कॉची गति समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 206: Line 206:
प्रवाह पर दाब प्रवणता का प्रभाव उच्च दाब से निम्न दाब की दिशा में प्रवाह को तेज करना है।
प्रवाह पर दाब प्रवणता का प्रभाव उच्च दाब से निम्न दाब की दिशा में प्रवाह को तेज करना है।


जैसा कि कॉची संवेग समीकरण में लिखा गया है, तनाव की शर्तें {{mvar|p}} और {{math|'''τ'''}} अभी तक अज्ञात हैं, इसलिए अकेले इस समीकरण का उपयोग समस्याओं को हल करने के लिए नहीं किया जा सकता है। गति के समीकरणों के अतिरिक्त - न्यूटन का दूसरा नियम - बल मॉडल की आवश्यकता है जो तनाव को प्रवाह गति से संबंधित करता है।<ref>
जैसा कि कॉची संवेग समीकरण में लिखा गया है प्रतिबल शब्द {{mvar|p}} और {{math|'''τ'''}} अभी तक अज्ञात हैं इसलिए अकेले इस समीकरण का उपयोग समस्याओं को हल करने के लिए नहीं किया जा सकता है। इस प्रकार गति के समीकरणों के अतिरिक्त - न्यूटन का दूसरा नियम - बल मॉडल की आवश्यकता है जो तनाव को प्रवाह गति से संबंधित करता है।<ref>
{{citation
{{citation
  | first1=Richard P.
  | first1=Richard P.
Line 222: Line 222:
  | publisher=Addison-Wesley
  | publisher=Addison-Wesley
  | location=Reading, Massachusetts
  | location=Reading, Massachusetts
  |at= Vol. 1, §9–4 and §12–1}}</ref> इस कारण से, प्राकृतिक प्रेक्षणों पर आधारित मान्यताओं को अधिकांशतः वेग और घनत्व जैसे अन्य प्रवाह चरों के संदर्भ में तनावों को निर्दिष्ट करने के लिए प्रयुक्त किया जाता है।
  |at= Vol. 1, §9–4 and §12–1}}</ref> इस कारण से प्राकृतिक प्रेक्षणों पर आधारित मान्यताओं को अधिकांशतः वेग और घनत्व जैसे अन्य प्रवाह चरों के संदर्भ में तनावों को निर्दिष्ट करने के लिए प्रयुक्त किया जाता है।


== बाहरी बल ==
== बाहरी बल ==

Revision as of 10:31, 19 April 2023

कॉची गति समीकरण कॉची द्वारा प्रस्तुत सदिश आंशिक अंतर समीकरण है जो किसी भी सातत्य यांत्रिकी में गैर-सापेक्षतावादी संवेग परिवहन का वर्णन करता है।[1]

मुख्य समीकरण

संवहन में (या लाग्रंगियन और यूलेरियन विनिर्देश) रूप में कॉची संवेग समीकरण को इस प्रकार लिखा जाता है।

जहाँ

  • प्रवाह वेग सदिश क्षेत्र है जो समय और स्थान पर निर्भर करता है। (इकाई: )
  • समय है। (इकाई: )
  • सामग्री व्युत्पन्न है जो के समान्तर है। (इकाई: )
  • सातत्य के दिए गए बिंदु पर घनत्व है। (जिसके लिए निरंतरता समीकरण धारण करता है।), (इकाई: )
  • कॉची तनाव टेन्सर है। (इकाई: )
  • सदिश है जिसमें शारीरिक बलों के कारण होने वाले सभी त्वरण (कभी-कभी केवल गुरुत्वाकर्षण त्वरण) सम्मिलित होते हैं। (इकाई: )
  • तनाव टेंसर का विचलन है।[2][3][4](इकाई: )

सामान्यतः उपयोग की जाने वाली एसआई इकाइयाँ कोष्ठकों में दी गई हैं। चूँकि समीकरण प्रकृति में सामान्य हैं और अन्य इकाइयाँ उनमें अंकित की जा सकती हैं या इकाइयों को गैर-विमीयकरण द्वारा हटाया जा सकता है।

ध्यान दीजिए कि स्पष्टता के लिए हम ऊपर केवल स्तंभ सदिश (कार्तीय समन्वय प्रणाली में) का उपयोग करते हैं। किन्तु समीकरण को भौतिक घटकों जो न तो सहसंयोजक ("स्तंभ") और न ही कॉन्ट्रावेरिएंट ("पंक्ति") का उपयोग करके लिखा गया है।[5] चूँकि, यदि हमने गैर-ऑर्थोगोनल वक्रीय समन्वय प्रणाली को चुना है तब हमें सहपरिवर्ती (पंक्ति सदिश) या प्रतिपरिवर्ती (स्तंभ सदिश) रूप में समीकरणों की गणना करनी चाहिए और उन्हें लिखना चाहिए।

