गीर की नली: Difference between revisions

From Vigyanwiki
Line 4: Line 4:


=== रंगीन चित्रपटल ===
=== रंगीन चित्रपटल ===
व्यावसायिक प्रसारण के सामान्य होने से पहले रंगीन चित्रपटल का अध्ययन किया गया था, लेकिन 1940 के दशक के अंत तक इस समस्या पर गंभीरता से विचार किया गया। उस समय, कई प्रणालियाँ प्रस्तावित की जा रही थीं जो अनुक्रम में प्रसारित अलग-अलग लाल, हरे और नीले संकेतों (RGB) का उपयोग करती थीं। अधिकांश प्रायोगिक प्रणालियां एक रंगीन निष्यंतक (या  "[[जेल]]") के साथ अनुक्रम में प्रसारित करती हैं, जो एक अन्यथा पारंपरिक काले और सफेद चित्रपटल नली के सामने घूमती है। प्रत्येक क्षणचित्र चित्र के एक रंग को कूटबद्ध करता है, और चक्र सिग्नल के साथ समकालन में घूमता है इसलिए सही जेल स्क्रीन के सामने होता है जब वह रंगीन क्षणचित्र को प्रदर्शित किया जा रहा हो। क्योंकि वे अलग-अलग रंगों के लिए अलग-अलग संकेत प्रसारित करते हैं, ये सभी प्रणालियां उपस्थित काले और सफ़ेद संग्रह के साथ असंगत थी। एक अन्य समस्या यह थी कि जब तक बहुत अधिक पुनश्चर्या श्रेणी का उपयोग नहीं किया जाता तब तक यांत्रिक निस्यंदक ने उन्हें आशा की किरण बना दिया।<ref name=seq>Ed Reitan, [http://novia.net/~ereitan/Color_Sys_CBS.html "CBS Field Sequential Color System"] {{webarchive |url=https://web.archive.org/web/20100105183213/http://novia.net/~ereitan/Color_Sys_CBS.html |date=January 5, 2010 }}, August 24, 1997</ref>
व्यावसायिक प्रसारण के सामान्य होने से पहले रंगीन चित्रपटल का अध्ययन किया गया था, लेकिन 1940 के दशक के अंत तक इस समस्या पर गंभीरता से विचार किया गया। उस समय, कई प्रणालियाँ प्रस्तावित की जा रही थीं जो अनुक्रम में प्रसारित अलग-अलग लाल, हरे और नीले संकेतों (RGB) का उपयोग करती थीं। अधिकांश प्रायोगिक प्रणालियां एक रंगीन निष्यंतक (या  "[[जेल]]") के साथ अनुक्रम में प्रसारित करती हैं, जो एक अन्यथा पारंपरिक काले और सफेद चित्रपटल नली के सामने घूमती है। प्रत्येक क्षणचित्र चित्र के एक रंग को कूटबद्ध करता है, और चक्र सिग्नल के साथ समकालन में घूमता है इसलिए सही जेल चित्रपटके सामने होता है जब वह रंगीन क्षणचित्र को प्रदर्शित किया जा रहा हो। क्योंकि वे अलग-अलग रंगों के लिए अलग-अलग संकेत प्रसारित करते हैं, ये सभी प्रणालियां उपस्थित काले और सफ़ेद संग्रह के साथ असंगत थी। एक अन्य समस्या यह थी कि जब तक बहुत अधिक पुनश्चर्या श्रेणी का उपयोग नहीं किया जाता तब तक यांत्रिक निस्यंदक ने उन्हें आशा की किरण बना दिया।<ref name=seq>Ed Reitan, [http://novia.net/~ereitan/Color_Sys_CBS.html "CBS Field Sequential Color System"] {{webarchive |url=https://web.archive.org/web/20100105183213/http://novia.net/~ereitan/Color_Sys_CBS.html |date=January 5, 2010 }}, August 24, 1997</ref>


RCA ने [[ luminance | दीप्त]] -वर्णकत्व प्रणाली का उपयोग करते हुए पूरी तरह से अलग-अलग रेखाओं के साथ काम किया। यह प्रणाली सीधे RGB संकेत को कोडन या संचारित नहीं करती थी; इसके बजाय इसने इन रंगों को एक समग्र चमक आकृति, "[[दीप्ति]]" में जोड़ दिया। दीप्ति मौजूदा प्रसारणों के काले और सफेद संकेतों के निकटता से मेल खाता है, जिससे इसे काले और सफेद टीवी पर प्रदर्शित किया जा सकता है। अन्य समूहों द्वारा प्रस्तावित यांत्रिक प्रणालियों पर यह एक प्रमुख लाभ था। रंगीन जानकारी को अलग से कोडन किया गया था और एक [[समग्र वीडियो]] सिग्नल बनाने के लिए उच्च आवृत्ति परिवर्धन के रूप में सिग्नल में जोड़ दिया गया था - एक काले और सफेद चित्रपटल पर यह अतिरिक्त जानकारी छवि तीव्रता के सामान्य यादृच्छिककरण के रूप में देखी जाएगी, लेकिन इसका सीमित समाधान उपस्थित सेटों ने व्यवहार में इसे अदृश्य बना दिया। रंग सेट पर संकेत को निस्यंदक (फिल्टर) किया जाएगा और प्रकाशन के लिए मूल RGB को फिर से बनाने के लिए दीप्ति में जोड़ा जाएगा।
RCA ने [[ luminance | दीप्त]] -वर्णकत्व प्रणाली का उपयोग करते हुए पूरी तरह से अलग-अलग रेखाओं के साथ काम किया। यह प्रणाली सीधे RGB संकेत को कोडन या संचारित नहीं करती थी; इसके बजाय इसने इन रंगों को एक समग्र चमक आकृति, "[[दीप्ति]]" में जोड़ दिया। दीप्ति मौजूदा प्रसारणों के काले और सफेद संकेतों के निकटता से मेल खाता है, जिससे इसे काले और सफेद टीवी पर प्रदर्शित किया जा सकता है। अन्य समूहों द्वारा प्रस्तावित यांत्रिक प्रणालियों पर यह एक प्रमुख लाभ था। रंगीन जानकारी को अलग से कोडन किया गया था और एक [[समग्र वीडियो]] सिग्नल बनाने के लिए उच्च आवृत्ति परिवर्धन के रूप में सिग्नल में जोड़ दिया गया था - एक काले और सफेद चित्रपटल पर यह अतिरिक्त जानकारी छवि तीव्रता के सामान्य यादृच्छिककरण के रूप में देखी जाएगी, लेकिन इसका सीमित समाधान उपस्थित सेटों ने व्यवहार में इसे अदृश्य बना दिया। रंग सेट पर संकेत को निस्यंदक (फिल्टर) किया जाएगा और प्रकाशन के लिए मूल RGB को फिर से बनाने के लिए दीप्ति में जोड़ा जाएगा।
Line 12: Line 12:


