मूलकण: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Subatomic particle having no known substructure}} | {{short description|Subatomic particle having no known substructure}} | ||
{{Standard model of particle physics}}कण भौतिकी में, एक प्राथमिक कण या मौलिक कण एक <!-wiktionary: कण | {{Standard model of particle physics}}[[कण भौतिकी]] में, एक प्राथमिक कण या मौलिक कण एक <!-wiktionary: कण | -> उप-[[परमाणु]] कण जो अन्य कणों से बना नहीं है।<ref name=PFI/>वर्तमान में माना जाता है कि कणों में मौलिक फ़र्मियन ([[क्वार्क]]्स, लेप्टन, एंटिक्क्स और एंटीलेप्टन) शामिल हैं, जो आम तौर पर कण कण और एंटीमैटर कण हैं, साथ ही मौलिक [[बोसॉन]] (गेज बोसोन और हिग्स बोसोन) हैं, जो आम तौर पर बल वाहक होते हैं।| बल कण जो कि फंडामेंटल इंटरैक्शन | इंटरैक्शन को मध्यस्थता करते हैं।<ref name=PFI/>एक कण जिसमें दो या अधिक प्राथमिक कण होते हैं, एक [[समग्र कण]] होता है। | ||
साधारण मामला परमाणुओं से बना होता है, एक बार प्राथमिक कण होने के लिए माना जाता है - '' एटमोस '' का अर्थ है ग्रीक में कटौती करने में असमर्थ - हालांकि परमाणु का अस्तित्व लगभग 1905 तक विवादास्पद रहा, क्योंकि कुछ प्रमुख भौतिकविदों ने | साधारण [[मामला]] परमाणुओं से बना होता है, एक बार प्राथमिक कण होने के लिए माना जाता है - '' एटमोस '' का अर्थ है ग्रीक में कटौती करने में असमर्थ - हालांकि परमाणु का अस्तित्व लगभग 1905 तक विवादास्पद रहा, क्योंकि कुछ प्रमुख भौतिकविदों ने [[अणु]]ओं को गणितीय भ्रम, और मामले के रूप में माना।अंततः [[ऊर्जा]] से बना।<ref name=PFI/><ref>{{cite journal | ||
|first1=Ronald |last1=Newburgh | |first1=Ronald |last1=Newburgh | ||
|first2=Joseph |last2=Peidle | |first2=Joseph |last2=Peidle | ||
Line 19: | Line 19: | ||
|archive-date=2017-08-03 |df=dmy-all | |archive-date=2017-08-03 |df=dmy-all | ||
|url-status=dead | |url-status=dead | ||
}}</ref>परमाणु के उप -परमाणु घटकों को पहली बार 1930 के दशक की शुरुआत में पहचाना गया था;इलेक्ट्रॉन और प्रोटॉन, फोटॉन के साथ, विद्युत चुम्बकीय विकिरण के कण।<ref name=PFI/>उस समय, क्वांटम यांत्रिकी का हालिया आगमन कणों की अवधारणा को मौलिक रूप से बदल रहा था, क्योंकि एक एकल कण एक क्षेत्र तरंग -कण द्वंद्व | }}</ref>परमाणु के उप -परमाणु घटकों को पहली बार 1930 के दशक की शुरुआत में पहचाना गया था;[[इलेक्ट्रॉन]] और प्रोटॉन, फोटॉन के साथ, [[विद्युत चुम्बकीय विकिरण]] के कण।<ref name=PFI/>उस समय, [[क्वांटम यांत्रिकी]] का हालिया आगमन कणों की अवधारणा को मौलिक रूप से बदल रहा था, क्योंकि एक एकल कण एक क्षेत्र तरंग -कण द्वंद्व | के रूप में एक लहर के रूप में प्रतीत हो सकता है, एक लहर, एक विरोधाभास अभी भी संतोषजनक स्पष्टीकरण को समाप्त कर रहा है।<ref> | ||
{{cite book | {{cite book | ||
|first=Friedel |last=Weinert | |first=Friedel |last=Weinert | ||
Line 36: | Line 36: | ||
|title=Physicists debate whether the world is made of particles or fields – or something else entirely | |title=Physicists debate whether the world is made of particles or fields – or something else entirely | ||
|magazine=[[Scientific American]] | |magazine=[[Scientific American]] | ||
}}</ref>वाया क्वांटम थ्योरी, प्रोटॉन और न्यूट्रॉन में क्वार्क - अप क्वार्क और डाउन क्वार्क्स शामिल थे - जिसे अब प्राथमिक कण माना जाता है।<ref name=PFI/>और एक अणु के भीतर, इलेक्ट्रॉन की तीन डिग्री स्वतंत्रता (भौतिकी और रसायन विज्ञान) | }}</ref>वाया क्वांटम थ्योरी, प्रोटॉन और [[न्यूट्रॉन]] में क्वार्क - अप क्वार्क और डाउन क्वार्क्स शामिल थे - जिसे अब प्राथमिक कण माना जाता है।<ref name=PFI/>और एक अणु के भीतर, इलेक्ट्रॉन की तीन डिग्री स्वतंत्रता (भौतिकी और रसायन विज्ञान) | डिग्री की स्वतंत्रता (चार्ज (भौतिकी) | चार्ज, [[स्पिन (भौतिकी) | स्पिन]], परमाणु ऑर्बिटल | ऑर्बिटल) तीन क्वासिपार्टिकल्स में तरंग के माध्यम से अलग हो सकती है(भौतिकी) | होलोन, स्पिनन और ऑर्बिटन)।<ref name=Merali> | ||
{{cite news | {{cite news | ||
|first=Zeeya |last=Merali | |first=Zeeya |last=Merali | ||
Line 43: | Line 43: | ||
|journal=[[Nature (journal)|Nature]] | |journal=[[Nature (journal)|Nature]] | ||
|doi=10.1038/nature.2012.10471 | |doi=10.1038/nature.2012.10471 | ||
}}</ref>फिर भी एक मुक्त इलेक्ट्रॉन - जो एक परमाणु नाभिक की परिक्रमा करने के लिए '' नहीं '' है और इसलिए परमाणु कक्षीय | }}</ref>फिर भी एक मुक्त इलेक्ट्रॉन - जो एक [[परमाणु [[नाभिक]]]] [[की परिक्रमा]] करने के लिए '' नहीं '' है और इसलिए [[परमाणु कक्षीय | कक्षीय]] गति का अभाव है - यह अयोग्य प्रतीत होता है और एक प्राथमिक कण के रूप में माना जाता है।<ref नाम = मेरली/> | ||
1980 के आसपास, एक प्राथमिक कण की स्थिति वास्तव में प्राथमिक के रूप में - पदार्थ का एक '' अंतिम घटक '' - ज्यादातर अधिक व्यावहारिक दृष्टिकोण के लिए छोड़ दिया गया था,<ref name=PFI/>कण भौतिकी के मानक मॉडल में सन्निहित, जिसे विज्ञान के सबसे प्रयोगात्मक रूप से सफल सिद्धांत के रूप में जाना जाता है।<ref name=Kuhlmann/><ref name=ONeill>{{cite news | 1980 के आसपास, एक प्राथमिक कण की स्थिति वास्तव में प्राथमिक के रूप में - पदार्थ का एक '' अंतिम घटक '' - ज्यादातर अधिक व्यावहारिक दृष्टिकोण के लिए छोड़ दिया गया था,<ref name=PFI/>कण भौतिकी के [[मानक मॉडल]] में सन्निहित, जिसे विज्ञान के सबसे प्रयोगात्मक रूप से सफल सिद्धांत के रूप में जाना जाता है।<ref name=Kuhlmann/><ref name=ONeill>{{cite news | ||