चरों के उचित परिवर्तन के पश्चात् इसे संरक्षण रूप में भी लिखा जा सकता है।

जहाँ j किसी दिए गए स्थान-समय बिंदु पर संवेग घनत्व है। अतः F संवेग घनत्व से जुड़ा प्रवाह है और s में प्रति इकाई आयतन में सभी शारीरिक बल सम्मिलित हैं।

विभेदक व्युत्पत्ति

आइए हम सामान्यीकृत संवेग संरक्षण सिद्धांत से प्रारंभ करते है जिसे निम्नानुसार लिखा जा सकता है। "सिस्टम संवेग में परिवर्तन इस प्रणाली पर कार्य करने वाले परिणामी बल के समानुपाती होता है।" इसे सूत्र द्वारा व्यक्त किया गया है।[6]


जहाँ समय t में संवेग है, पर बल औसत से अधिक है, द्वारा विभाजित करने के पश्चात् और सीमा से गुजर रहा है। इस प्रकार (व्युत्पन्न) हम प्राप्त करते हैं।

आइए हम उपरोक्त समीकरण के प्रत्येक पक्ष का विश्लेषण करते है।

दाईं ओर

घन द्रव तत्व की दीवारों पर कार्य करने वाले बलों का एक्स घटक (ऊपर-नीचे की दीवारों के लिए हरा, बाएं-दाएं के लिए लाल, आगे-पीछे के लिए काला)।
शीर्ष ग्राफ में हम फ़ंक्शन का सन्निकटन देखते हैं (नीली रेखा) परिमित अंतर (पीली रेखा) का उपयोग करते हुए। नीचे के ग्राफ में हम बिंदु के कई गुना बढ़े हुए पड़ोस को देखते हैं (ऊपरी ग्राफ से बैंगनी वर्ग)। नीचे के ग्राफ़ में, पीली रेखा पूरी तरह से नीले रंग से ढकी हुई है, इसलिए दिखाई नहीं देती। नीचे की आकृति में, दो समतुल्य व्युत्पन्न रूपों का उपयोग किया गया है: ], और पदनाम प्रयोग किया गया

हम बलों को शारीरिक बलों में विभाजित करते हैं। अतः और सतह बल होता है।

सतही बल घन द्रव तत्व की दीवारों पर कार्य करते हैं। अतः प्रत्येक दीवार के लिए इन बलों के एक्स घटक को घन तत्व के साथ चित्र में चिह्नित किया गया था। (तनाव और सतह क्षेत्र के उत्पाद के रूप में उदाहरण , इकाइयों के साथ ).

घन की प्रत्येक दीवार पर कार्य करने वाले बलों (उनके एक्स घटक) को जोड़ने पर हम प्राप्त करते हैं।

आदेश देने के पश्चात् और घटकों के लिए इसी प्रकार की रीज़निंग करना,

(उन्हें चित्र में नहीं दिखाया गया है किन्तु यह क्रमशः Y और Z अक्षों के समानांतर सदिश होते है) हमें मिलता है।

हम इसे प्रतीकात्मक परिचालन के रूप में लिख सकते हैं।


नियंत्रण आयतन के अंदर द्रव्यमान बल कार्य कर रहे हैं। इस प्रकार हम उन्हें त्वरण क्षेत्र का उपयोग करके लिख सकते हैं। अतः (जैसे गुरुत्वाकर्षण त्वरण) होता है।

बायीं ओर

आइए घन की गति की गणना करते है।

जिससे कि हम मानते हैं कि परीक्षण किया गया द्रव्यमान (घन) समय में स्थिर है। अतः,

बाएँ और दाएँ पक्ष की तुलना

अपने समीप


तब,

तब,


द्वारा दोनों पक्षों को विभाजित किया जाता है और जिससे कि हमें मिलता हैं।
जो व्युत्पत्ति को समाप्त करता है।

अभिन्न व्युत्पत्ति

न्यूटन के दूसरे नियम (iवें घटक) को मॉडलिंग की जा रही निरंतरता में नियंत्रण मात्रा में प्रयुक्त कर देता है।

