उड़ान का समय: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
[[File:20200501 Time of flight.svg|thumb|upright=1.5| लेजर रेंज-फाइंडिंग के लिए मूल समय-की-उड़ान सिद्धांत लागू होते हैं।]]'''उड़ान का समय''' ('''टीओएफ''') किसी वस्तु, कण या तरंग (ध्वनिक, विद्युत चुम्बकीय, आदि) द्वारा किसी माध्यम से दूरी तय करने में लगने वाले समय का माप है। इस जानकारी का उपयोग वेग या पथ की लंबाई को मापने के लिए या कण या माध्यम के गुणों (जैसे संरचना या प्रवाह दर) के बारे में जानने की विधि के रूप में किया जा सकता है। यात्रा करने वाली वस्तु का प्रत्यक्ष (उड़ान का प्रत्यक्ष समय, डीटीओएफ, उदाहरण के लिए, मास स्पेक्ट्रोमेट्री में आयन डिटेक्टर के माध्यम से) या अप्रत्यक्ष (उड़ान का अप्रत्यक्ष समय, आईटीओएफ, उदाहरण के लिए, लेजर डॉपलर [[ वेगमिति ]] में किसी वस्तु से प्रसारित प्रकाश द्वारा) रूप से पता लगाया जा सकता है। | [[File:20200501 Time of flight.svg|thumb|upright=1.5| लेजर रेंज-फाइंडिंग के लिए मूल समय-की-उड़ान सिद्धांत लागू होते हैं।]]'''उड़ान का समय''' ('''टीओएफ''') किसी वस्तु, कण या तरंग (ध्वनिक, विद्युत चुम्बकीय, आदि) द्वारा किसी माध्यम से दूरी तय करने में लगने वाले समय का माप है। इस जानकारी का उपयोग वेग या पथ की लंबाई को मापने के लिए या कण या माध्यम के गुणों (जैसे संरचना या प्रवाह दर) के बारे में जानने की विधि के रूप में किया जा सकता है। यात्रा करने वाली वस्तु का प्रत्यक्ष (उड़ान का प्रत्यक्ष समय, डीटीओएफ, उदाहरण के लिए, मास स्पेक्ट्रोमेट्री में आयन डिटेक्टर के माध्यम से) या अप्रत्यक्ष (उड़ान का अप्रत्यक्ष समय, आईटीओएफ, उदाहरण के लिए, लेजर डॉपलर [[ वेगमिति ]] में किसी वस्तु से प्रसारित प्रकाश द्वारा) रूप से पता लगाया जा सकता है। | ||
== | == अवलोकन == | ||
[[ इलेक्ट्रानिक्स ]] में, सिद्धांत का उपयोग करने वाले | [[ इलेक्ट्रानिक्स ]] में, सिद्धांत का उपयोग करने वाले प्रारंभिक उपकरणों में से एक अल्ट्रासोनिक दूरी-मापने वाले उपकरण हैं, जो एक अल्ट्रासोनिक पल्स का उत्सर्जन करते हैं और एक ठोस वस्तु की दूरी को मापने में सक्षम होते हैं, जो लहर के उत्सर्जक को वापस उछालने में लगने वाले समय के आधार पर होता है। [[इलेक्ट्रॉन गतिशीलता]] का अनुमान लगाने के लिए टीओएफ पद्धति का भी उपयोग किया जाता है। मूल रूप से, इसे निम्न-प्रवाहकीय पतली फिल्मों के मापन के लिए डिज़ाइन किया गया था, जिसे बाद में सामान्य अर्धचालकों के लिए समायोजित किया गया। इस प्रायोगिक विधि का उपयोग धातु-अचालक-धातु संरचनाओं<ref>{{cite journal|author=R.G. Kepler|journal=Phys. Rev.