|first=Ian | |first=Ian | ||
|last=O'Neill | |last=O'Neill | ||
Line 56: | Line 56: | ||
|archive-url=https://web.archive.org/web/20160313000505/http://news.discovery.com/space/lhc-discovery-maims-supersymmetry-again-130724.htm | |archive-url=https://web.archive.org/web/20160313000505/http://news.discovery.com/space/lhc-discovery-maims-supersymmetry-again-130724.htm | ||
|url-status=dead | |url-status=dead | ||
}}</ref>मानक मॉडल से परे मानक मॉडल | }}</ref>[[मानक मॉडल से परे]] मानक मॉडल | से परे और सिद्धांतों पर कई विस्तार, लोकप्रिय सुपरसिमेट्री सहित, प्राथमिक कणों की संख्या को दोगुना करके परिकल्पना करके कि प्रत्येक ज्ञात कण एक छाया साथी के साथ अधिक बड़े पैमाने पर जुड़ता है,<ref> | ||
{{cite web | {{cite web | ||
|collaboration=Particle Data Group | |collaboration=Particle Data Group | ||
Line 81: | Line 81: | ||
|date=25 Jul 2013 | |date=25 Jul 2013 | ||
|access-date=2013-08-28 |df=dmy-all | |access-date=2013-08-28 |df=dmy-all | ||
}}</ref>इस बीच, एक प्राथमिक बोसोन मध्यस्थता गुरुत्वाकर्षण - ग्रेविटन - काल्पनिक रहता है।<ref name=PFI/>इसके अलावा, कुछ परिकल्पनाओं के अनुसार, स्पेसटाइम को मात्राबद्ध किया जाता है, इसलिए इन परिकल्पनाओं के भीतर संभवतः अंतरिक्ष और समय के परमाणु मौजूद हैं।<ref>{{cite magazine |url=https://www.scientificamerican.com/article/atoms-of-space-and-time-2006-02/ |title=Atoms of Space and Time |last=Smolin |first=Lee |date=Feb 2006 |magazine=[[Scientific American]] |volume=16 |pages=82–92 |doi=10.1038/scientificamerican0206-82sp}}</ref> | }}</ref>इस बीच, एक प्राथमिक बोसोन मध्यस्थता [[गुरुत्वाकर्षण]] - ग्रेविटन - काल्पनिक रहता है।<ref name=PFI/>इसके अलावा, कुछ परिकल्पनाओं के अनुसार, स्पेसटाइम को मात्राबद्ध किया जाता है, इसलिए इन परिकल्पनाओं के भीतर संभवतः अंतरिक्ष और समय के परमाणु मौजूद हैं।<ref>{{cite magazine |url=https://www.scientificamerican.com/article/atoms-of-space-and-time-2006-02/ |title=Atoms of Space and Time |last=Smolin |first=Lee |date=Feb 2006 |magazine=[[Scientific American]] |volume=16 |pages=82–92 |doi=10.1038/scientificamerican0206-82sp}}</ref> | ||
== अवलोकन =={{Main|Standard Model}} | == अवलोकन =={{Main|Standard Model}} | ||
{{See also|Physics beyond the Standard Model}}<!--[[Image:Particle overview.svg|thumb|400px|प्राथमिक और समग्र कणों के विभिन्न परिवारों का अवलोकन, और उनकी बातचीत का वर्णन करने वाले सिद्धांत | {{See also|Physics beyond the Standard Model}}<!--[[Image:Particle overview.svg|thumb|400px|प्राथमिक और समग्र कणों के विभिन्न परिवारों का अवलोकन, और उनकी बातचीत का वर्णन करने वाले सिद्धांत | ||
-> | -> | ||
सभी प्राथमिक कण या तो बोसोन या फ़र्मियन हैं।इन वर्गों को उनके क्वांटम आँकड़ों द्वारा प्रतिष्ठित किया जाता है: फर्मियन फर्मी -डीआईआरएसी आंकड़ों का पालन करते हैं और बोसोन बोस -आइंस्टीन सांख्यिकी का पालन करते हैं।<ref name=PFI>{{cite book | सभी प्राथमिक कण या तो बोसोन या फ़र्मियन हैं।इन वर्गों को उनके क्वांटम आँकड़ों द्वारा प्रतिष्ठित किया जाता है: [[फर्मियन]] फर्मी -डीआईआरएसी आंकड़ों का पालन करते हैं और बोसोन बोस -आइंस्टीन सांख्यिकी का पालन करते हैं।<ref name=PFI>{{cite book | ||
|first1=Sylvie |last1=Braibant | |first1=Sylvie |last1=Braibant | ||
|first2=Giorgio |last2=Giacomelli | |first2=Giorgio |last2=Giacomelli | ||
Line 97: | Line 97: | ||
|isbn=978-94-007-2463-1 | |isbn=978-94-007-2463-1 | ||
|pages=1–3 | |pages=1–3 | ||
}}</ref>उनके स्पिन (भौतिकी) | }}</ref>उनके स्पिन (भौतिकी) | स्पिन को स्पिन-स्टैटिस्टिक्स प्रमेय के माध्यम से विभेदित किया जाता है: यह फर्मियन के लिए आधा-[[पूर्णांक]] है, और बोसों के लिए पूर्णांक है।{{Elementary particles}}<!- | ||
; प्राथमिक फ़र्मियन: | ; प्राथमिक फ़र्मियन: | ||
*मामला | *मामला | पदार्थ कण | ||
** क्वार्क्स: | ** क्वार्क्स: | ||
*** ऊपर क्वार्क | *** [[ऊपर क्वार्क | ]] अप, [[डाउन क्वार्क | डाउन]] | ||
*** चार्म क्वार्क | *** चार्म क्वार्क | [[आकर्षण]], [[स्ट्रेंज क्वार्क | स्ट्रेंज]] | ||
*** टॉप क्वार्क | *** टॉप क्वार्क | टॉप, [[बॉटम क्वार्क | बॉटम]] | ||
** लेप्टन: | ** लेप्टन: | ||
*** इलेक्ट्रॉन, इलेक्ट्रॉन न्यूट्रिनो (छद्म नाम | *** इलेक्ट्रॉन, [[इलेक्ट्रॉन न्यूट्रिनो]] (छद्म नाम | a.k.a., न्यूट्रिनो) | ||
*** मुन, मुन न्यूट्रिनो | *** मुन, मुन न्यूट्रिनो | ||
*** ताऊ (कण) | *** ताऊ (कण) | ताऊ, ताऊ न्यूट्रिनो | ||
*एंटीमैटर | *[[एंटीमैटर | एंटीमैटर कण]] | ||
** एंटिकार्क | ** एंटिकार्क | ||
** एंटीलेप्टन | ** एंटीलेप्टन | ||
; प्राथमिक बोसॉन: | ; प्राथमिक बोसॉन: | ||
*बल वाहक | *[[बल वाहक | बल कण]] (गेज बोसोन): | ||
** फोटॉन | ** फोटॉन | ||
** ग्लून (नंबर आठ)<ref name=PFI/>** W और Z BOSONS | ** ग्लून (नंबर आठ)<ref name=PFI/>** W और Z BOSONS | '' W ''<sup>+</sup>, ''W''<sup>−</sup>, and ''Z''<sup>0</sup>बोसॉन | ||
** ग्रेविटॉन (काल्पनिक)<ref name=PFI/>*स्केलर बोसोन | ** ग्रेविटॉन (काल्पनिक)<ref name=PFI/>*स्केलर बोसोन | ||
** हिग्स बॉसन | ** [[हिग्स बॉसन]] | ||
-> | -> | ||
मानक मॉडल में, प्राथमिक कणों को बिंदु | मानक मॉडल में, प्राथमिक कणों को [[बिंदु कण]]ों के रूप में [[वैज्ञानिक औपचारिकता | भविष्य कहनेवाला उपयोगिता]] के लिए दर्शाया गया है।हालांकि बेहद सफल, मानक मॉडल गुरुत्वाकर्षण के अपने चूक से सीमित है और इसमें कुछ मापदंडों को मनमाने ढंग से जोड़ा गया है, लेकिन अस्पष्टीकृत किया गया है।<ref>ब्रेबेंट, जियाकोमेल्ली, और स्पुरियो 2012, पी।384</ref> | ||