फिर, रेनॉल्ड्स परिवहन प्रमेय के आधार पर और सामग्री व्युत्पन्न संकेतन का उपयोग करके कोई लिख सकता है।
जहाँ Ω नियंत्रण मात्रा का प्रतिनिधित्व करता है। चूँकि यह समीकरण किसी भी नियंत्रण आयतन के लिए होता है अतः यह सत्य होता है कि समाकलन शून्य है। इससे कॉची संवेग समीकरण अनुसरण करता है। इस समीकरण को प्राप्त करने में मुख्य कदम (ऊपर नहीं किया गया है।) यह स्थापित कर रहा है कि तनाव टेंसर का टेंसर व्युत्पन्न उन बलों में से है जो Fi गठन करता है।[1]

संरक्षण रूप

कॉशी संवेग समीकरण को निम्न रूप में भी रखा जा सकता है।

कौशी संवेग समीकरण (संरक्षण रूप)

केवल परिभाषित करके,

जहाँ j सातत्य में माने जाने वाले बिंदु पर संवेग घनत्व है (जिसके लिए निरंतरता समीकरण धारण करता है), F संवेग घनत्व से जुड़ा प्रवाह है और s में प्रति इकाई आयतन में शारीरिक बल सम्मिलित हैं। अतः uu वेग का युग्म गुणनफल है।

यहाँ j और s में आयामों की संख्या N प्रवाह की गति और शरीर के त्वरण के समान है जबकि F टेन्सर होने के नाते N2 है।[note 1]

ऑयलरीय रूपों में यह स्पष्ट है कि कोई विचलित तनाव की धारणा कॉशी समीकरणों को यूलर समीकरणों (द्रव गतिकी) में नहीं लाती है।

संवहनी त्वरण

संवहन त्वरण का उदाहरण। प्रवाह स्थिर (समय-स्वतंत्र) है, किन्तु द्रव घटता है जिससे कि यह डायवर्जिंग डक्ट को नीचे ले जाता है (असम्पीडित या सबसोनिक कंप्रेसिबल प्रवाह मानते हुए)।

नेवियर-स्टोक्स समीकरणों की महत्वपूर्ण विशेषता संवहनी त्वरण की उपस्थिति है। इस प्रकार अंतरिक्ष के संबंध में प्रवाह के समय-स्वतंत्र त्वरण का प्रभाव होता है जबकि भिन्न-भिन्न सातत्य कण वास्तव में समय पर निर्भर त्वरण का अनुभव करते हैं। इस प्रकार प्रवाह क्षेत्र का संवहन त्वरण स्थानिक प्रभाव है। उदाहरण के लिये नोजल में तरल पदार्थ की गति है।

समान्यतः किसी भी प्रकार के सातत्य से निपटा जा रहा होता है किंतु संवहन त्वरण अरैखिक प्रभाव है। संवहन त्वरण अधिकांश प्रवाहों में उपस्तिथ होता है (अपवादों में आयामी असंपीड्य प्रवाह सम्मिलित है।) किन्तु रेंगने वाले प्रवाह (जिसे स्टोक्स प्रवाह भी कहा जाता है) में इसके गतिशील प्रभाव की अवहेलना की जाती है। संवहन त्वरण को अरैखिक मात्रा u ⋅ ∇u द्वारा दर्शाया जाता है जिसे या तो (u ⋅ ∇)u या u ⋅ (∇u) के रूप में समझा जा सकता है। अतः u के साथ वेग सदिश u का टेंसर व्युत्पन्न में दोनों व्याख्याएं समान परिणाम देती हैं।[7]

एडवेक्शन ऑपरेटर बनाम टेन्सर व्युत्पन्न

संवहन शब्द को (u ⋅ ∇)u के रूप में लिखा जा सकता है जहाँ u ⋅ ∇ संवहन है। इस प्रकार टेंसर व्युत्पन्न के संदर्भ में इस प्रतिनिधित्व की तुलना की जा सकती है।[7] टेंसर व्युत्पन्न u वेग सदिश का घटक-दर-घटक व्युत्पन्न है जिसे [∇u]mi = ∂m vi द्वारा परिभाषित किया गया है। जिससे कि

मेमने का रूप

कर्ल (गणित) के क्रॉस उत्पाद की सदिश कलन पहचान रखती है।

जहां फेनमैन सबस्क्रिप्ट नोटेशन a का उपयोग किया जाता है जिसका अर्थ है कि सबस्क्रिप्टेड ग्रेडिएंट केवल कारक a पर कार्य करता है।

होरेस लैम्ब ने अपनी प्रसिद्ध मौलिक पुस्तक हाइड्रोडायनामिक्स (1895) में[8] इस पहचान का उपयोग प्रवाह वेग के संवहन शब्द को घूर्णी रूप में परिवर्तित करने के लिए किया जाता है अर्थात टेन्सर व्युत्पन्न के बिना कार्य करता है।[9][10]