|volume= 119|date=1960|page=1226|doi=10.1103/PhysRev.119.1226|bibcode = 1960PhRv..119.1226K|title=एन्थ्रेसीन क्रिस्टल में चार्ज कैरियर उत्पादन और गतिशीलता|issue=4 }}</ref> के साथ-साथ जैविक क्षेत्र-प्रभाव ट्रांजिस्टर के लिए किया जाता है।<ref>{{cite journal|author=M. Weis|author2=J. Lin|author3=D. Taguchi|author4=T. Manaka|author5=M. Iwamot|journal=J. Phys. Chem. C|volume= 113|date=2009|page=18459|doi=10.1021/jp908381b|title=Analysis of Transient Currents in Organic Field Effect Transistor: The Time-of-Flight Method|issue=43}}</ref> अतिरिक्त शुल्क लेजर या वोल्टेज पल्स के आवेदन से उत्पन्न होते हैं। | ||
[[File:Mra-mip.jpg|thumb|170px|ToF विधि द्वारा निर्मित [[चुंबकीय अनुनाद एंजियोग्राफी]]]][[चुंबकीय अनुनाद एंजियोग्राफी]] (एमआरए) के लिए, टीओएफ एक प्रमुख अंतर्निहित विधि है। इस पद्धति में, छवि वाले क्षेत्र में प्रवेश करने वाला रक्त अभी तक संतृप्त नहीं होता है, | [[File:Mra-mip.jpg|thumb|170px|ToF विधि द्वारा निर्मित [[चुंबकीय अनुनाद एंजियोग्राफी]]]][[चुंबकीय अनुनाद एंजियोग्राफी]] (एमआरए) के लिए, टीओएफ एक प्रमुख अंतर्निहित विधि है। इस पद्धति में, छवि वाले क्षेत्र में प्रवेश करने वाला रक्त अभी तक संतृप्त नहीं होता है, जब कम प्रतिध्वनि समय और प्रवाह प्रतिकर का उपयोग करते समय इसे बहुत अधिक संकेत देता है। इसका उपयोग [[धमनीविस्फार]], [[ एक प्रकार का रोग | स्टेनोसिस]] या [[विच्छेदन (चिकित्सा)]] का पता लगाने में किया जा सकता है।<ref name=hopkins>{{cite web|url=http://www.hopkinsmedicine.org/healthlibrary/test_procedures/cardiovascular/magnetic_resonance_angiography_mra_135,14|title=चुंबकीय अनुनाद एंजियोग्राफी (एमआरए)|website=[[Johns Hopkins Hospital]]|access-date=2017-10-15}}</ref> | ||
समय-समय पर उड़ान मास स्पेक्ट्रोमेट्री में, आयनों को द्रव्यमान-से-चार्ज अनुपात के आधार पर आयन के वेग के साथ समान [[गतिज ऊर्जा]] के लिए एक विद्युत क्षेत्र द्वारा त्वरित किया जाता है। इस प्रकार समय-समय-उड़ान का उपयोग वेग को मापने के लिए किया जाता है, जिससे द्रव्यमान-से-प्रभारी अनुपात निर्धारित किया जा सकता है।<ref>{{cite book |author=Cotter, Robert J. |title=टाइम-ऑफ-फ्लाइट मास स्पेक्ट्रोमेट्री|publisher=[[American Chemical Society]] |location=Columbus, OH |date=1994 |isbn=0-8412-3474-4 }}</ref> इलेक्ट्रॉनों की उड़ान के समय का उपयोग उनकी गतिज ऊर्जा को मापने के लिए किया जाता है।