== प्राथमिक कणों की ब्रह्मांडीय बहुतायत =={{main | Cosmic abundance of elements }}बिग बैंग न्यूक्लियोसिंथेसिस | == प्राथमिक कणों की ब्रह्मांडीय बहुतायत =={{main | Cosmic abundance of elements }}[[बिग बैंग न्यूक्लियोसिंथेसिस | बिग बैंग न्यूक्लियोसिंथेसिस]] के वर्तमान मॉडलों के अनुसार, ब्रह्मांड के दृश्यमान पदार्थ की आदिम रचना लगभग 75% हाइड्रोजन और 25% हीलियम -4 ([[द्रव्यमान]] में) होनी चाहिए।न्यूट्रॉन एक अप और दो डाउन क्वार्क से बने होते हैं, जबकि प्रोटॉन दो ऊपर और एक डाउन क्वार्क से बने होते हैं।चूंकि अन्य सामान्य प्राथमिक कण (जैसे इलेक्ट्रॉनों, न्यूट्रिनो, या कमजोर बोसोन) [[परमाणु नाभिक]] की तुलना में इतने हल्के या दुर्लभ होते हैं, हम अवलोकन करने योग्य ब्रह्मांड के कुल द्रव्यमान में उनके द्रव्यमान योगदान की उपेक्षा कर सकते हैं।इसलिए, कोई यह निष्कर्ष निकाल सकता है कि ब्रह्मांड के अधिकांश दृश्य द्रव्यमान में प्रोटॉन और न्यूट्रॉन होते हैं, जो सभी बैरियंस की तरह, बदले में क्वार्क और डाउन क्वार्क से मिलकर बनते हैं। | ||
कुछ अनुमानों का मतलब है कि मोटे तौर पर हैं{{10^|80}}ऑब्जर्वेबल यूनिवर्स में बैरियंस (लगभग पूरी तरह से प्रोटॉन और न्यूट्रॉन)।<ref name=heile>{{cite news | कुछ अनुमानों का मतलब है कि मोटे तौर पर हैं{{10^|80}}ऑब्जर्वेबल यूनिवर्स में बैरियंस (लगभग पूरी तरह से प्रोटॉन और न्यूट्रॉन)।<ref name=heile>{{cite news | ||
Line 137: | Line 137: | ||
|year=2014 | |year=2014 | ||
|at=p. 4, equation 16}} | |at=p. 4, equation 16}} | ||
</ref><ref name=mrob/>ऑब्जर्वेबल यूनिवर्स में प्रोटॉन की संख्या को एडिंगटन नंबर कहा जाता है। | </ref><ref name=mrob/>ऑब्जर्वेबल यूनिवर्स में प्रोटॉन की संख्या को [[एडिंगटन नंबर]] कहा जाता है। | ||
कणों की संख्या के संदर्भ में, कुछ अनुमानों का अर्थ है कि लगभग सभी मामले, अंधेरे पदार्थ को छोड़कर, न्यूट्रिनो में होते हैं, जो मोटे तौर पर अधिकांश का गठन करते हैं{{10^|86}}पदार्थ के प्राथमिक कण जो दृश्य ब्रह्मांड में मौजूद हैं।<ref name=mrob> | कणों की संख्या के संदर्भ में, कुछ अनुमानों का अर्थ है कि लगभग सभी मामले, अंधेरे पदार्थ को छोड़कर, न्यूट्रिनो में होते हैं, जो मोटे तौर पर अधिकांश का गठन करते हैं{{10^|86}}पदार्थ के प्राथमिक कण जो दृश्य ब्रह्मांड में मौजूद हैं।<ref name=mrob> | ||
Line 148: | Line 148: | ||
}}</ref>अन्य अनुमानों का अर्थ है कि मोटे तौर पर{{10^|97}}प्राथमिक कण दृश्य ब्रह्मांड में मौजूद हैं (अंधेरे पदार्थ सहित नहीं), ज्यादातर फोटॉन और अन्य द्रव्यमान बल वाहक।<ref name=mrob/> | }}</ref>अन्य अनुमानों का अर्थ है कि मोटे तौर पर{{10^|97}}प्राथमिक कण दृश्य ब्रह्मांड में मौजूद हैं (अंधेरे पदार्थ सहित नहीं), ज्यादातर फोटॉन और अन्य द्रव्यमान बल वाहक।<ref name=mrob/> | ||
== मानक मॉडल =={{main|Standard Model}}कण भौतिकी के मानक मॉडल में प्राथमिक फ़र्मियन के 12 स्वाद होते हैं, साथ ही उनके संबंधित एंटीपार्टिकल्स, साथ ही प्राथमिक बोसोन होते हैं जो बलों और हिग्स बोसोन की मध्यस्थता करते हैं, जो 4 जुलाई 2012 को रिपोर्ट किया गया था, जैसा कि दो मुख्य द्वारा पाया गया था।लार्ज हैड्रॉन कोलाइडर (एटलस एक्सपेरिमेंट | == मानक मॉडल =={{main|Standard Model}}कण भौतिकी के मानक मॉडल में प्राथमिक फ़र्मियन के 12 स्वाद होते हैं, साथ ही उनके संबंधित एंटीपार्टिकल्स, साथ ही प्राथमिक बोसोन होते हैं जो बलों और हिग्स बोसोन की मध्यस्थता करते हैं, जो 4 जुलाई 2012 को रिपोर्ट किया गया था, जैसा कि दो मुख्य द्वारा पाया गया था।लार्ज हैड्रॉन कोलाइडर (एटलस एक्सपेरिमेंट | एटलस और [[कॉम्पैक्ट म्यूओन सोलनॉइड | सेमी]]) में प्रयोग।<ref name=PFI/>हालांकि, मानक मॉडल को व्यापक रूप से वास्तव में मौलिक के बजाय एक अनंतिम सिद्धांत माना जाता है, क्योंकि यह ज्ञात नहीं है कि क्या यह [[अल्बर्ट आइंस्टीन | आइंस्टीन]] की [[सामान्य सापेक्षता]] के साथ संगत है।मानक मॉडल द्वारा वर्णित काल्पनिक प्राथमिक कण हो सकते हैं, जैसे कि ग्रेविटॉन, कण जो [[गुरुत्वाकर्षण | गुरुत्वाकर्षण बल]], और [[सुपरपार्टनर]] | [[स्पार्टिकल]]्स, [[सुपरसिमेट्री | सुपरसिमेट्रिक]] पार्टनर के साधारण कणों के सुपरसिमेट्रिक भागीदारों को ले जाएगा।<ref>{{Cite journal |last=Holstein |first=Barry R. |date=November 2006 |title=Graviton physics |journal=[[American Journal of Physics]] |volume=74 |issue=11 |pages=1002–1011 |doi=10.1119/1.2338547 |arxiv=gr-qc/0607045 |bibcode=2006AmJPh..74.1002H |s2cid=15972735 }}</ref> | ||
=== मौलिक फ़र्मियन ==={{main|Fermion}}12 & nbsp; मौलिक फर्मों को 3 & nbsp में विभाजित किया गया है; पीढ़ी (कण भौतिकी) | === मौलिक फ़र्मियन ==={{main|Fermion}}12 & nbsp; मौलिक फर्मों को 3 & nbsp में विभाजित किया गया है; पीढ़ी (कण भौतिकी) | पीढ़ियों की 4 & nbsp; प्रत्येक कण।आधे फर्मियन लेप्टन हैं, जिनमें से तीन में & माइनस का एक इलेक्ट्रिक चार्ज है; 1, जिसे इलेक्ट्रॉन कहा जाता है ({{Subatomic particle|electron-}}), म्यून ({{Subatomic particle|muon-}}), और [[संख्या (कण) | वर्ष]] ({{Subatomic particle|tau-}});अन्य तीन लेप्टोन न्यूट्रिनो हैं ({{Subatomic particle|electron neutrino}},{{Subatomic particle|muon neutrino}},{{Subatomic particle|tau neutrino}}), जो केवल इलेक्ट्रिक और न ही रंग चार्ज के साथ केवल प्राथमिक फ़र्मियन हैं।शेष छह कण क्वार्क हैं (नीचे चर्चा की गई)। | ||