===गीयर का उपाय===
===गीयर का उपाय===
चार्ल्स विलार्ड गीयर, फिर{{when|date=December 2017}} [[दक्षिणी कैलिफोर्निया विश्वविद्यालय]] में एक सहायक प्रोफेसर, रंगीन चित्रपटलके उत्पादन के यांत्रिक तरीकों पर व्याख्यान दे रहे थे, जिनका प्रयोग 1940 के दशक में किया जा रहा था, और उन्होंने फैसला किया कि इलेक्ट्रॉनिक रूप से स्कैन की गई प्रणाली बेहतर होगी, अगर कोई केवल एक का आविष्कार करेगा। बाद में अपनी पत्नी से इसका उल्लेख करते हुए, उसने उत्तर दिया कि बेहतर होगा कि आप व्यस्त हो जाएं और स्वयं इसका आविष्कार करें।<ref name=teach>''Teacher's''</ref>
चार्ल्स विलार्ड गीयर, तब {{when|date=December 2017}} [[दक्षिणी कैलिफोर्निया विश्वविद्यालय]] में एक सहायक प्रोफेसर, रंगीन चित्रपटल बनाने के यांत्रिक तरीकों पर व्याख्यान दे रहे थे, जिनका प्रयोग 1940 के दशक में किया जा रहा था, और उन्होंने निश्चय किया कि इलेक्ट्रॉनिक रूप से स्कैन की गई प्रणाली बेहतर होगी, यदि कोई केवल एक का आविष्कार करेगा। बाद में अपनी पत्नी से इसका उल्लेख करते हुए, उन्होंने उत्तर दिया कि "बेहतर होगा कि आप व्यस्त हो जाएं और स्वयं इसका आविष्कार करें"।<ref name=teach>''Teacher's''</ref>
गेयर ने प्रकाशिकी के नए प्रयोग के साथ प्रदर्शन समस्या का समाधान किया। इलेक्ट्रॉन बीम को छोटे स्थानों पर केंद्रित करने की कोशिश करने के बजाय, उन्होंने उन्हें बड़े क्षेत्रों पर केंद्रित किया और स्क्रीन पर किसी भी स्थान पर प्रत्येक प्राथमिक रंग को एक [[पिक्सेल]] में फिर से संयोजित करने के लिए सरल प्रकाशिकी का उपयोग किया। ट्यूब को तीन अलग-अलग इलेक्ट्रॉन बंदूकों के साथ व्यवस्थित किया गया था, प्रत्येक लाल, हरे और नीले रंग (आरजीबी) के लिए, चित्र क्षेत्र के बाहर व्यवस्थित किया गया था। इसने एक गीयर ट्यूब को काफी बड़ा बना दिया; ट्यूबों की गर्दन सामान्य रूप से प्रदर्शन क्षेत्र के पीछे होती है और टीवी को इसकी गहराई देती है, जबकि गीयर ट्यूब में गर्दनें प्रदर्शन क्षेत्र के बाहर चारों ओर प्रक्षेपित होती हैं, जिससे यह बहुत बड़ा हो जाता है।<ref name=p1>''Color Television Device''</ref>
 