<ref>[http://www.osti.gov/bridge/servlets/purl/764241-IyAfiC/webviewable/764241.pdf Time-of-Flight Techniques For The Investigation Of Kinetic Energy Distributions Of Ions And Neutrals Desorbed By Core Excitations]</ref> | समय-समय पर उड़ान मास स्पेक्ट्रोमेट्री में, आयनों को द्रव्यमान-से-चार्ज अनुपात के आधार पर आयन के वेग के साथ समान [[गतिज ऊर्जा]] के लिए एक विद्युत क्षेत्र द्वारा त्वरित किया जाता है। इस प्रकार समय-समय-उड़ान का उपयोग वेग को मापने के लिए किया जाता है, जिससे द्रव्यमान-से-प्रभारी अनुपात निर्धारित किया जा सकता है।<ref>{{cite book |author=Cotter, Robert J. |title=टाइम-ऑफ-फ्लाइट मास स्पेक्ट्रोमेट्री|publisher=[[American Chemical Society]] |location=Columbus, OH |date=1994 |isbn=0-8412-3474-4 }}</ref> इलेक्ट्रॉनों की उड़ान के समय का उपयोग उनकी गतिज ऊर्जा को मापने के लिए किया जाता है।<ref>[http://www.osti.gov/bridge/servlets/purl/764241-IyAfiC/webviewable/764241.pdf Time-of-Flight Techniques For The Investigation Of Kinetic Energy Distributions Of Ions And Neutrals Desorbed By Core Excitations]</ref> | ||
[[निकट-अवरक्त स्पेक्ट्रोस्कोपी]] में, टीओएफ पद्धति का उपयोग ऑप्टिकल तरंग दैर्ध्य की एक श्रृंखला पर मीडिया-निर्भर ऑप्टिकल पथ-लंबाई को मापने के लिए किया जाता है, जिससे मीडिया की संरचना और गुणों का विश्लेषण किया जा सकता है। | [[निकट-अवरक्त स्पेक्ट्रोस्कोपी]] में, टीओएफ पद्धति का उपयोग ऑप्टिकल तरंग दैर्ध्य की एक श्रृंखला पर मीडिया-निर्भर ऑप्टिकल पथ-लंबाई को मापने के लिए किया जाता है, जिससे मीडिया की संरचना और गुणों का विश्लेषण किया जा सकता है। | ||
Line 15: | Line 16: | ||
ऑप्टिकल इंटरफेरोमेट्री में, नमूना और संदर्भ भुजाओं के बीच पथ-लम्बाई अंतर को टीओएफ विधियों द्वारा मापा जा सकता है, जैसे आवृत्ति मॉडुलन के बाद चरण बदलाव माप या सिग्नल के क्रॉस सहसंबंध। मध्यम-लंबी दूरी की दूरी माप के लिए लेजर रडार और लेजर ट्रैकर सिस्टम में ऐसी विधियों का उपयोग किया जाता है। | ऑप्टिकल इंटरफेरोमेट्री में, नमूना और संदर्भ भुजाओं के बीच पथ-लम्बाई अंतर को टीओएफ विधियों द्वारा मापा जा सकता है, जैसे आवृत्ति मॉडुलन के बाद चरण बदलाव माप या सिग्नल के क्रॉस सहसंबंध। मध्यम-लंबी दूरी की दूरी माप के लिए लेजर रडार और लेजर ट्रैकर सिस्टम में ऐसी विधियों का उपयोग किया जाता है। | ||
न्यूट्रॉन समय-की-उड़ान बिखरने में, एक स्पंदित मोनोक्रोमैटिक न्यूट्रॉन बीम एक नमूने द्वारा बिखरा हुआ है। | न्यूट्रॉन समय-की-उड़ान बिखरने में, एक स्पंदित मोनोक्रोमैटिक न्यूट्रॉन बीम एक नमूने द्वारा बिखरा हुआ है। प्रसारित न्यूट्रॉन के ऊर्जा स्पेक्ट्रम को उड़ान के समय के माध्यम से मापा जाता है। | ||