==== पीढ़ी ====={| class="wikitable" style="text-align:center;" | ==== पीढ़ी ====={| class="wikitable" style="text-align:center;" | ||
Line 177: | Line 177: | ||
| [[down quark]] || {{Subatomic particle|Down quark}} || [[strange quark]] || {{Subatomic particle|Strange quark}} || [[bottom quark]]|| {{Subatomic particle|Bottom quark}} | | [[down quark]] || {{Subatomic particle|Down quark}} || [[strange quark]] || {{Subatomic particle|Strange quark}} || [[bottom quark]]|| {{Subatomic particle|Bottom quark}} | ||
|}==== द्रव्यमान ===== | |}==== द्रव्यमान ===== | ||
निम्न तालिका सभी फ़र्मों के लिए वर्तमान मापा द्रव्यमान और द्रव्यमान अनुमानों को सूचीबद्ध करती है, माप के समान पैमाने का उपयोग करते हुए: इलेक्ट्रॉनवोल्ट | निम्न तालिका सभी फ़र्मों के लिए वर्तमान मापा द्रव्यमान और द्रव्यमान अनुमानों को सूचीबद्ध करती है, माप के समान पैमाने का उपयोग करते हुए: इलेक्ट्रॉनवोल्ट | लाखों इलेक्ट्रॉन-वोल्ट्स प्रकाश गति के वर्ग के सापेक्ष<sup>2</sup>)।उदाहरण के लिए, सबसे सटीक रूप से ज्ञात क्वार्क द्रव्यमान [[शीर्ष क्वार्क]] का है ({{Subatomic particle|top quark}}) पर{{val|172.7|ul=GeV/c2}}या{{val|172700|ul=MeV/c2}}, ऑन-शेल स्कीम का उपयोग करके अनुमान लगाया गया। | ||
{ | {| class = wikable style = मार्जिन: 0 0 1EM 1EM; | ||
| +प्राथमिक फ़र्मियन जनता के लिए वर्तमान मूल्य | |||
| - | |||
तूकण प्रतीक | तूकण प्रतीक | ||
तूकण नाम | तूकण नाम | ||
तूजन मूल्य | तूजन मूल्य | ||
तूक्वार्क मास आकलन योजना (बिंदु) | तूक्वार्क मास आकलन योजना (बिंदु) | ||
| - | |||
| {{math|{{Subatomic particle|electron neutrino}},{{Subatomic particle|muon neutrino}},{{Subatomic particle|tauon neutrino}}}} | |||
| न्यूट्रिनो <br/> (कोई भी & nbsp; प्रकार) | |||
| {{ts|ar}}| <{{val|2|ul=eV/c2}}<ref>{{cite journal |last1=Tanabashi |first1=M. |last2=Hagiwara |first2=K. |last3=Hikasa |first3=K. |last4=Nakamura |first4=K. |last5=Sumino |first5=Y. |last6=Takahashi |first6=F. |last7=Tanaka |first7=J. |last8=Agashe |first8=K. |last9=Aielli |first9=G. |last10=Amsler |first10=C. |display-authors=6 |collaboration=Particle Data Group |title=Review of Particle Physics |journal=[[Physical Review D]] |volume=98 |issue=3 |date=2018-08-17 |page=030001 |df=dmy-all |doi=10.1103/physrevd.98.030001 |bibcode=2018PhRvD..98c0001T |pmid=10020536 |doi-access=free}}</ref>| | |||
| - | |||
| {{Subatomic particle|electron}}| इलेक्ट्रॉन | |||
| {{ts|ar}}| {{val|0.511|ul=MeV/c2}}| | |||
| - | |||
| {{Subatomic particle|up quark}}| अप क्वार्क | |||
| {{ts|ar}}| {{val|1.9|ul=MeV/c2}}| MSBAR योजना ('' μ ''<sub>{{overline|MS}}</sub>={{val|2|u=GeV}}) | |||
| - | |||
| {{Subatomic particle|down quark}}| डाउन क्वार्क | |||
| {{ts|ar}}| {{val|4.4|ul=MeV/c2}}| MSBAR योजना ('' μ ''<sub>{{overline|MS}}</sub>={{val|2|u=GeV}}) | |||
| - | |||
| {{Subatomic particle|strange quark}}| स्ट्रेंज क्वार्क | |||
| {{ts|ar}}| {{val|87|u=MeV/c2}}| MSBAR योजना ('' μ ''<sub>{{overline|MS}}</sub>={{val|2|u=GeV}}) | |||
| - | |||
| {{Subatomic particle|muon}}]) | |||
| {{ts|ar}}| {{val|105.7|ul=MeV/c2}}| | |||
| - | |||
| {{Subatomic particle|charm quark}}| आकर्षण क्वार्क | |||
| {{ts|ar}}| {{val|1320|ul=MeV/c2}}| MSBAR योजना ('' μ ''<sub>{{overline|MS}}</sub> = ''m''<sub>c</sub>) | |||
| - | |||
| {{Subatomic particle|tau}}| ताउन (ताऊ और एनबीएसपी; लेप्टन) | |||
| {{ts|ar}}| {{val|1780|ul=MeV/c2}}| | |||
| - | |||
| {{Subatomic particle|bottom quark}}| बॉटम क्वार्क | |||
| {{ts|ar}}| {{val|4240|ul=MeV/c2}}| MSBAR योजना ('' μ ''<sub>{{overline|MS}}</sub> = ''m''<sub>b</sub>) | |||
| - | |||
| {{Subatomic particle|top quark}}| शीर्ष क्वार्क | |||
| {{ts|ar}}| {{val|172700|ul=MeV/c2}}| ऑन-शेल योजना | |||
| } | |||
क्वार्क द्रव्यमान के मूल्यों का अनुमान क्वार्क इंटरैक्शन का वर्णन करने के लिए उपयोग किए जाने वाले क्वांटम क्रोमोडायनामिक्स के संस्करण पर निर्भर करता है।क्वार्क हमेशा ग्लून्स के एक लिफाफे में सीमित होते हैं जो मेसन और बैरियंस को बड़े पैमाने पर बड़े पैमाने पर प्रदान करते हैं जहां क्वार्क होते हैं, इसलिए क्वार्क द्रव्यमान के लिए मान सीधे मापा नहीं जा सकता है।चूंकि उनके द्रव्यमान आसपास के ग्लून्स के प्रभावी द्रव्यमान की तुलना में बहुत कम होते हैं, गणना में मामूली अंतर जनता में बड़े अंतर बनाते हैं। | क्वार्क द्रव्यमान के मूल्यों का अनुमान क्वार्क इंटरैक्शन का वर्णन करने के लिए उपयोग किए जाने वाले [[क्वांटम क्रोमोडायनामिक्स]] के संस्करण पर निर्भर करता है।क्वार्क हमेशा ग्लून्स के एक लिफाफे में सीमित होते हैं जो [[मेसन]] और बैरियंस को बड़े पैमाने पर बड़े पैमाने पर प्रदान करते हैं जहां क्वार्क होते हैं, इसलिए क्वार्क द्रव्यमान के लिए मान सीधे मापा नहीं जा सकता है।चूंकि उनके द्रव्यमान आसपास के ग्लून्स के प्रभावी द्रव्यमान की तुलना में बहुत कम होते हैं, गणना में मामूली अंतर जनता में बड़े अंतर बनाते हैं। | ||
==== एंटीपार्टिकल्स ===={{main|Antimatter}}12 & nbsp भी हैं; मौलिक फ़र्मोनिक एंटीपार्टिकल्स जो इन 12 & nbsp; कणों के अनुरूप हैं।उदाहरण के लिए, एंटीलेक्ट्रॉन (पॉज़िट्रॉन) ''{{Subatomic particle|antielectron}}'' इलेक्ट्रॉन का एंटीपार्टिकल है और इसमें +1 का इलेक्ट्रिक चार्ज है।{| class="wikitable" style="text-align:center;" | ==== एंटीपार्टिकल्स ===={{main|Antimatter}}12 & nbsp भी हैं; मौलिक फ़र्मोनिक एंटीपार्टिकल्स जो इन 12 & nbsp; कणों के अनुरूप हैं।उदाहरण के लिए, एंटीलेक्ट्रॉन (पॉज़िट्रॉन) ''{{Subatomic particle|antielectron}}'' इलेक्ट्रॉन का एंटीपार्टिकल है और इसमें +1 का इलेक्ट्रिक चार्ज है।{| class="wikitable" style="text-align:center;" | ||