स्क्रीन के पिछले हिस्से को एक एल्यूमीनियम शीट पर अंकित छोटे त्रिकोणीय पिरामिडों की एक श्रृंखला के साथ कवर किया गया था, प्रत्येक चेहरे के अंदर रंगीन संदीपकके साथ लेपित किया गया था। उचित रूप से संरेखित, एक दिया गया इलेक्ट्रॉन बीम केवल पिरामिड के एक चेहरे तक पहुंच सकता है, इसे हड़ताली और पतली धातु के माध्यम से अंदर की मोटी संदीपकपरत में यात्रा कर सकता है। जब तीनों बंदूकें अपने-अपने चेहरों से टकराती हैं, तो पिरामिड के अंदरूनी हिस्से में रंगीन रोशनी पैदा हो जाती है, जहां यह मिश्रित हो जाती है, जिससे खुले आधार पर एक उचित रंग का प्रदर्शन होता है, जो उपयोगकर्ता का सामना करता है।<ref name=p1/>
गीयर ने प्रकाशिकी के नए प्रयोग के साथ प्रदर्शक समस्या का समाधान किया। इलेक्ट्रॉन किरणपुंज को छोटे स्थानों पर केंद्रित करने की कोशिश करने के बजाय, उन्होंने उन्हें बड़े क्षेत्रों पर केंद्रित किया और प्रत्येक प्राथमिक रंग को चित्रपट पर कहीं भी एक [[चित्रांश]] में पुनर्संयोजित करने के लिए सरल प्रकाशिकी का उपयोग किया। नली को तीन अलग-अलग इलेकट्रॉन युक्ति के साथ व्यवस्थित किया गया था, प्रत्येक लाल, हरे और नीले रंग (RGB) के लिए, चित्र क्षेत्र के बाहर व्यवस्थित किया गया था। इसने गीयर नली को काफी बड़ा बना दिया; नली की "गर्दन" सामान्य रूप से प्रदर्शक क्षेत्र के पीछे स्थित होती है और TV को इसकी गहराई देती है, जबकि गीयर नली में गर्दनें प्रदर्शन क्षेत्र के बाहर चारों ओर प्रस्तावित होती हैं, जिससे यह बहुत बड़ा दिखाई देता है।<ref name="p1">''Color Television Device''</ref>
 
चित्रपटके पिछले हिस्से को एक एल्यूमीनियम शीट पर अंकित छोटे त्रिकोणीय पिरामिडों की एक श्रृंखला के साथ कवर किया गया था, प्रत्येक चेहरे के अंदर रंगीन संदीपकके साथ लेपित किया गया था। उचित रूप से संरेखित, एक दिया गया इलेक्ट्रॉन बीम केवल पिरामिड के एक चेहरे तक पहुंच सकता है, इसे हड़ताली और पतली धातु के माध्यम से अंदर की मोटी संदीपकपरत में यात्रा कर सकता है। जब तीनों बंदूकें अपने-अपने चेहरों से टकराती हैं, तो पिरामिड के अंदरूनी हिस्से में रंगीन रोशनी पैदा हो जाती है, जहां यह मिश्रित हो जाती है, जिससे खुले आधार पर एक उचित रंग का प्रदर्शन होता है, जो उपयोगकर्ता का सामना करता है।<ref name="p1" />


गीयर प्रणाली का एक बहुत बड़ा लाभ यह है कि इसका उपयोग किसी भी प्रस्तावित रंगीन चित्रपटलप्रसारण प्रणाली के साथ किया जा सकता है। [[सीबीएस]] 144 फ्रेम प्रति सेकंड पर एक फील्ड-अनुक्रमिक रंग प्रणाली प्रणाली को बढ़ावा दे रहा था जिसे वे एक यांत्रिक रंग फिल्टर व्हील के साथ प्रदर्शित करना चाहते थे। बदले में प्रत्येक क्रमिक फ्रेम को एक अलग बंदूक में भेजकर एक ही संकेत को एक गीयर ट्यूब पर प्रदर्शित किया जा सकता है। आरसीए की डॉट अनुक्रमिक प्रणाली को संकेतों को डी-मल्टीप्लेक्स करके और एक ही समय में प्रत्येक उपयुक्त बंदूकों को सभी तीन रंग संकेतों को भेजकर भी दिखाया जा सकता है। B&W संकेतों को एक ही संकेत भेजकर प्रदर्शित किया जा सकता है, 1/3 द्वारा मौन, एक ही समय में सभी तीन बंदूकों को भी।<ref name=popsic/>
गीयर प्रणाली का एक बहुत बड़ा लाभ यह है कि इसका उपयोग किसी भी प्रस्तावित रंगीन चित्रपटलप्रसारण प्रणाली के साथ किया जा सकता है। [[सीबीएस]] 144 फ्रेम प्रति सेकंड पर एक फील्ड-अनुक्रमिक रंग प्रणाली प्रणाली को बढ़ावा दे रहा था जिसे वे एक यांत्रिक रंग फिल्टर व्हील के साथ प्रदर्शित करना चाहते थे। बदले में प्रत्येक क्रमिक फ्रेम को एक अलग बंदूक में भेजकर एक ही संकेत को एक गीयर ट्यूब पर प्रदर्शित किया जा सकता है। आरसीए की डॉट अनुक्रमिक प्रणाली को संकेतों को डी-मल्टीप्लेक्स करके और एक ही समय में प्रत्येक उपयुक्त बंदूकों को सभी तीन रंग संकेतों को भेजकर भी दिखाया जा सकता है। B&W संकेतों को एक ही संकेत भेजकर प्रदर्शित किया जा सकता है, 1/3 द्वारा मौन, एक ही समय में सभी तीन बंदूकों को भी।<ref name=popsic/>