जहां सदिश मेम्ने सदिश कहा जाता है जिससे कि कॉची संवेग समीकरण बन जाता है।

पहचान का उपयोग करना,

कॉची समीकरण बन जाता है।

वास्तव में, बाहरी रूढ़िवादी क्षेत्र की स्थितियों में इसकी क्षमता φ को परिभाषित करके प्राप्त होती है।

स्थिर प्रवाह के स्थितियों में प्रवाह वेग का समय व्युत्पन्न विलुप्त हो जाता है जिससे कि संवेग समीकरण बन जाता है।

इसके अतिरिक्त प्रवाह दिशा पर गति समीकरण को प्रक्षेपित करके अर्थात् स्ट्रीकलाइन और पाथलाइन के साथ ट्रिपल स्केलर उत्पाद की सदिश कैलकुलस पहचान के कारण क्रॉस उत्पाद विलुप्त हो जाता है।

यदि तनाव टेंसर आइसोट्रोपिक है तब केवल दबाव ही प्रवेश करता है (जहाँ I पहचान टेन्सर है) और स्थिर असंपीड्य स्थितियों में यूलर संवेग समीकरण बन जाता है।

स्थिर असम्पीडित स्थितियों में जन समीकरण है।

अर्थात् स्थिर असम्पीडित प्रवाह के लिए द्रव्यमान संरक्षण बताता है कि धारारेखा के साथ घनत्व स्थिर है। अतः इससे यूलर गति समीकरण का अधिक सरलीकरण होता है।

अदृश्य तरल प्रवाह के लिए कुल शीर्ष को परिभाषित करने की सुविधा अब स्पष्ट है।

वास्तव में, उपरोक्त समीकरण को केवल इस प्रकार लिखा जा सकता है।

इस प्रकार बाहरी रूढ़िवादी क्षेत्र में स्थिर अदृश्य और असम्पीडित प्रवाह के लिए संवेग संतुलन बताता है कि स्ट्रीमलाइन के साथ कुल सिर स्थिर है।

अघूर्णी प्रवाह

मेमने का रूप इरोटेशनल फ्लो में भी उपयोगी होता है जहां वेग का कर्ल (गणित) (जिसे वर्टिसिटी कहा जाता है) ω = ∇ × u शून्य के समान्तर है। इस स्थिति में संवहन शब्द में कम कर देता है।

तनाव

सातत्य प्रवाह में तनाव के प्रभाव p और ∇ ⋅ τ शर्तों द्वारा दर्शाया गया है। यह पृष्ठीय बलों की प्रवणताएँ हैं जो किसी ठोस में प्रतिबलों के अनुरूप होती हैं। यहाँ p दाब प्रवणता है और कौशी प्रतिबल टेंसर के समदैशिक भाग से उत्पन्न होती है। यह भाग लगभग सभी स्थितियों में होने वाले सामान्य तनावों द्वारा दिया जाता है। चूँकि तनाव टेन्सर का अनिसोट्रोपिक भाग ∇ ⋅ τ उत्पन्न करता है जो सामान्यतः चिपचिपी शक्तियों का वर्णन करता है। अतः असम्पीडित प्रवाह के लिए यह केवल कतरनी प्रभाव है। इस प्रकार τ विचलित तनाव टेंसर है और तनाव टेंसर इसके समान्तर है।[11]

जहाँ I विचारित स्थान में पहचान मैट्रिक्स है और τ कतरनी टेंसर है।

सभी गैर-सापेक्षवादी संवेग संरक्षण समीकरण जैसे कि नेवियर-स्टोक्स समीकरण, कॉची संवेग समीकरण के साथ शुरुआत करके और संवैधानिक संबंध के माध्यम से तनाव टेंसर को निर्दिष्ट करके प्राप्त किए जा सकते हैं। श्यानता और द्रव वेग के संदर्भ में अपरूपण टेंसर को व्यक्त करके और निरंतर घनत्व और श्यानता को मानते हुए कॉशी संवेग समीकरण नेवियर-स्टोक्स समीकरणों की ओर ले जाता है। इस प्रकार अदृश्य प्रवाह को मानकर नेवियर-स्टोक्स समीकरण यूलर समीकरणों (द्रव गतिकी) को और सरल बना सकते हैं।

तनाव टेन्सर के विचलन को इस प्रकार लिखा जा सकता है।

प्रवाह पर दाब प्रवणता का प्रभाव उच्च दाब से निम्न दाब की दिशा में प्रवाह को तेज करना है।