[[गतिकी]] में, टीओएफ वह अवधि है जिसमें एक प्रक्षेप्य हवा के माध्यम से यात्रा कर रहा है। प्रारंभिक वेग को देखते हुए <math>u</math> जमीन से प्रक्षेपित एक कण का, नीचे की ओर (यानी गुरुत्वाकर्षण) त्वरण <math>a</math>, और प्रक्षेप्य का प्रक्षेपण कोण θ (क्षैतिज के सापेक्ष मापा गया), | [[गतिकी]] में, टीओएफ वह अवधि है जिसमें एक प्रक्षेप्य हवा के माध्यम से यात्रा कर रहा है। प्रारंभिक वेग को देखते हुए <math>u</math> जमीन से प्रक्षेपित एक कण का, नीचे की ओर (यानी गुरुत्वाकर्षण) त्वरण <math>a</math>, और प्रक्षेप्य का प्रक्षेपण कोण θ (क्षैतिज के सापेक्ष मापा गया), तब एसयूवीएटी समीकरण | ||
:<math>s = vt - \begin{matrix} \frac{1}{2} \end{matrix} at^2</math> | :<math>s = vt - \begin{matrix} \frac{1}{2} \end{matrix} at^2</math> | ||
की एक सरल पुनर्व्यवस्था के परिणामस्वरूप यह समीकरण | |||
:<math>t=\frac {2v \sin \theta} {a}</math> | :<math>t=\frac {2v \sin \theta} {a}</math> | ||
एक प्रक्षेप्य की उड़ान के समय के | एक प्रक्षेप्य की उड़ान के समय के लिए होता है। | ||
== मास स्पेक्ट्रोमेट्री में == | == मास स्पेक्ट्रोमेट्री में == | ||
Line 31: | Line 32: | ||
== फ्लो मीटर में == | == फ्लो मीटर में == | ||
एक अल्ट्रासोनिक फ्लो मीटर ध्वनिक सेंसर का उपयोग करके पाइप के माध्यम से तरल या गैस के वेग को मापता है। अन्य माप | एक अल्ट्रासोनिक फ्लो मीटर ध्वनिक सेंसर का उपयोग करके पाइप के माध्यम से तरल या गैस के वेग को मापता है। अन्य माप विधिों की तुलना में इसके कुछ फायदे हैं। परिणाम तापमान, घनत्व या चालकता से थोड़ा प्रभावित होते हैं। रखरखाव सस्ता है क्योंकि कोई हिलता हुआ भाग नहीं है। | ||
अल्ट्रासोनिक फ्लो मीटर तीन अलग-अलग प्रकारों में आते हैं: ट्रांसमिशन (कॉन्ट्राप्रॉपगेटिंग ट्रांजिट टाइम) फ्लोमीटर, रिफ्लेक्शन (डॉपलर) फ्लोमीटर और ओपन-चैनल फ्लोमीटर। पारगमन समय प्रवाह मीटर प्रवाह दिशा में भेजे गए अल्ट्रासोनिक पल्स और प्रवाह दिशा के विपरीत भेजे गए अल्ट्रासाउंड पल्स के बीच समय के अंतर को मापकर काम करते हैं। डॉपलर फ्लोमीटर [[डॉपलर शिफ्ट]] को मापते हैं जिसके परिणामस्वरूप द्रव में छोटे कणों, तरल पदार्थ में हवा के बुलबुले, या बहने वाले द्रव की अशांति से एक अल्ट्रासोनिक बीम को प्रतिबिंबित किया जाता है। ओपन चैनल फ्लो मीटर [[फ्लूम]]्स या वियर के सामने अपस्ट्रीम लेवल को मापते हैं। | अल्ट्रासोनिक फ्लो मीटर तीन अलग-अलग प्रकारों में आते हैं: ट्रांसमिशन (कॉन्ट्राप्रॉपगेटिंग ट्रांजिट टाइम) फ्लोमीटर, रिफ्लेक्शन (डॉपलर) फ्लोमीटर और ओपन-चैनल फ्लोमीटर। पारगमन समय प्रवाह मीटर प्रवाह दिशा में भेजे गए अल्ट्रासोनिक पल्स और प्रवाह दिशा के विपरीत भेजे गए अल्ट्रासाउंड पल्स के बीच समय के अंतर को मापकर काम करते हैं। डॉपलर फ्लोमीटर [[डॉपलर शिफ्ट]] को मापते हैं जिसके परिणामस्वरूप द्रव में छोटे कणों, तरल पदार्थ में हवा के बुलबुले, या बहने वाले द्रव की अशांति से एक अल्ट्रासोनिक बीम को प्रतिबिंबित किया जाता है। ओपन चैनल फ्लो मीटर [[फ्लूम]]्स या वियर के सामने अपस्ट्रीम लेवल को मापते हैं। | ||