सही पिरामिड से टकराने के लिए इलेक्ट्रॉन बीम प्राप्त करना, और आस-पास के लोगों को नहीं, डिजाइन के लिए एक बड़ी समस्या थी। एक इलेक्ट्रॉन बंदूक से किरण सामान्य रूप से गोलाकार होती है, इसलिए जब इसे त्रिकोणीय लक्ष्य पर लक्षित किया जाता है, तो बीम का कुछ हिस्सा सामान्य रूप से लक्ष्य पिरामिड से आगे निकल जाता है और स्क्रीन पर दूसरों को मारता है। इसके परिणामस्वरूप ओवरस्कैन होता है, जिससे छवि धुंधली और धुल जाती है। समस्या को हल करना विशेष रूप से कठिन था क्योंकि बीम और चेहरों के बीच का कोण बदल गया क्योंकि बीम ने ट्यूब को स्कैन किया - बंदूक के पास के पिरामिड एक समकोण के करीब से टकराएंगे, लेकिन ट्यूब के विपरीत दिशा में एक तीव्र कोण पर थे कोण।<ref name=p2>''Television Color Screen''</ref> यह देखते हुए कि प्रत्येक बंदूक सीआरटी की मुख्य धुरी से ऑफसेट थी, स्कैन के दौरान रेखापुंज ज्यामिति में प्रमुख ज्यामितीय सुधार करना आवश्यक था।
सही पिरामिड से टकराने के लिए इलेक्ट्रॉन बीम प्राप्त करना, और आस-पास के लोगों को नहीं, डिजाइन के लिए एक बड़ी समस्या थी। एक इलेक्ट्रॉन बंदूक से किरण सामान्य रूप से गोलाकार होती है, इसलिए जब इसे त्रिकोणीय लक्ष्य पर लक्षित किया जाता है, तो बीम का कुछ हिस्सा सामान्य रूप से लक्ष्य पिरामिड से आगे निकल जाता है और चित्रपटपर दूसरों को मारता है। इसके परिणामस्वरूप ओवरस्कैन होता है, जिससे छवि धुंधली और धुल जाती है। समस्या को हल करना विशेष रूप से कठिन था क्योंकि बीम और चेहरों के बीच का कोण बदल गया क्योंकि बीम ने ट्यूब को स्कैन किया - बंदूक के पास के पिरामिड एक समकोण के करीब से टकराएंगे, लेकिन ट्यूब के विपरीत दिशा में एक तीव्र कोण पर थे कोण।<ref name=p2>''Television Color Screen''</ref> यह देखते हुए कि प्रत्येक बंदूक सीआरटी की मुख्य धुरी से ऑफसेट थी, स्कैन के दौरान रेखापुंज ज्यामिति में प्रमुख ज्यामितीय सुधार करना आवश्यक था।


===प्रतिस्पर्धी प्रणाली ===
===प्रतिस्पर्धी प्रणाली ===
Line 32: Line 34:
=== एनटीएससी के बाद ===
=== एनटीएससी के बाद ===


गीर ने कुछ समय के लिए अपनी मूल अवधारणा के साथ-साथ चित्रपटलसे संबंधित अन्य अवधारणाओं पर काम करना जारी रखा। 1955 में उन्होंने एक फ्लैट टीवी ट्यूब पर एक पेटेंट दायर किया, जिसमें छवि क्षेत्र के बगल में स्थित एक बंदूक का उपयोगकिया गया था जो ऊपर की ओर ऊपर की ओर निकाली गई थी। आवेशित तारों की एक श्रृंखला द्वारा बीम को 90 डिग्री के माध्यम से विक्षेपित किया गया था, इसलिए बीम अब चित्र क्षेत्र के पीछे क्षैतिज रूप से यात्रा कर रही थी। एक दूसरा ग्रिड, पहले के बगल में स्थित है, फिर बीम को एक छोटे कोण से मोड़ता है ताकि वे स्क्रीन के पीछे से टकराएं।<ref name=p3>''Television Picture''</ref>
गीर ने कुछ समय के लिए अपनी मूल अवधारणा के साथ-साथ चित्रपटलसे संबंधित अन्य अवधारणाओं पर काम करना जारी रखा। 1955 में उन्होंने एक फ्लैट टीवी ट्यूब पर एक पेटेंट दायर किया, जिसमें छवि क्षेत्र के बगल में स्थित एक बंदूक का उपयोगकिया गया था जो ऊपर की ओर ऊपर की ओर निकाली गई थी। आवेशित तारों की एक श्रृंखला द्वारा बीम को 90 डिग्री के माध्यम से विक्षेपित किया गया था, इसलिए बीम अब चित्र क्षेत्र के पीछे क्षैतिज रूप से यात्रा कर रही थी। एक दूसरा ग्रिड, पहले के बगल में स्थित है, फिर बीम को एक छोटे कोण से मोड़ता है ताकि वे चित्रपटके पीछे से टकराएं।<ref name=p3>''Television Picture''</ref>
ऐसा नहीं लगता कि इस उपकरण का कभी निर्माण किया गया था, और लक्ष्य तत्वों की व्यवस्था से पता चलता है कि छवि पर ध्यान केंद्रित करना एक गंभीर समस्या होगी। इस समस्या पर दो अन्य आविष्कारक अच्छी तरह से काम कर रहे थे, इंग्लैंड में [[डेनिस गैबोर]] ([[होलोग्राम]] के विकास के लिए बेहतर जाना जाता है) और अमेरिका में विलियम ऐकेन। उनके दोनों पेटेंट गेयर के समक्ष दायर किए गए थे, और [[ऐकेन ट्यूब]] सफलतापूर्वक कम संख्या में बनाया गया था। हाल ही में, इसी तरह की अवधारणाओं का उपयोग कंप्यूटर नियंत्रित अभिसरण प्रणालियों के साथ संयुक्त रूप से किया गया था, विशेष रूप से [[कंप्यूटर मॉनीटर]] उपयोग के लिए चापलूसी प्रणाली का उत्पादन करने के लिए। सोनी ने मूल रूप से समान लगभग-फ्लैट CRT का उपयोग करके छोटे स्क्रीन वाले मोनोक्रोम टीवी बेचे; उनका उपयोग बाहरी-प्रसारण मॉनिटर के लिए भी किया जाता था। हालाँकि इन्हें [[LCD]]-आधारित सिस्टम द्वारा जल्दी से विस्थापित कर दिया गया था।
ऐसा नहीं लगता कि इस उपकरण का कभी निर्माण किया गया था, और लक्ष्य तत्वों की व्यवस्था से पता चलता है कि छवि पर ध्यान केंद्रित करना एक गंभीर समस्या होगी। इस समस्या पर दो अन्य आविष्कारक अच्छी तरह से काम कर रहे थे, इंग्लैंड में [[डेनिस गैबोर]] ([[होलोग्राम]] के विकास के लिए बेहतर जाना जाता है) और अमेरिका में विलियम ऐकेन। उनके दोनों पेटेंट गेयर के समक्ष दायर किए गए थे, और [[ऐकेन ट्यूब]] सफलतापूर्वक कम संख्या में बनाया गया था। हाल ही में, इसी तरह की अवधारणाओं का उपयोग कंप्यूटर नियंत्रित अभिसरण प्रणालियों के साथ संयुक्त रूप से किया गया था, विशेष रूप से [[कंप्यूटर मॉनीटर]] उपयोग के लिए चापलूसी प्रणाली का उत्पादन करने के लिए। सोनी ने मूल रूप से समान लगभग-फ्लैट CRT का उपयोग करके छोटे चित्रपटवाले मोनोक्रोम टीवी बेचे; उनका उपयोग बाहरी-प्रसारण मॉनिटर के लिए भी किया जाता था। हालाँकि इन्हें [[LCD]]-आधारित सिस्टम द्वारा जल्दी से विस्थापित कर दिया गया था।