Line 276: | Line 276: | ||
==== द्रव्यमान ===== | ==== द्रव्यमान ===== | ||
निम्न तालिका सभी फ़र्मों के लिए वर्तमान मापा द्रव्यमान और द्रव्यमान अनुमानों को सूचीबद्ध करती है, माप के समान पैमाने का उपयोग करते हुए: इलेक्ट्रॉनवोल्ट | निम्न तालिका सभी फ़र्मों के लिए वर्तमान मापा द्रव्यमान और द्रव्यमान अनुमानों को सूचीबद्ध करती है, माप के समान पैमाने का उपयोग करते हुए: इलेक्ट्रॉनवोल्ट | लाखों इलेक्ट्रॉन-वोल्ट्स प्रकाश गति के वर्ग के सापेक्ष<sup>2</sup>)।उदाहरण के लिए, सबसे सटीक रूप से ज्ञात क्वार्क द्रव्यमान शीर्ष क्वार्क का है ({{Subatomic particle|top quark}}) पर{{val|172.7|ul=GeV/c2}}या{{val|172700|ul=MeV/c2}}, ऑन-शेल स्कीम का उपयोग करके अनुमान लगाया गया।{| class="wikitable" style="margin:0 0 1em 1em;" | ||
|+Current values for elementary fermion masses | |+Current values for elementary fermion masses | ||
|- | |- | ||
Line 361: | Line 361: | ||
|} | |} | ||
==== क्वार्क्स ===={{main|Quark}}अलग -थलग क्वार्क और एंटिक्क्स का कभी पता नहीं लगाया गया है, एक तथ्य जो कि रंग कारावास | ==== क्वार्क्स ===={{main|Quark}}अलग -थलग क्वार्क और एंटिक्क्स का कभी पता नहीं लगाया गया है, एक तथ्य जो कि [[रंग कारावास | कारावास]] द्वारा समझाया गया है। प्रत्येक क्वार्क [[मजबूत बातचीत]] के तीन रंग आरोपों में से एक को वहन करता है; एंटिक्क्स इसी तरह एंटीकोलर ले जाते हैं। रंग-चार्ज कण ग्लूओन एक्सचेंज के माध्यम से उसी तरह से बातचीत करते हैं, जो चार्ज किए गए कण फोटॉन एक्सचेंज के माध्यम से बातचीत करते हैं। हालांकि, ग्लून्स स्वयं रंग-चार्ज होते हैं, जिसके परिणामस्वरूप रंग-चार्ज कणों को अलग-अलग बल के रूप में अलग किया जाता है। इलेक्ट्रोमैग्नेटिज्म | [[विद्युत चुम्बकीय बल]] के विपरीत, जो चार्ज किए गए कणों के रूप में कम हो जाता है, रंग-चार्ज कणों को बढ़ते बल महसूस होता है। | ||
हालांकि, रंग-चार्ज किए गए कण रंग तटस्थ मिश्रित कणों को बनाने के लिए गठबंधन कर सकते हैं जिसे हैड्रॉन कहा जाता है। एक क्वार्क एक एंटिकार्क के साथ जोड़ी हो सकता है: क्वार्क में एक रंग होता है और एंटिकार्क में संबंधित एंटीकोलर होता है। रंग और एंटीकोलर रद्द कर देता है, जिससे एक रंग तटस्थ मेसन बन जाता है। वैकल्पिक रूप से, तीन क्वार्क एक साथ मौजूद हो सकते हैं, एक क्वार्क लाल, एक और नीला, एक और हरा हो सकता है। ये तीन रंग के क्वार्क एक साथ एक रंग-तटस्थ बैरियन बनाते हैं। सममित रूप से, रंगों के साथ तीन प्राचीन वस्तुएं, एंटीब्लू और एंटीग्रीन एक रंग-तटस्थ एंटीबेरियन बना सकते हैं। | हालांकि, रंग-चार्ज किए गए कण रंग तटस्थ मिश्रित कणों को बनाने के लिए गठबंधन कर सकते हैं जिसे हैड्रॉन कहा जाता है। एक क्वार्क एक एंटिकार्क के साथ जोड़ी हो सकता है: क्वार्क में एक रंग होता है और एंटिकार्क में संबंधित एंटीकोलर होता है। रंग और एंटीकोलर रद्द कर देता है, जिससे एक रंग तटस्थ मेसन बन जाता है। वैकल्पिक रूप से, तीन क्वार्क एक साथ मौजूद हो सकते हैं, एक क्वार्क लाल, एक और नीला, एक और हरा हो सकता है। ये तीन रंग के क्वार्क एक साथ एक रंग-तटस्थ बैरियन बनाते हैं। सममित रूप से, रंगों के साथ तीन प्राचीन वस्तुएं, एंटीब्लू और एंटीग्रीन एक रंग-तटस्थ एंटीबेरियन बना सकते हैं। | ||
Line 367: | Line 367: | ||
क्वार्क्स भी भिन्नात्मक इलेक्ट्रिक चार्ज ले जाते हैं, लेकिन, चूंकि वे हैड्रोन के भीतर ही सीमित हैं, जिनके आरोप सभी अभिन्न हैं, आंशिक शुल्क कभी भी अलग नहीं हुए हैं। ध्यान दें कि क्वार्क्स में या तो + के इलेक्ट्रिक शुल्क हैं{{2/3}}या -{{1/3}}, जबकि एंटिक्क्स में या तो इलेक्ट्रिक चार्ज होते हैं -{{2/3}}या +{{1/3}} | क्वार्क्स भी भिन्नात्मक इलेक्ट्रिक चार्ज ले जाते हैं, लेकिन, चूंकि वे हैड्रोन के भीतर ही सीमित हैं, जिनके आरोप सभी अभिन्न हैं, आंशिक शुल्क कभी भी अलग नहीं हुए हैं। ध्यान दें कि क्वार्क्स में या तो + के इलेक्ट्रिक शुल्क हैं{{2/3}}या -{{1/3}}, जबकि एंटिक्क्स में या तो इलेक्ट्रिक चार्ज होते हैं -{{2/3}}या +{{1/3}} | ||
=== मौलिक बोसॉन ==={{main|Boson}}मानक मॉडल में, वेक्टर (स्पिन (भौतिकी) | === मौलिक बोसॉन ==={{main|Boson}}मानक मॉडल में, वेक्टर (स्पिन (भौतिकी) | स्पिन -1) बोसॉन (ग्लून्स, फोटॉन, और डब्ल्यू और जेड बोसोन) मध्यस्थ बलों, जबकि हिग्स बोसोन (स्पिन -0) कणों के आंतरिक द्रव्यमान के लिए जिम्मेदार है।बोसॉन इस तथ्य में फर्मियन से भिन्न होते हैं कि कई बोसोन एक ही क्वांटम राज्य (पाउली बहिष्करण सिद्धांत) पर कब्जा कर सकते हैं।इसके अलावा, बोसोन या तो प्राथमिक हो सकते हैं, जैसे फोटॉन, या एक संयोजन, जैसे मेसन।बोसों की स्पिन आधे पूर्णांक के बजाय पूर्णांक हैं। | ||
==== ग्लून्स ====={{main|Gluon}}ग्लून्स मजबूत बातचीत को मध्यस्थ करते हैं, जो क्वार्क्स में शामिल होते हैं और इस तरह हैड्रॉन बनते हैं, जो या तो बैरियंस (तीन क्वार्क) या मेसन (एक क्वार्क और एक एंटिकार्क) हैं।प्रोटॉन और न्यूट्रॉन बैरियंस हैं, जो परमाणु नाभिक बनाने के लिए ग्लून्स द्वारा शामिल हो गए हैं।क्वार्क्स की तरह, ग्लून्स रंग चार्ज | ==== ग्लून्स ====={{main|Gluon}}ग्लून्स मजबूत बातचीत को मध्यस्थ करते हैं, जो क्वार्क्स में शामिल होते हैं और इस तरह हैड्रॉन बनते हैं, जो या तो बैरियंस (तीन क्वार्क) या मेसन (एक क्वार्क और एक एंटिकार्क) हैं।प्रोटॉन और न्यूट्रॉन बैरियंस हैं, जो परमाणु नाभिक बनाने के लिए ग्लून्स द्वारा शामिल हो गए हैं।क्वार्क्स की तरह, ग्लून्स [[रंग चार्ज | रंग]] और एंटीकोलर का प्रदर्शन करते हैं - दृश्य रंग की अवधारणा से असंबंधित और बल्कि कणों की मजबूत बातचीत - कभी -कभी संयोजनों में, कुल मिलाकर ग्लून्स के आठ विविधताएं। | ||
