोधर्मी क्षय के माध्यम से मुक्त ऊर्जा का उपयोग करके प्राप्त की जाने वाली औसत हाइड्रोजन उत्पादन दर का क्रम-परिमाण अनुमान लगाया जा सकता है। 0.45 अणु/100 eV की प्राथमिक आणविक हाइड्रोजन उपज के आधार पर, प्रति दिन 10 टन प्राप्त करना संभव हो सकता है| इस सीमा में हाइड्रोजन उत्पादन दर नगण्य नहीं है, किन्तु यू.एस. में प्रायः 2 x 10^4 टन हाइड्रोजन के औसत दैनिक उपयोग (1972) की तुलना में कम है। हाइड्रोजन-परमाणु दाता को जोड़ने से यह प्रायः छह गुना बढ़ सकता है। यह दिखाया गया था कि हाइड्रोजन-परमाणु दाता जैसे फॉर्मिक अम्ल को जोड़ने से हाइड्रोजन के लिए G मान प्रति 100 eV अवशोषित लगभग 2.4 अणु तक बढ़ जाता है। उसी अध्ययन ने निष्कर्ष निकाला है कि ऐसी सुविधा को डिजाइन करना संभवतः व्यवहार्य होने के लिए असुरक्षित होगा।[4]


खर्च किया गया परमाणु ईंधन

हाइड्रोजन युक्त सामग्रियों के रेडियोलिटिक अपघटन द्वारा गैस उत्पादन विभिन्न वर्षों से रेडियोधर्मी सामग्री और कचरे के परिवहन और भंडारण के लिए आशंका का विषय रहा है। संभावित रूप से ज्वलनशील और संक्षारक गैसें उत्पन्न हो सकती हैं, जबकि उतने ही समय में, रासायनिक प्रतिक्रियाएं हाइड्रोजन को हटा सकती हैं और इन प्रतिक्रियाओं को विकिरण की उपस्थिति से बढ़ाया जा सकता है। इन प्रतिस्पर्धी प्रतिक्रियाओं के मध्य संतुलन इस समय उचित प्रकार से ज्ञात नहीं है।

विकिरण चिकित्सा

जब विकिरण शरीर में प्रवेश करता है, तो यह मुक्त कणों और अणुओं का उत्पादन करने के लिए कोशिकाओं (जीव विज्ञान) (मुख्य रूप से पानी से बना) के परमाणुओं और अणुओं के साथ बातचीत करेगा जो कोशिका, डीएनए में महत्वपूर्ण लक्ष्य तक पहुंचने के लिए पर्याप्त रूप से विस्तृत होने में सक्षम हैं और कुछ रासायनिक प्रतिक्रिया के माध्यम से अप्रत्यक्ष रूप से इसे हानि पहुँचाते हैं। फोटॉन के लिए यह मुख्य क्षति तंत्र है क्योंकि उदाहरण के लिए बाहरी बीम विकिरण चिकित्सा में उनका उपयोग किया जाता है।

सामान्यतः, रेडिओलाइटिक घटनाएँ जो (ट्यूमर) -कोशिका डीएनए की क्षति का कारण बनती हैं, उन्हें भिन्न-भिन्न चरणों में विभाजित किया जाता है जो भिन्न-भिन्न समय के पैमाने पर होती हैं-[5] * भौतिक अवस्था (), आयनीकरण कण द्वारा ऊर्जा जमाव और पानी के परिणामी आयनीकरण में सम्मिलित हैं।

  • भौतिक-रासायनिक चरण के समय () विभिन्न प्रक्रियाएँ होती हैं, उदाहरण -आयनित पानी के अणु हाइड्रॉक्सिल रेडिकल में विभाजित हो सकते हैं और हाइड्रोजन अणु या मुक्त इलेक्ट्रॉन सॉल्वेशन से गुजर सकते हैं।
  • रासायनिक चरण के समय (), रेडिओलिसिस के पूर्व उत्पाद परस्पर प्रतिक्रिया करते हैं, इस प्रकार कई प्रतिक्रियाशील ऑक्सीजन प्रजातियों का उत्पादन करते हैं जो विस्तृत होने में सक्षम होते हैं।
  • जैव-रासायनिक चरण के समय ( दिनों तक) ये प्रतिक्रियाशील ऑक्सीजन प्रजातियां डीएनए के रासायनिक बंधनों को तोड़ सकती हैं, इस प्रकार एंजाइमों, प्रतिरक्षा-प्रणाली आदि की प्रतिक्रिया को ट्रिगर कर सकती हैं।
  • अंत में, जैविक चरण (दिनों से लेकर वर्षों तक) के समय रासायनिक क्षति जैविक कोशिका मृत्यु या ऑन्कोजेनेसिस में परिवर्तित हो सकती है जब क्षतिग्रस्त कोशिकाएं विभाजन करने का प्रयास करती हैं।