Revision as of 07:08, 13 April 2023
उड़ान का समय (टीओएफ) किसी वस्तु, कण या तरंग (ध्वनिक, विद्युत चुम्बकीय, आदि) द्वारा किसी माध्यम से दूरी तय करने में लगने वाले समय का माप है। इस जानकारी का उपयोग वेग या पथ की लंबाई को मापने के लिए या कण या माध्यम के गुणों (जैसे संरचना या प्रवाह दर) के बारे में जानने की विधि के रूप में किया जा सकता है। यात्रा करने वाली वस्तु का प्रत्यक्ष (उड़ान का प्रत्यक्ष समय, डीटीओएफ, उदाहरण के लिए, मास स्पेक्ट्रोमेट्री में आयन डिटेक्टर के माध्यम से) या अप्रत्यक्ष (उड़ान का अप्रत्यक्ष समय, आईटीओएफ, उदाहरण के लिए, लेजर डॉपलर वेगमिति में किसी वस्तु से प्रसारित प्रकाश द्वारा) रूप से पता लगाया जा सकता है।
अवलोकन
इलेक्ट्रानिक्स में, सिद्धांत का उपयोग करने वाले प्रारंभिक उपकरणों में से एक अल्ट्रासोनिक दूरी-मापने वाले उपकरण हैं, जो एक अल्ट्रासोनिक पल्स का उत्सर्जन करते हैं और एक ठोस वस्तु की दूरी को मापने में सक्षम होते हैं, जो लहर के उत्सर्जक को वापस उछालने में लगने वाले समय के आधार पर होता है। इलेक्ट्रॉन गतिशीलता का अनुमान लगाने के लिए टीओएफ पद्धति का भी उपयोग किया जाता है। मूल रूप से, इसे निम्न-प्रवाहकीय पतली फिल्मों के मापन के लिए डिज़ाइन किया गया था, जिसे बाद में सामान्य अर्धचालकों के लिए समायोजित किया गया। इस प्रायोगिक विधि का उपयोग धातु-अचालक-धातु संरचनाओं[1] के साथ-साथ जैविक क्षेत्र-प्रभाव ट्रांजिस्टर के लिए किया जाता है।[2] अतिरिक्त शुल्क लेजर या वोल्टेज पल्स के आवेदन से उत्पन्न होते हैं।
चुंबकीय अनुनाद एंजियोग्राफी (एमआरए) के लिए, टीओएफ एक प्रमुख अंतर्निहित विधि है। इस पद्धति में, छवि वाले क्षेत्र में प्रवेश करने वाला रक्त अभी तक संतृप्त नहीं होता है, जब कम प्रतिध्वनि समय और प्रवाह प्रतिकर का उपयोग करते समय इसे बहुत अधिक संकेत देता है। इसका उपयोग धमनीविस्फार, स्टेनोसिस या विच्छेदन (चिकित्सा) का पता लगाने में किया जा सकता है।[3]
समय-समय पर उड़ान मास स्पेक्ट्रोमेट्री में, आयनों को द्रव्यमान-से-चार्ज अनुपात के आधार पर आयन के वेग के साथ समान गतिज ऊर्जा के लिए एक विद्युत क्षेत्र द्वारा त्वरित किया जाता है। इस प्रकार समय-समय-उड़ान का उपयोग वेग को मापने के लिए किया जाता है, जिससे द्रव्यमान-से-प्रभारी अनुपात निर्धारित किया जा सकता है।[4] इलेक्ट्रॉनों की उड़ान के समय का उपयोग उनकी गतिज ऊर्जा को मापने के लिए किया जाता है।[5]