1960 में उन्होंने त्रि-आयामी चित्रपटलप्रणाली पर पेटेंट के लिए आवेदन किया जिसमें दो रंगीन ट्यूबों और उनके पिरामिड के 2-आयामी संस्करण का उपयोग किया गया था।{{clarify|date=May 2019}} लंबवत चैनल दो दिशाओं में प्रकाश को प्रतिबिंबित करते हैं, प्रत्येक आंख के लिए अलग-अलग छवियां प्रदान करते हैं।<ref name=p4>''Three-Dimensional''</ref>
1960 में उन्होंने त्रि-आयामी चित्रपटलप्रणाली पर पेटेंट के लिए आवेदन किया जिसमें दो रंगीन ट्यूबों और उनके पिरामिड के 2-आयामी संस्करण का उपयोग किया गया था।{{clarify|date=May 2019}} लंबवत चैनल दो दिशाओं में प्रकाश को प्रतिबिंबित करते हैं, प्रत्येक आंख के लिए अलग-अलग छवियां प्रदान करते हैं।<ref name=p4>''Three-Dimensional''</ref>

Revision as of 08:00, 11 April 2023

गीर की नली एक प्रारंभिक एकल-नली रंगीन चित्रपटल कैथोड किरण नलिका थी, जिसे विलार्ड गीर द्वारा विकसित किया गया था। गीयर की नली ने तीन इलेक्ट्रॉन संसूचक से अलग लाल, हरे और नीले संकेतों को संयोजित करने के लिए CRT फेसप्लेट के अंदर छोटे संदीपक से ढके तीन पक्षीय पिरामिड का एक प्रतिरूप उपयोग किया। गीयर की नली के कई नुकसान थे, और RCA's की छाया आवरण प्रणाली द्वारा उत्पन्न बेहतर छवियों के कारण व्यावसायिक रूप से कभी भी इसका उपयोग नहीं किया गया था। फिर भी, गीयर का एकस्वीकृत पहले प्रदान किया गया था, और RCA's ने उस पर एक विकल्प खरीदा था, अगर उनके स्वयं के विकास सफल नहीं हुए थे।

इतिहास

रंगीन चित्रपटल

व्यावसायिक प्रसारण के सामान्य होने से पहले रंगीन चित्रपटल का अध्ययन किया गया था, लेकिन 1940 के दशक के अंत तक इस समस्या पर गंभीरता से विचार किया गया। उस समय, कई प्रणालियाँ प्रस्तावित की जा रही थीं जो अनुक्रम में प्रसारित अलग-अलग लाल, हरे और नीले संकेतों (RGB) का उपयोग करती थीं। अधिकांश प्रायोगिक प्रणालियां एक रंगीन निष्यंतक (या "जेल") के साथ अनुक्रम में प्रसारित करती हैं, जो एक अन्यथा पारंपरिक काले और सफेद चित्रपटल नली के सामने घूमती है। प्रत्येक क्षणचित्र चित्र के एक रंग को कूटबद्ध करता है, और चक्र सिग्नल के साथ समकालन में घूमता है इसलिए सही जेल चित्रपटके सामने होता है जब वह रंगीन क्षणचित्र को प्रदर्शित किया जा रहा हो। क्योंकि वे अलग-अलग रंगों के लिए अलग-अलग संकेत प्रसारित करते हैं, ये सभी प्रणालियां उपस्थित काले और सफ़ेद संग्रह के साथ असंगत थी। एक अन्य समस्या यह थी कि जब तक बहुत अधिक पुनश्चर्या श्रेणी का उपयोग नहीं किया जाता तब तक यांत्रिक निस्यंदक ने उन्हें आशा की किरण बना दिया।[1]