==== इलेक्ट्रोकेक बोसॉन ===={{main|W and Z bosons|Photon}}तीन कमजोर गेज बोसोन हैं: डब्ल्यू<sup>+</sup>, W<sup>−</sup>, and Z<sup>0</sup>; these mediate the [[weak interaction]]. The W bosons are known for their mediation in nuclear decay: The W<sup>−</sup>एक न्यूट्रॉन को एक प्रोटॉन में परिवर्तित करता है और फिर एक इलेक्ट्रॉन और इलेक्ट्रॉन-एंटीनेट्रिनो जोड़ी में फैलता है। | ==== इलेक्ट्रोकेक बोसॉन ===={{main|W and Z bosons|Photon}}तीन [[कमजोर गेज बोसोन]] हैं: डब्ल्यू<sup>+</sup>, W<sup>−</sup>, and Z<sup>0</sup>; these mediate the [[weak interaction]]. The W bosons are known for their mediation in nuclear decay: The W<sup>−</sup>एक न्यूट्रॉन को एक प्रोटॉन में परिवर्तित करता है और फिर एक इलेक्ट्रॉन और इलेक्ट्रॉन-एंटीनेट्रिनो जोड़ी में फैलता है। | ||
जेड<sup>0</sup>कण स्वाद या | जेड<sup>0</sup>कण स्वाद या [[आवेश]]ों को परिवर्तित नहीं करता है, बल्कि गति बदल देता है;यह न्युट्रिनो को बिखरने के लिए एकमात्र तंत्र है।न्यूट्रिनो-जेड एक्सचेंज से इलेक्ट्रॉनों में गति परिवर्तन के कारण कमजोर गेज बोसोन की खोज की गई थी।मास रहित फोटॉन इलेक्ट्रोमैग्नेटिज्म | इलेक्ट्रोमैग्नेटिक इंटरैक्शन की मध्यस्थता करता है।ये चार गेज बोसोन प्राथमिक कणों के बीच इलेक्ट्रोकेक इंटरैक्शन बनाते हैं। | ||
==== हिग्स बोसोन ===={{main|Higgs boson}}यद्यपि कमजोर और विद्युत चुम्बकीय बल हमारे लिए रोजमर्रा की ऊर्जाओं में काफी भिन्न दिखाई देते हैं, दोनों बलों को उच्च ऊर्जा पर एक एकल इलेक्ट्रोकेक बल के रूप में एकजुट करने के लिए सिद्धांत दिया जाता है। इस भविष्यवाणी को स्पष्ट रूप से पुष्टि की गई थी कि डेस में हैड्रोन एलेक्ट्रॉन रिंग एलेज | ==== हिग्स बोसोन ===={{main|Higgs boson}}यद्यपि कमजोर और विद्युत चुम्बकीय बल हमारे लिए रोजमर्रा की ऊर्जाओं में काफी भिन्न दिखाई देते हैं, दोनों बलों को उच्च ऊर्जा पर एक एकल [[इलेक्ट्रोकेक बल]] के रूप में एकजुट करने के लिए सिद्धांत दिया जाता है। इस भविष्यवाणी को स्पष्ट रूप से पुष्टि की गई थी कि डेस में हैड्रोन एलेक्ट्रॉन रिंग एलेज | हेरा कोलाइडर में उच्च-ऊर्जा इलेक्ट्रॉन-प्रोटॉन बिखरने के लिए क्रॉस-सेक्शन के माप से। कम ऊर्जाओं में अंतर डब्ल्यू और जेड बोसोन के उच्च द्रव्यमान का परिणाम है, जो बदले में [[हिग्स तंत्र]] का परिणाम है। सहज समरूपता तोड़ने की प्रक्रिया के माध्यम से, हिग्स इलेक्ट्रोकेक स्पेस में एक विशेष दिशा का चयन करता है, जिससे तीन इलेक्ट्रोकेक कण बहुत भारी हो जाते हैं (कमजोर बोसॉन) और एक अपरिभाषित आराम द्रव्यमान के साथ बने रहने के लिए क्योंकि यह हमेशा गति में होता है (फोटॉन) । 4 जुलाई 2012 को, कई वर्षों के प्रयोगात्मक रूप से अपने अस्तित्व के सबूतों की खोज करने के बाद, हिग्स बोसोन को [[सर्न]] के बड़े हैड्रॉन कोलाइडर में मनाया जाने की घोषणा की गई थी। [[पीटर हिग्स]] जिन्होंने पहली बार हिग्स बोसोन के अस्तित्व को प्रस्तुत किया था, घोषणा में मौजूद थे।<ref> | ||
{{cite news | {{cite news | ||
|first=Lizzy |last=Davies | |first=Lizzy |last=Davies | ||
Line 390: | Line 390: | ||
|publisher=[[Compact Muon Solenoid|CMS]] | |publisher=[[Compact Muon Solenoid|CMS]] | ||
|access-date=2012-07-06 |df=dmy-all | |access-date=2012-07-06 |df=dmy-all | ||
}}</ref>एक खोज (अवलोकन) | }}</ref>एक खोज (अवलोकन) | खोज के रूप में एल अवलोकन।नए खोजे गए कण के गुणों में अनुसंधान जारी है। | ||
==== ग्रेविटॉन ====={{main|Graviton}}ग्रेविटॉन एक काल्पनिक प्राथमिक स्पिन -2 कण है जो गुरुत्वाकर्षण को मध्यस्थता करने के लिए प्रस्तावित है।जबकि यह ग्रेविटॉन#प्रायोगिक अवलोकन | ==== ग्रेविटॉन ====={{main|Graviton}}ग्रेविटॉन एक काल्पनिक प्राथमिक स्पिन -2 कण है जो गुरुत्वाकर्षण को मध्यस्थता करने के लिए प्रस्तावित है।जबकि यह ग्रेविटॉन#प्रायोगिक अवलोकन | के कारण अनदेखा रहता है, इसकी पहचान में निहित कठिनाई, यह कभी -कभी प्राथमिक कणों की तालिकाओं में शामिल होता है।<ref name=PFI/>पारंपरिक गुरुत्वाकर्षण द्रव्यमानहीन है, हालांकि कुछ मॉडल जिसमें बड़े पैमाने पर कालुजा -क्लेन सिद्धांत | कालुजा -क्लेन ग्रेविटन मौजूद हैं।<ref>{{cite journal |arxiv=0910.1535 |bibcode=2010PhLB..682..446C |title=Massless versus Kaluza-Klein gravitons at the LHC |journal=Physics Letters B |volume=682 |issue=4–5 |pages=446–449 |last1=Calmet |first1=Xavier |last2=de Aquino |first2=Priscila |last3=Rizzo |first3=Thomas G. |year=2010 |doi=10.1016/j.physletb.2009.11.045 |hdl=2078/31706|s2cid=16310404 }}</ref> | ||
==== ग्लून्स ====={{main|Gluon}} | ==== ग्लून्स ====={{main|Gluon}} | ||
Line 399: | Line 399: | ||
जेड<sup>0</sup> | जेड<sup>0</sup> | ||