निकट-अवरक्त स्पेक्ट्रोस्कोपी में, टीओएफ पद्धति का उपयोग ऑप्टिकल तरंग दैर्ध्य की एक श्रृंखला पर मीडिया-निर्भर ऑप्टिकल पथ-लंबाई को मापने के लिए किया जाता है, जिससे मीडिया की संरचना और गुणों का विश्लेषण किया जा सकता है।
अल्ट्रासोनिक प्रवाह मीटर माप में, टीओएफ का उपयोग कुल प्रवाह वेग का अनुमान लगाने के लिए, मीडिया के प्रवाह के अपस्ट्रीम और डाउनस्ट्रीम सिग्नल प्रसार की गति को मापने के लिए किया जाता है। यह माप प्रवाह के साथ समरेख दिशा में किया जाता है।
प्लानर डॉपलर वेलोसिमेट्री (ऑप्टिकल फ्लो मीटर माप) में, टीओएफ माप समय के अनुसार प्रवाह के लंबवत होते हैं जब व्यक्तिगत कण प्रवाह के साथ दो या दो से अधिक स्थानों को पार करते हैं (कोलीनियर माप के लिए आमतौर पर उच्च प्रवाह वेग और अत्यंत संकीर्ण-बैंड ऑप्टिकल फिल्टर की आवश्यकता होती है)।
ऑप्टिकल इंटरफेरोमेट्री में, नमूना और संदर्भ भुजाओं के बीच पथ-लम्बाई अंतर को टीओएफ विधियों द्वारा मापा जा सकता है, जैसे आवृत्ति मॉडुलन के बाद चरण बदलाव माप या सिग्नल के क्रॉस सहसंबंध। मध्यम-लंबी दूरी की दूरी माप के लिए लेजर रडार और लेजर ट्रैकर सिस्टम में ऐसी विधियों का उपयोग किया जाता है।
न्यूट्रॉन समय-की-उड़ान बिखरने में, एक स्पंदित मोनोक्रोमैटिक न्यूट्रॉन बीम एक नमूने द्वारा बिखरा हुआ है। प्रसारित न्यूट्रॉन के ऊर्जा स्पेक्ट्रम को उड़ान के समय के माध्यम से मापा जाता है।
गतिकी में, टीओएफ वह अवधि है जिसमें एक प्रक्षेप्य हवा के माध्यम से यात्रा कर रहा है। प्रारंभिक वेग को देखते हुए जमीन से प्रक्षेपित एक कण का, नीचे की ओर (यानी गुरुत्वाकर्षण) त्वरण , और प्रक्षेप्य का प्रक्षेपण कोण θ (क्षैतिज के सापेक्ष मापा गया), तब एसयूवीएटी समीकरण
की एक सरल पुनर्व्यवस्था के परिणामस्वरूप यह समीकरण
एक प्रक्षेप्य की उड़ान के समय के लिए होता है।
मास स्पेक्ट्रोमेट्री में
मास स्पेक्ट्रोमेट्री के लिए समय-की-उड़ान सिद्धांत लागू किया जा सकता है। ज्ञात शक्ति के विद्युत क्षेत्र द्वारा आयनों को त्वरित किया जाता है। इस त्वरण के परिणामस्वरूप एक आयन में समान गतिज ऊर्जा होती है, जो किसी अन्य आयन के समान होती है। आयन का वेग द्रव्यमान-आवेश अनुपात पर निर्भर करता है। ज्ञात दूरी पर कण को डिटेक्टर तक पहुंचने में लगने वाले समय को मापा जाता है। यह समय कण के द्रव्यमान-से-आवेश अनुपात पर निर्भर करेगा (भारी कण कम गति तक पहुँचते हैं)। इस समय और ज्ञात प्रायोगिक मापदंडों से आयन के द्रव्यमान-से-आवेश अनुपात का पता लगाया जा सकता है। एक कण स्रोत से निकलने के क्षण से लेकर डिटेक्टर तक पहुंचने तक का बीता हुआ समय।
फ्लो मीटर में