RCA ने दीप्त -वर्णकत्व प्रणाली का उपयोग करते हुए पूरी तरह से अलग-अलग रेखाओं के साथ काम किया। यह प्रणाली सीधे RGB संकेत को कोडन या संचारित नहीं करती थी; इसके बजाय इसने इन रंगों को एक समग्र चमक आकृति, "दीप्ति" में जोड़ दिया। दीप्ति मौजूदा प्रसारणों के काले और सफेद संकेतों के निकटता से मेल खाता है, जिससे इसे काले और सफेद टीवी पर प्रदर्शित किया जा सकता है। अन्य समूहों द्वारा प्रस्तावित यांत्रिक प्रणालियों पर यह एक प्रमुख लाभ था। रंगीन जानकारी को अलग से कोडन किया गया था और एक समग्र वीडियो सिग्नल बनाने के लिए उच्च आवृत्ति परिवर्धन के रूप में सिग्नल में जोड़ दिया गया था - एक काले और सफेद चित्रपटल पर यह अतिरिक्त जानकारी छवि तीव्रता के सामान्य यादृच्छिककरण के रूप में देखी जाएगी, लेकिन इसका सीमित समाधान उपस्थित सेटों ने व्यवहार में इसे अदृश्य बना दिया। रंग सेट पर संकेत को निस्यंदक (फिल्टर) किया जाएगा और प्रकाशन के लिए मूल RGB को फिर से बनाने के लिए दीप्ति में जोड़ा जाएगा।

हालांकि RCA's की प्रणाली के अत्यधिक उपयोग थे, इसे सफलतापूर्वक विकसित नहीं किया गया था क्योंकि प्रदर्शन ट्यूबों का उत्पादन करना कठिन था। काले और सफेद TVs एक सतत संकेत का उपयोग करते थे और नली को संदीपक के एक समान संचय समूह के साथ विलेपित किया जा सकता था। चमक की अवधारणा के साथ, रेखा के साथ रंग लगातार बदल रहा था, जो कि किसी भी प्रकार के यांत्रिक निस्यंदक का पालन करने के लिए बहुत तीव्र था। इसके बजाय, संदीपक को रंगीन धब्बों के असतत प्रतिरूप में तोड़ा जाना था। इनमें से प्रत्येक छोटे धब्बे पर सही संकेत केंद्रित करना संवत की इलेकट्रॉन युक्ति की क्षमता से परे था।[2]


गीयर का उपाय

चार्ल्स विलार्ड गीयर, तब[when?] दक्षिणी कैलिफोर्निया विश्वविद्यालय में एक सहायक प्रोफेसर, रंगीन चित्रपटल बनाने के यांत्रिक तरीकों पर व्याख्यान दे रहे थे, जिनका प्रयोग 1940 के दशक में किया जा रहा था, और उन्होंने निश्चय किया कि इलेक्ट्रॉनिक रूप से स्कैन की गई प्रणाली बेहतर होगी, यदि कोई केवल एक का आविष्कार करेगा। बाद में अपनी पत्नी से इसका उल्लेख करते हुए, उन्होंने उत्तर दिया कि "बेहतर होगा कि आप व्यस्त हो जाएं और स्वयं इसका आविष्कार करें"।[3]

गीयर ने प्रकाशिकी के नए प्रयोग के साथ प्रदर्शक समस्या का समाधान किया। इलेक्ट्रॉन किरणपुंज को छोटे स्थानों पर केंद्रित करने की कोशिश करने के बजाय, उन्होंने उन्हें बड़े क्षेत्रों पर केंद्रित किया और प्रत्येक प्राथमिक रंग को चित्रपट पर कहीं भी एक चित्रांश में पुनर्संयोजित करने के लिए सरल प्रकाशिकी का उपयोग किया। नली को तीन अलग-अलग इलेकट्रॉन युक्ति के साथ व्यवस्थित किया गया था, प्रत्येक लाल, हरे और नीले रंग (RGB) के लिए, चित्र क्षेत्र के बाहर व्यवस्थित किया गया था। इसने गीयर नली को काफी बड़ा बना दिया; नली की "गर्दन" सामान्य रूप से प्रदर्शक क्षेत्र के पीछे स्थित होती है और TV को इसकी गहराई देती है, जबकि गीयर नली में गर्दनें प्रदर्शन क्षेत्र के बाहर चारों ओर प्रस्तावित होती हैं, जिससे यह बहुत बड़ा दिखाई देता है।[4]

चित्रपटके पिछले हिस्से को एक एल्यूमीनियम शीट पर अंकित छोटे त्रिकोणीय पिरामिडों की एक श्रृंखला के साथ कवर किया गया था, प्रत्येक चेहरे के अंदर रंगीन संदीपकके साथ लेपित किया गया था। उचित रूप से संरेखित, एक दिया गया इलेक्ट्रॉन बीम केवल पिरामिड के एक चेहरे तक पहुंच सकता है, इसे हड़ताली और पतली धातु के माध्यम से अंदर की मोटी संदीपकपरत में यात्रा कर सकता है। जब तीनों बंदूकें अपने-अपने चेहरों से टकराती हैं, तो पिरामिड के अंदरूनी हिस्से में रंगीन रोशनी पैदा हो जाती है, जहां यह मिश्रित हो जाती है, जिससे खुले आधार पर एक उचित रंग का प्रदर्शन होता है, जो उपयोगकर्ता का सामना करता है।[4]