पृथ्वी का इतिहास

सुझाव दिया गया है[6] कि पृथ्वी के विकास के प्रारंभिक चरणों में जब इसकी रेडियोधर्मिता वर्तमान की तुलना में परिमाण के लगभग दो क्रम अधिक थी, रेडियोलिसिस वायुमंडलीय ऑक्सीजन का प्रमुख स्रोत हो सकता था, जिसने जीवन की उत्पत्ति और विकास के लिए परिस्थितियों को सुनिश्चित किया था। पानी के रेडिओलिसिस द्वारा उत्पादित आणविक हाइड्रोजन और ऑक्सीडेंट भी उपसतह सूक्ष्म जीव विज्ञान समुदायों (पेडरसन, 1999) को ऊर्जा का निरंतर स्रोत प्रदान कर सकते हैं। इस प्रकार की अटकलों को दक्षिण अफ्रीका में मपोनेंग गोल्ड माइन में शोध द्वारा समर्थित किया गया है, जहाँ शोधकर्ताओं ने समुदाय को डेसल्फोटोमैकुलम के नए फाइलोटाइप का वर्चस्व पाया, जो मुख्य रेडियोलाइटिक रूप से उत्पादित H2 पर भोजन करता है।[7][8]


विधियाँ

पल्स रेडिओलिसिस

पल्स रेडिओलिसिस प्रायः सौ माइक्रोसेकंड से भी तीव्र गति से होने वाली प्रतिक्रियाओं का अध्ययन करने के लिए तीव्रता से प्रतिक्रियाओं को प्रारम्भ करने की विधि है, जब अभिकर्मकों का सरल मिश्रण मंद होता है और प्रतिक्रियाओं को प्रारम्भ करने की अन्य विधियों का उपयोग करना पड़ता है।

तकनीक में सामग्री के प्रारूप को अत्यधिक त्वरित इलेक्ट्रॉनों के बीम पर उजागर करना सम्मिलित है, जहाँ बीम लाइनेक द्वारा उत्पन्न होता है। इसके विभिन्न अनुप्रयोग हैं। यह 1950 के दशक के अंत में और 1960 के दशक के प्रारम्भ में मैनचेस्टर में जॉन कीने (भौतिक विज्ञानी) और लंदन में जैक डब्ल्यू बोग द्वारा विकसित किया गया था।

फ्लैश फोटोलिसिस

फ्लैश फोटोलिसिस पल्स रेडिओलिसिस का विकल्प है जो रासायनिक प्रतिक्रियाओं को आरंभ करने के लिए इलेक्ट्रॉनों के बीम के अतिरिक्त उच्च-शक्ति प्रकाश दालों (जैसे एक्साइमर लेजर से) का उपयोग करता है। सामान्यतः पराबैंगनी प्रकाश का उपयोग किया जाता है जिसके लिए पल्स रेडिओलिसिस में उत्सर्जित एक्स-रे के लिए आवश्यकता से कम विकिरण परिरक्षण की आवश्यकता होती है।

यह भी देखें

संदर्भ

  1. Marie Curie. "Traité de radioactivité, pp. v–xii. Published by Gauthier-Villars in Paris, 1910". {{cite journal}}: Cite journal requires |journal= (help)
  2. Le Caër, Sophie (2011). "Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation". Water. 3: 235–253. doi:10.3390/w3010235.
  3. "Radiolytic Water Splitting: Demonstration at the Pm3-a Reactor". Retrieved 18 March 2016.
  4. Sauer, Jr., M. C.; Hart, E. J.; Flynn, K. F.; Gindler, J. E. (1976). "घुले हुए विखंडन उत्पादों द्वारा पानी के रेडिओलिसिस में हाइड्रोजन उपज का मापन". doi:10.2172/7347831. Retrieved 26 September 2019. {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  5. Hall, E.J.; Giaccia, A.J. (2006). रेडियोलॉजिस्ट के लिए रेडियोबायोलॉजी (6th ed.).
  6. R Bogdanov and Arno-Toomas Pihlak of the Saint Petersburg State University
  7. Li-Hung Lin; Pei-Ling Wang; Douglas Rumble; Johanna Lippmann-Pipke; Erik Boice; Lisa M. Pratt; Barbara Sherwood Lollar; Eoin L. Brodie; Terry C. Hazen; Gary L. Andersen; Todd Z. DeSantis; Duane P. Moser; Dave Kershaw & T. C. Onstott (2006). "एक उच्च-ऊर्जा, निम्न-विविधता क्रस्टल बायोम की दीर्घकालिक स्थिरता". Science. 314 (5798): 479–82. Bibcode:2006Sci...314..479L. doi:10.1126/science.1127376. PMID 17053150. S2CID 22420345.
  8. "Radioactivity May Fuel Life Deep Underground and Inside Other Worlds #separator_sa #site_title". Quanta Magazine (in English). 2021-05-24. Retrieved 2021-06-03.


बाहरी संबंध

Pulse radiolysis