एक अल्ट्रासोनिक फ्लो मीटर ध्वनिक सेंसर का उपयोग करके पाइप के माध्यम से तरल या गैस के वेग को मापता है। अन्य माप विधिों की तुलना में इसके कुछ फायदे हैं। परिणाम तापमान, घनत्व या चालकता से थोड़ा प्रभावित होते हैं। रखरखाव सस्ता है क्योंकि कोई हिलता हुआ भाग नहीं है। अल्ट्रासोनिक फ्लो मीटर तीन अलग-अलग प्रकारों में आते हैं: ट्रांसमिशन (कॉन्ट्राप्रॉपगेटिंग ट्रांजिट टाइम) फ्लोमीटर, रिफ्लेक्शन (डॉपलर) फ्लोमीटर और ओपन-चैनल फ्लोमीटर। पारगमन समय प्रवाह मीटर प्रवाह दिशा में भेजे गए अल्ट्रासोनिक पल्स और प्रवाह दिशा के विपरीत भेजे गए अल्ट्रासाउंड पल्स के बीच समय के अंतर को मापकर काम करते हैं। डॉपलर फ्लोमीटर डॉपलर शिफ्ट को मापते हैं जिसके परिणामस्वरूप द्रव में छोटे कणों, तरल पदार्थ में हवा के बुलबुले, या बहने वाले द्रव की अशांति से एक अल्ट्रासोनिक बीम को प्रतिबिंबित किया जाता है। ओपन चैनल फ्लो मीटर फ्लूम्स या वियर के सामने अपस्ट्रीम लेवल को मापते हैं।
ऑप्टिकल टाइम-ऑफ़-फ़्लाइट सेंसर में तरल पदार्थ में प्रक्षेपित दो प्रकाश किरणें होती हैं जिनका पता लगाना या तो बाधित होता है या छोटे कणों (जो प्रवाह का अनुसरण करने वाले माने जाते हैं) के मार्ग से प्रेरित होते हैं। यह मोटर चालित गैरेज के दरवाजों में सुरक्षा उपकरणों के रूप में या अलार्म सिस्टम में ट्रिगर के रूप में उपयोग किए जाने वाले ऑप्टिकल बीम से भिन्न नहीं है। कणों की गति की गणना दो बीमों के बीच की दूरी को जानकर की जाती है। यदि केवल एक डिटेक्टर है, तो समय के अंतर को स्वत: सहसंबंध के माध्यम से मापा जा सकता है। यदि दो डिटेक्टर हैं, प्रत्येक बीम के लिए एक, तो दिशा भी जानी जा सकती है। चूंकि बीम का स्थान निर्धारित करना अपेक्षाकृत आसान है, माप की शुद्धता मुख्य रूप से इस बात पर निर्भर करती है कि सेटअप कितना छोटा किया जा सकता है। यदि बीम बहुत दूर हैं, तो प्रवाह उनके बीच काफी हद तक बदल सकता है, इस प्रकार माप उस स्थान पर औसत हो जाता है। इसके अलावा, कई कण किसी भी समय उनके बीच रह सकते हैं, और यह संकेत को दूषित कर देगा क्योंकि कण अप्रभेद्य हैं। इस तरह के सेंसर के लिए वैध डेटा प्रदान करने के लिए, यह प्रवाह के पैमाने और बोने के घनत्व के सापेक्ष छोटा होना चाहिए। माइक्रोऑप्टोइलेक्ट्रोमैकेनिकल सिस्टम दृष्टिकोण बहुत छोटे पैकेज देते हैं, जिससे ऐसे सेंसर विभिन्न स्थितियों में लागू होते हैं।[6]
भौतिकी में
आम तौर पर द्रव्यमान स्पेक्ट्रोमेट्री में उपयोग की जाने वाली समय-समय पर उड़ान ट्यूब की सादगी के लिए प्रशंसा की जाती है, लेकिन आवेशित कम ऊर्जा वाले कणों के सटीक माप के लिए ट्यूब में विद्युत और चुंबकीय क्षेत्र को क्रमशः 10 mV और 1 nT के भीतर नियंत्रित करना पड़ता है।