गीयर प्रणाली का एक बहुत बड़ा लाभ यह है कि इसका उपयोग किसी भी प्रस्तावित रंगीन चित्रपटलप्रसारण प्रणाली के साथ किया जा सकता है। सीबीएस 144 फ्रेम प्रति सेकंड पर एक फील्ड-अनुक्रमिक रंग प्रणाली प्रणाली को बढ़ावा दे रहा था जिसे वे एक यांत्रिक रंग फिल्टर व्हील के साथ प्रदर्शित करना चाहते थे। बदले में प्रत्येक क्रमिक फ्रेम को एक अलग बंदूक में भेजकर एक ही संकेत को एक गीयर ट्यूब पर प्रदर्शित किया जा सकता है। आरसीए की डॉट अनुक्रमिक प्रणाली को संकेतों को डी-मल्टीप्लेक्स करके और एक ही समय में प्रत्येक उपयुक्त बंदूकों को सभी तीन रंग संकेतों को भेजकर भी दिखाया जा सकता है। B&W संकेतों को एक ही संकेत भेजकर प्रदर्शित किया जा सकता है, 1/3 द्वारा मौन, एक ही समय में सभी तीन बंदूकों को भी।[5]

सही पिरामिड से टकराने के लिए इलेक्ट्रॉन बीम प्राप्त करना, और आस-पास के लोगों को नहीं, डिजाइन के लिए एक बड़ी समस्या थी। एक इलेक्ट्रॉन बंदूक से किरण सामान्य रूप से गोलाकार होती है, इसलिए जब इसे त्रिकोणीय लक्ष्य पर लक्षित किया जाता है, तो बीम का कुछ हिस्सा सामान्य रूप से लक्ष्य पिरामिड से आगे निकल जाता है और चित्रपटपर दूसरों को मारता है। इसके परिणामस्वरूप ओवरस्कैन होता है, जिससे छवि धुंधली और धुल जाती है। समस्या को हल करना विशेष रूप से कठिन था क्योंकि बीम और चेहरों के बीच का कोण बदल गया क्योंकि बीम ने ट्यूब को स्कैन किया - बंदूक के पास के पिरामिड एक समकोण के करीब से टकराएंगे, लेकिन ट्यूब के विपरीत दिशा में एक तीव्र कोण पर थे कोण।[6] यह देखते हुए कि प्रत्येक बंदूक सीआरटी की मुख्य धुरी से ऑफसेट थी, स्कैन के दौरान रेखापुंज ज्यामिति में प्रमुख ज्यामितीय सुधार करना आवश्यक था।

प्रतिस्पर्धी प्रणाली

गीयर ने 11 जुलाई, 1944 को अपने डिजाइन पर पेटेंट के लिए आवेदन किया।[4]टेक्नीकलर ने पेटेंट अधिकार खरीदे और स्टैनफोर्ड अनुसंधान संस्थान के साथ मिलकर प्रोटोटाइप इकाइयों का विकास शुरू किया, विकास पर 1950 में कथित रूप से $500,000 (2005 में लगभग $4 मिलियन के बराबर) खर्च किया।[7] समय (पत्रिका) में उल्लेख सहित, उस समय प्रणाली पर व्यापक रूप से रिपोर्ट किया गया था।[3]लोकप्रिय विज्ञान,[5] लोकप्रिय यांत्रिकी,[8] रेडियो इलेक्ट्रॉनिक्स,[9] और दूसरे।

कई अन्य कंपनियाँ भी रंगीन टेलीविज़न सिस्टम पर काम कर रही थीं, विशेष रूप से RCA। उन्होंने गीर के कुछ सप्ताह बाद ही अपने शैडो मास्क सिस्टम पर पेटेंट दायर किया था। जब गीर, और टेक्नीकलर ने आरसीए को अपने पेटेंट के बारे में सूचित किया, तो आरसीए ने लाइसेंस ले लिया और आग में दूसरे लोहे के रूप में परियोजना के लिए और अधिक धनराशि जोड़ दी, अगर उनके इन-हाउस विकास में से कोई भी काम नहीं किया।

नवंबर 1949 में शुरू हुए एनटीएससी रंग मानकीकरण प्रयासों के लिए अन्य रंगीन चित्रपटलप्रणालियों के खिलाफ आमने-सामने परीक्षण में, गीयर की ट्यूब ने विशेष रूप से अच्छा प्रदर्शन नहीं किया। ओवरस्कैन ने रंगों को पड़ोसी पिक्सेल में उड़ा दिया और नरम रंग और खराब रंग पंजीकरण और कंट्रास्ट का नेतृत्व किया। यह समस्या किसी भी तरह से गीर ट्यूब तक सीमित नहीं थी; शो में कई अलग-अलग तकनीकों का प्रदर्शन किया गया था, और केवल सीबीएस यांत्रिक प्रणाली एक ऐसी तस्वीर बनाने में सक्षम साबित हुई जो न्यायाधीशों को संतुष्ट करती थी। 1950 में, सीबीएस प्रणाली को एनटीएससी मानक के रूप में अपनाया गया था।[1]

गीयर ने 1940 के दशक के अंत और 1950 के दशक में ओवरस्कैन समस्याओं पर काम करना जारी रखा, सिस्टम में सुधार के लिए विभिन्न सुधारों पर अतिरिक्त पेटेंट दाखिल किया।[6]अन्य विक्रेता अपनी स्वयं की तकनीकों के साथ समान प्रगति कर रहे थे, और 1953 में रंग मुद्दे पर विचार करने के लिए NTSC ने एक पैनल का पुनर्गठन किया। इस बार RCA के शैडो मास्क सिस्टम ने तेजी से खुद को Geer's सहित अन्य सभी सिस्टम्स से बेहतर साबित कर दिया। 2000 के दशक की शुरुआत तक, जब लिक्विड क्रिस्टल डिस्प्ले तकनीक ने CRTs को बदल दिया, तब तक Sony Trinitron के साथ छाया मुखौटा रंगीन टीवी बनाने की प्राथमिक विधि बनी रही। उसी समय, मौजूदा B&W सेट के साथ संगत सिग्नल में रंग एन्कोडिंग का RCA का संस्करण भी संशोधनों के साथ अपनाया गया था, और 2009 तक प्राथमिक यू.एस. चित्रपटलमानक बना रहा, जब डिजिटल चित्रपटलसंक्रमण हुआ।