==== हिग्स बोसोन ===={{main|Higgs boson}}यद्यपि कमजोर और विद्युत चुम्बकीय बल हमारे लिए रोजमर्रा की ऊर्जाओं में काफी भिन्न दिखाई देते हैं, दोनों बलों को उच्च ऊर्जा पर एक एकल इलेक्ट्रोकेक बल के रूप में एकजुट करने के लिए सिद्धांत दिया जाता है। इस भविष्यवाणी को स्पष्ट रूप से पुष्टि की गई थी कि डेस में हैड्रोन एलेक्ट्रॉन रिंग एलेज | ==== हिग्स बोसोन ===={{main|Higgs boson}}यद्यपि कमजोर और विद्युत चुम्बकीय बल हमारे लिए रोजमर्रा की ऊर्जाओं में काफी भिन्न दिखाई देते हैं, दोनों बलों को उच्च ऊर्जा पर एक एकल इलेक्ट्रोकेक बल के रूप में एकजुट करने के लिए सिद्धांत दिया जाता है। इस भविष्यवाणी को स्पष्ट रूप से पुष्टि की गई थी कि डेस में हैड्रोन एलेक्ट्रॉन रिंग एलेज | हेरा कोलाइडर में उच्च-ऊर्जा इलेक्ट्रॉन-प्रोटॉन बिखरने के लिए क्रॉस-सेक्शन के माप से। कम ऊर्जाओं में अंतर डब्ल्यू और जेड बोसोन के उच्च द्रव्यमान का परिणाम है, जो बदले में हिग्स तंत्र का परिणाम है। सहज समरूपता तोड़ने की प्रक्रिया के माध्यम से, हिग्स इलेक्ट्रोकेक स्पेस में एक विशेष दिशा का चयन करता है, जिससे तीन इलेक्ट्रोकेक कण बहुत भारी हो जाते हैं (कमजोर बोसॉन) और एक अपरिभाषित आराम द्रव्यमान के साथ बने रहने के लिए क्योंकि यह हमेशा गति में होता है (फोटॉन) । 4 जुलाई 2012 को, कई वर्षों के प्रयोगात्मक रूप से अपने अस्तित्व के सबूतों की खोज करने के बाद, हिग्स बोसोन को सर्न के बड़े हैड्रॉन कोलाइडर में मनाया जाने की घोषणा की गई थी। पीटर हिग्स जिन्होंने पहली बार हिग्स बोसोन के अस्तित्व को प्रस्तुत किया था, घोषणा में मौजूद थे।<ref> | ||
{{cite news | {{cite news | ||
|first=Lizzy |last=Davies | |first=Lizzy |last=Davies | ||
Line 417: | Line 417: | ||
}}</ref> | }}</ref> | ||
==== ग्रेविटॉन ====={{main|Graviton}}ग्रेविटॉन एक काल्पनिक प्राथमिक स्पिन -2 कण है जो गुरुत्वाकर्षण को मध्यस्थता करने के लिए प्रस्तावित है।जबकि यह ग्रेविटॉन#प्रायोगिक अवलोकन | ==== ग्रेविटॉन ====={{main|Graviton}}ग्रेविटॉन एक काल्पनिक प्राथमिक स्पिन -2 कण है जो गुरुत्वाकर्षण को मध्यस्थता करने के लिए प्रस्तावित है।जबकि यह ग्रेविटॉन#प्रायोगिक अवलोकन | के कारण अनदेखा रहता है, इसकी पहचान में निहित कठिनाई, यह कभी -कभी प्राथमिक कणों की तालिकाओं में शामिल होता है।<ref name=PFI/>पारंपरिक गुरुत्वाकर्षण द्रव्यमानहीन है, हालांकि कुछ मॉडल जिसमें बड़े पैमाने पर कालुजा -क्लेन सिद्धांत | कालुजा -क्लेन ग्रेविटन मौजूद हैं।<ref>{{cite journal |arxiv=0910.1535 |bibcode=2010PhLB..682..446C |title=Massless versus Kaluza-Klein gravitons at the LHC |journal=Physics Letters B |volume=682 |issue=4–5 |pages=446–449 |last1=Calmet |first1=Xavier |last2=de Aquino |first2=Priscila |last3=Rizzo |first3=Thomas G. |year=2010 |doi=10.1016/j.physletb.2009.11.045 |hdl=2078/31706|s2cid=16310404 }}</ref> | ||
Line 423: | Line 423: | ||
=== ग्रैंड यूनिफिकेशन ==={{main|Grand Unified Theory}} | === ग्रैंड यूनिफिकेशन ==={{main|Grand Unified Theory}} | ||
=== सुपरसिमेट्री ==={{main|Supersymmetry}}सुपरसिमेट्री लैग्रैन्जियन (फील्ड थ्योरी) | === सुपरसिमेट्री ==={{main|Supersymmetry}}सुपरसिमेट्री [[लैग्रैन्जियन (फील्ड थ्योरी) | लैग्रैन्जियन]] में समरूपता के एक और वर्ग को जोड़कर मानक मॉडल का विस्तार करती है।ये समरूपता बोसोनिक वाले के साथ फ़र्मोनिक कणों का आदान -प्रदान करते हैं।इस तरह की समरूपता सुपरसिमेट्रिक कणों के अस्तित्व की भविष्यवाणी करती है, '' स्पार्टिकल्स '' के रूप में संक्षिप्त किया गया है, जिसमें [[स्लीपटन]], [[स्क्वार्क]]्स, [[न्यूट्रलिनो]] और चारगिनोस शामिल हैं।मानक मॉडल में प्रत्येक कण में एक सुपरपार्टनर होगा जिसका स्पिन (भौतिकी) | स्पिन अलग होता है{{1/2}} | ||
=== स्ट्रिंग थ्योरी ==={{main|String theory}}स्ट्रिंग थ्योरी भौतिकी का एक मॉडल है, जिससे सभी कण जो पदार्थ बनाते हैं, वे स्ट्रिंग्स (प्लैंक लंबाई पर मापने) से बने होते हैं जो 11-आयामी (एम-थ्योरी के अनुसार, प्रमुख संस्करण) या 12-आयामी (के अनुसार) में मौजूद हैं (के अनुसार)एफ-थ्योरी<ref>{{cite journal |doi=10.1016/0550-3213(96)00172-1 |arxiv=hep-th/9602022 |bibcode=1996NuPhB.469..403V |title=Evidence for F-theory |year=1996 |last1=Vafa |first1=Cumrun |journal=Nuclear Physics B |volume=469 |issue=3 |pages=403–415|s2cid=6511691 }}</ref> | === स्ट्रिंग थ्योरी ==={{main|String theory}}स्ट्रिंग थ्योरी भौतिकी का एक मॉडल है, जिससे सभी कण जो पदार्थ बनाते हैं, वे स्ट्रिंग्स (प्लैंक लंबाई पर मापने) से बने होते हैं जो 11-आयामी (एम-थ्योरी के अनुसार, प्रमुख संस्करण) या 12-आयामी (के अनुसार) में मौजूद हैं (के अनुसार)एफ-थ्योरी<ref>{{cite journal |doi=10.1016/0550-3213(96)00172-1 |arxiv=hep-th/9602022 |bibcode=1996NuPhB.469..403V |title=Evidence for F-theory |year=1996 |last1=Vafa |first1=Cumrun |journal=Nuclear Physics B |volume=469 |issue=3 |pages=403–415|s2cid=6511691 }}</ref> | ||
Line 432: | Line 432: | ||
=== एक्सेलेरन थ्योरी === | === एक्सेलेरन थ्योरी === | ||
एक्सेलेरॉन काल्पनिक उप -परमाणु कण हैं जो न्यूट्रिनो के न्यूफ़ाउंड द्रव्यमान को एकीकृत रूप से जोड़ते हैं, जो कि ब्रह्मांड के अंतरिक्ष | [[एक्सेलेरॉन]] काल्पनिक उप -परमाणु कण हैं जो न्यूट्रिनो के न्यूफ़ाउंड द्रव्यमान को एकीकृत रूप से जोड़ते हैं, जो कि ब्रह्मांड के अंतरिक्ष | विस्तार के मीट्रिक विस्तार को तेज करने के लिए अनुमानित अंधेरे ऊर्जा के लिए है।<ref name=acceleron/>इस सिद्धांत में, न्यूट्रिनो एक नए बल से प्रभावित होते हैं, जिसके परिणामस्वरूप एक्सेलेरॉन के साथ उनकी बातचीत होती है, जिससे डार्क एनर्जी होती है।डार्क एनर्जी परिणाम के रूप में ब्रह्मांड न्यूट्रिनो को अलग करने की कोशिश करता है।<ref name=acceleron> | ||
{{cite web | {{cite web | ||
|date=28 Jul 2004 | |date=28 Jul 2004 | ||
Line 467: | Line 467: | ||
=== सामान्य पाठक ==== | === सामान्य पाठक ==== | ||
*रिचर्ड फेनमैन | *रिचर्ड फेनमैन | फेनमैन, आर.पी. और स्टीवन वेनबर्ग | वेनबर्ग, एस। (1987) '' एलिमेंट्री कण और भौतिकी के नियम: 1986 डीरेक मेमोरियल लेक्चर ''।कैम्ब्रिज यूनिव।प्रेस। | ||