ट्यूब के समारोह का कार्य एकरूपता को केल्विन जांच बल माइक्रोस्कोप द्वारा नियंत्रित किया जा सकता है। चुंबकीय क्षेत्र को फ्लक्सगेट कम्पास द्वारा मापा जा सकता है। उच्च आवृत्तियों को रडार शोषक सामग्री द्वारा निष्क्रिय रूप से परिरक्षित और नम किया जाता है। मनमाने ढंग से कम आवृत्तियों के क्षेत्र उत्पन्न करने के लिए स्क्रीन को प्रत्येक प्लेट पर बायस वोल्टेज के साथ प्लेट्स (ओवरलैपिंग और कैपेसिटर द्वारा जुड़ा हुआ) में विभाजित किया जाता है और प्लेट के पीछे कॉइल पर बायस करंट होता है जिसका फ्लक्स एक बाहरी कोर द्वारा बंद होता है। इस तरह ट्यूब को एक कमजोर अक्रोमेटिक क्वाड्रुपोल लेंस के रूप में कार्य करने के लिए कॉन्फ़िगर किया जा सकता है जिसमें ग्रिड के साथ एपर्चर और विवर्तन विमान में देरी लाइन डिटेक्टर कोण हल माप करने के लिए किया जा सकता है। क्षेत्र को बदलने से देखने के क्षेत्र के कोण को बदला जा सकता है और सभी कोणों के माध्यम से स्कैन करने के लिए एक विक्षेपण पूर्वाग्रह को आरोपित किया जा सकता है।
जब नो डिले लाइन डिटेक्टर का उपयोग किया जाता है तो आयनों को डिटेक्टर पर केंद्रित करना आयन स्रोत और डिटेक्टर के बीच स्थित वैक्यूम ट्यूब में रखे दो या तीन एकल लेंस के उपयोग के माध्यम से पूरा किया जा सकता है।
चुंबकीय प्रयोगों को करने के लिए और इलेक्ट्रॉनों को उनकी शुरुआत से नियंत्रित करने के लिए नमूने को ट्यूब में छिद्रों और छिद्रों के साथ विसर्जित किया जाना चाहिए।
कैमरा
डिटेक्टर
यह भी देखें
संदर्भ
- ↑ R.G. Kepler (1960). "एन्थ्रेसीन क्रिस्टल में चार्ज कैरियर उत्पादन और गतिशीलता". Phys. Rev. 119 (4): 1226. Bibcode:1960PhRv..119.1226K. doi:10.1103/PhysRev.119.1226.
- ↑ M. Weis; J. Lin; D. Taguchi; T. Manaka; M. Iwamot (2009). "Analysis of Transient Currents in Organic Field Effect Transistor: The Time-of-Flight Method". J. Phys. Chem. C. 113 (43): 18459. doi:10.1021/jp908381b.
- ↑ "चुंबकीय अनुनाद एंजियोग्राफी (एमआरए)". Johns Hopkins Hospital. Retrieved 2017-10-15.
- ↑ Cotter, Robert J. (1994). टाइम-ऑफ-फ्लाइट मास स्पेक्ट्रोमेट्री. Columbus, OH: American Chemical Society. ISBN 0-8412-3474-4.
- ↑ Time-of-Flight Techniques For The Investigation Of Kinetic Energy Distributions Of Ions And Neutrals Desorbed By Core Excitations
- ↑ Modarress, D.; Svitek, P.; Modarress, K.; Wilson, D. (July 2006). सीमा परत प्रवाह अध्ययन के लिए माइक्रो-ऑप्टिकल सेंसर (PDF). 2006 ASME Joint U.S.-European Fluids Engineering Summer Meeting. pp. 1037–1044. doi:10.1115/FEDSM2006-98556. ISBN 0-7918-4751-9.