जैसा कि कॉची संवेग समीकरण में लिखा गया है प्रतिबल शब्द p और τ अभी तक अज्ञात हैं इसलिए अकेले इस समीकरण का उपयोग समस्याओं को हल करने के लिए नहीं किया जा सकता है। इस प्रकार गति के समीकरणों के अतिरिक्त - न्यूटन का दूसरा नियम - बल मॉडल की आवश्यकता है जो तनाव को प्रवाह गति से संबंधित करता है।[12] इस कारण से प्राकृतिक प्रेक्षणों पर आधारित मान्यताओं को अधिकांशतः वेग और घनत्व जैसे अन्य प्रवाह चरों के संदर्भ में तनावों को निर्दिष्ट करने के लिए प्रयुक्त किया जाता है।

बाहरी बल

सदिश क्षेत्र f प्रति इकाई द्रव्यमान में शारीरिक बलों का प्रतिनिधित्व करता है। सामान्यतः, इनमें केवल गुरुत्व त्वरण होता है, किन्तु इसमें अन्य सम्मिलित हो सकते हैं, जैसे विद्युत चुम्बकीय बल। गैर-जड़त्वीय समन्वय फ्रेम में, काल्पनिक बल से जुड़े अन्य जड़त्वीय त्वरण उत्पन्न हो सकते हैं।

अधिकांशतः, इन बलों को कुछ स्केलर मात्रा के ढाल के रूप में प्रदर्शित किया जा सकता है χ, साथ f = ∇χ जिस स्थिति में उन्हें संरक्षी बल कहा जाता है। गुरुत्वाकर्षण में z दिशा, उदाहरण के लिए, की ढाल है ρgz. जिससे कि इस तरह के गुरुत्वाकर्षण से दबाव केवल ढाल के रूप में उत्पन्न होता है, हम इसे दबाव शब्द में शरीर बल के रूप में सम्मिलित कर सकते हैं h = pχ. नेवियर-स्टोक्स समीकरण के दाहिनी ओर दबाव और बल की शर्तें बन जाती हैं

तनाव की अवधि में बाहरी प्रभावों को सम्मिलित करना भी संभव है शरीर बल शब्द के अतिरिक्त। इसमें स्ट्रेस टेंसर में सामान्यतः सममित आंतरिक योगदान के विपरीत एंटीसिमेट्रिक स्ट्रेस (कोणीय गति के इनपुट) भी सम्मिलित हो सकते हैं।[13]


गैर-विमीयकरण

समीकरणों को आयाम रहित बनाने के लिए, विशिष्ट लंबाई r0 और विशेषता वेग u0 को परिभाषित करने की आवश्यकता है। इन्हें ऐसे चुना जाना चाहिए कि आयाम रहित चर सभी क्रम के हों। निम्नलिखित आयाम रहित चर इस प्रकार प्राप्त होते हैं:

यूलर संवेग समीकरणों में इन उल्टे संबंधों का प्रतिस्थापन:

और पहले गुणांक के लिए विभाजित करके:

अब फ्राउड संख्या को परिभाषित करना:

यूलर संख्या (भौतिकी):

और घर्षण का गुणांक | त्वचा-घर्षण का गुणांक या जिसे सामान्यतः वायुगतिकी के क्षेत्र में 'ड्रैग' गुणांक कहा जाता है:

क्रमशः रूढ़िवादी चर, अर्थात् द्रव्यमान प्रवाह और बल घनत्व से गुजरकर:

समीकरण अंत में व्यक्त किए गए हैं (अब इंडेक्स को छोड़ रहे हैं):

Cauchy momentum equation (nondimensional conservative form)

फ्राउड लिमिट में कौशी समीकरण Fr → ∞ (नगण्य बाहरी क्षेत्र के अनुरूप) मुक्त कौशी समीकरण नामित हैं:

Free Cauchy momentum equation (nondimensional conservative form)

और अंततः संरक्षण कानून हो सकता है। इस तरह के समीकरणों के लिए उच्च फ्राउड संख्या (कम बाहरी क्षेत्र) की सीमा इस प्रकार उल्लेखनीय है और गड़बड़ी सिद्धांत के साथ अध्ययन किया जाता है।

अंत में संवहन रूप में समीकरण हैं:

Cauchy momentum equation (nondimensional convective form)

3डी स्पष्ट संवहन रूप

कार्तीय 3डी निर्देशांक

असममित तनाव टेंसरों के लिए, सामान्य रूप से समीकरण निम्नलिखित रूप लेते हैं:[2][3][4][14]