एनटीएससी के बाद

गीर ने कुछ समय के लिए अपनी मूल अवधारणा के साथ-साथ चित्रपटलसे संबंधित अन्य अवधारणाओं पर काम करना जारी रखा। 1955 में उन्होंने एक फ्लैट टीवी ट्यूब पर एक पेटेंट दायर किया, जिसमें छवि क्षेत्र के बगल में स्थित एक बंदूक का उपयोगकिया गया था जो ऊपर की ओर ऊपर की ओर निकाली गई थी। आवेशित तारों की एक श्रृंखला द्वारा बीम को 90 डिग्री के माध्यम से विक्षेपित किया गया था, इसलिए बीम अब चित्र क्षेत्र के पीछे क्षैतिज रूप से यात्रा कर रही थी। एक दूसरा ग्रिड, पहले के बगल में स्थित है, फिर बीम को एक छोटे कोण से मोड़ता है ताकि वे चित्रपटके पीछे से टकराएं।[10] ऐसा नहीं लगता कि इस उपकरण का कभी निर्माण किया गया था, और लक्ष्य तत्वों की व्यवस्था से पता चलता है कि छवि पर ध्यान केंद्रित करना एक गंभीर समस्या होगी। इस समस्या पर दो अन्य आविष्कारक अच्छी तरह से काम कर रहे थे, इंग्लैंड में डेनिस गैबोर (होलोग्राम के विकास के लिए बेहतर जाना जाता है) और अमेरिका में विलियम ऐकेन। उनके दोनों पेटेंट गेयर के समक्ष दायर किए गए थे, और ऐकेन ट्यूब सफलतापूर्वक कम संख्या में बनाया गया था। हाल ही में, इसी तरह की अवधारणाओं का उपयोग कंप्यूटर नियंत्रित अभिसरण प्रणालियों के साथ संयुक्त रूप से किया गया था, विशेष रूप से कंप्यूटर मॉनीटर उपयोग के लिए चापलूसी प्रणाली का उत्पादन करने के लिए। सोनी ने मूल रूप से समान लगभग-फ्लैट CRT का उपयोग करके छोटे चित्रपटवाले मोनोक्रोम टीवी बेचे; उनका उपयोग बाहरी-प्रसारण मॉनिटर के लिए भी किया जाता था। हालाँकि इन्हें LCD-आधारित सिस्टम द्वारा जल्दी से विस्थापित कर दिया गया था।

1960 में उन्होंने त्रि-आयामी चित्रपटलप्रणाली पर पेटेंट के लिए आवेदन किया जिसमें दो रंगीन ट्यूबों और उनके पिरामिड के 2-आयामी संस्करण का उपयोग किया गया था।[clarification needed] लंबवत चैनल दो दिशाओं में प्रकाश को प्रतिबिंबित करते हैं, प्रत्येक आंख के लिए अलग-अलग छवियां प्रदान करते हैं।[11]


पेटेंट

  • अमेरिकी पेटेंट 2,480,848, कलर टेलीविज़न डिवाइस , चार्ल्स विलार्ड गीयर/टेक्नीकलर मोशन पिक्चर कॉर्पोरेशन, 11 जुलाई, 1944 को दायर, 6 सितंबर, 1949 को जारी किया गया
  • यूएस पेटेंट 2,622,220, टेलीविज़न कलर स्क्रीन , चार्ल्स विलार्ड गीयर/टेक्नीकलर मोशन पिक्चर कॉर्पोरेशन, 22 मार्च, 1949 को दायर, 16 दिसंबर, 1952 को जारी
  • U.S. पेटेंट 2,850,669, टेलीविज़न पिक्चर ट्यूब ऑर लाइक, चार्ल्स विलार्ड गीयर, 26 अप्रैल, 1955 को दायर, 2 सितंबर, 1958 को जारी
  • अमेरिकी पेटेंट 3,184,630, त्रि-आयामी प्रदर्शन उपकरण , चार्ल्स विलार्ड गीयर, 12 जुलाई, 1960 को दायर, 18 मई, 1960 को जारी किया गया

यह भी देखें

संदर्भ

उद्धरण

  1. 1.0 1.1 Ed Reitan, "CBS Field Sequential Color System" Archived January 5, 2010, at the Wayback Machine, August 24, 1997
  2. Ed Reitan, "RCA Dot Sequential Color System" Archived January 7, 2010, at the Wayback Machine, August 28, 1997
  3. 3.0 3.1 Teacher's
  4. 4.0 4.1 4.2 Color Television Device
  5. 5.0 5.1 "Tube Shows TV in Color", Popular Science, March 1949, pg. 118
  6. 6.0 6.1 Television Color Screen
  7. "The Patent, Trade-mark, and Copyright Journal of Research and Education", George Washington University, spring 1960
  8. "Rainbow on the TV Screen", Popular Mechanics, January 1950, pp. 97–103
  9. Fred Shunaman, "Color Television Systems", Radio-electronics, Volume 22, 1950, pg. 20
  10. Television Picture
  11. Three-Dimensional


ग्रन्थसूची

  • Edward W. Herold, "History and development of the color picture tube", Proceedings of the Society of Information Display, Volume 15 Issue 4 (August 1974), pp. 141–149.
  • "Teacher's Tube", Time, March 20, 1950.


अग्रिम पठन