*फोर्ड, केनेथ डब्ल्यू। (2005) '' द क्वांटम वर्ल्ड ''।हार्वर्ड यूनीव।प्रेस। | *फोर्ड, केनेथ डब्ल्यू। (2005) '' द क्वांटम वर्ल्ड ''।हार्वर्ड यूनीव।प्रेस। | ||
*{{cite book |first=Brian |last=Greene |title=The Elegant Universe |publisher=W.W.Norton & Company |year=1999 |isbn=978-0-393-05858-1 |title-link=The Elegant Universe |author-link=Brian Greene}}*जॉन ग्रिबिन (2000) '' क्यू क्वांटम के लिए है - कण भौतिकी का एक विश्वकोश ''।साइमन एंड शूस्टर।{{ISBN|0-684-85578-X}}। | *{{cite book |first=Brian |last=Greene |title=The Elegant Universe |publisher=W.W.Norton & Company |year=1999 |isbn=978-0-393-05858-1 |title-link=The Elegant Universe |author-link=Brian Greene}}*जॉन ग्रिबिन (2000) '' क्यू क्वांटम के लिए है - कण भौतिकी का एक विश्वकोश ''।साइमन एंड शूस्टर।{{ISBN|0-684-85578-X}}। |
Revision as of 12:27, 17 June 2022
कण भौतिकी का मानक मॉडल |
---|
कण भौतिकी में, एक प्राथमिक कण या मौलिक कण एक <!-wiktionary: कण | -> उप-परमाणु कण जो अन्य कणों से बना नहीं है।[1]वर्तमान में माना जाता है कि कणों में मौलिक फ़र्मियन (क्वार्क्स, लेप्टन, एंटिक्क्स और एंटीलेप्टन) शामिल हैं, जो आम तौर पर कण कण और एंटीमैटर कण हैं, साथ ही मौलिक बोसॉन (गेज बोसोन और हिग्स बोसोन) हैं, जो आम तौर पर बल वाहक होते हैं।| बल कण जो कि फंडामेंटल इंटरैक्शन | इंटरैक्शन को मध्यस्थता करते हैं।[1]एक कण जिसमें दो या अधिक प्राथमिक कण होते हैं, एक समग्र कण होता है।
साधारण मामला परमाणुओं से बना होता है, एक बार प्राथमिक कण होने के लिए माना जाता है - एटमोस का अर्थ है ग्रीक में कटौती करने में असमर्थ - हालांकि परमाणु का अस्तित्व लगभग 1905 तक विवादास्पद रहा, क्योंकि कुछ प्रमुख भौतिकविदों ने अणुओं को गणितीय भ्रम, और मामले के रूप में माना।अंततः ऊर्जा से बना।[1][2]परमाणु के उप -परमाणु घटकों को पहली बार 1930 के दशक की शुरुआत में पहचाना गया था;इलेक्ट्रॉन और प्रोटॉन, फोटॉन के साथ, विद्युत चुम्बकीय विकिरण के कण।[1]उस समय, क्वांटम यांत्रिकी का हालिया आगमन कणों की अवधारणा को मौलिक रूप से बदल रहा था, क्योंकि एक एकल कण एक क्षेत्र तरंग -कण द्वंद्व | के रूप में एक लहर के रूप में प्रतीत हो सकता है, एक लहर, एक विरोधाभास अभी भी संतोषजनक स्पष्टीकरण को समाप्त कर रहा है।[3][4]वाया क्वांटम थ्योरी, प्रोटॉन और न्यूट्रॉन में क्वार्क - अप क्वार्क और डाउन क्वार्क्स शामिल थे - जिसे अब प्राथमिक कण माना जाता है।[1]और एक अणु के भीतर, इलेक्ट्रॉन की तीन डिग्री स्वतंत्रता (भौतिकी और रसायन विज्ञान) | डिग्री की स्वतंत्रता (चार्ज (भौतिकी) | चार्ज, स्पिन, परमाणु ऑर्बिटल | ऑर्बिटल) तीन क्वासिपार्टिकल्स में तरंग के माध्यम से अलग हो सकती है(भौतिकी) | होलोन, स्पिनन और ऑर्बिटन)।[5]फिर भी एक मुक्त इलेक्ट्रॉन - जो एक [[परमाणु नाभिक]] की परिक्रमा करने के लिए नहीं है और इसलिए कक्षीय गति का अभाव है - यह अयोग्य प्रतीत होता है और एक प्राथमिक कण के रूप में माना जाता है।Cite error: The opening <ref>
tag is malformed or has a bad name
1980 के आसपास, एक प्राथमिक कण की स्थिति वास्तव में प्राथमिक के रूप में - पदार्थ का एक अंतिम घटक - ज्यादातर अधिक व्यावहारिक दृष्टिकोण के लिए छोड़ दिया गया था,[1]कण भौतिकी के मानक मॉडल में सन्निहित, जिसे विज्ञान के सबसे प्रयोगात्मक रूप से सफल सिद्धांत के रूप में जाना जाता है।[4][6]मानक मॉडल से परे मानक मॉडल | से परे और सिद्धांतों पर कई विस्तार, लोकप्रिय सुपरसिमेट्री सहित, प्राथमिक कणों की संख्या को दोगुना करके परिकल्पना करके कि प्रत्येक ज्ञात कण एक छाया साथी के साथ अधिक बड़े पैमाने पर जुड़ता है,[7][8]हालांकि ऐसे सभी सुपरपार्टर्स अनदेखा रहते हैं।[6][9]इस बीच, एक प्राथमिक बोसोन मध्यस्थता गुरुत्वाकर्षण - ग्रेविटन - काल्पनिक रहता है।[1]इसके अलावा, कुछ परिकल्पनाओं के अनुसार, स्पेसटाइम को मात्राबद्ध किया जाता है, इसलिए इन परिकल्पनाओं के भीतर संभवतः अंतरिक्ष और समय के परमाणु मौजूद हैं।[10]
== अवलोकन ==
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Cite error: Invalid
<ref>
tag; no text was provided for refs namedPFI
- ↑ Newburgh, Ronald; Peidle, Joseph; Rueckner, Wolfgang (2006). "Einstein, Perrin, and the reality of atoms: 1905 revisited" (PDF). American Journal of Physics. 74 (6): 478–481. Bibcode:2006AmJPh..74..478N. doi:10.1119/1.2188962. Archived from the original (PDF) on 3 August 2017. Retrieved 17 August 2013.
- ↑ Weinert, Friedel (2004). The Scientist as Philosopher: Philosophical consequences of great scientific discoveries. Springer. pp. 43, 57–59. Bibcode:2004sapp.book.....W. ISBN 978-3-540-20580-7.
- ↑ 4.0 4.1 Kuhlmann, Meinard (24 July 2013). "Physicists debate whether the world is made of particles or fields – or something else entirely". Scientific American.
- ↑ Merali, Zeeya (18 Apr 2012). "Not-quite-so elementary, my dear electron: Fundamental particle 'splits' into quasiparticles, including the new 'orbiton'". Nature. doi:10.1038/nature.2012.10471.
- ↑ 6.0 6.1 O'Neill, Ian (24 July 2013). "LHC discovery maims supersymmetry, again". Discovery News. Archived from the original on 13 March 2016. Retrieved 28 August 2013.
- ↑ "Unsolved mysteries: Supersymmetry". The Particle Adventure. Berkeley Lab. Retrieved 28 August 2013.
- ↑ Revealing the Hidden Nature of Space and Time: Charting the Course for Elementary Particle Physics. National Academies Press. 2006. p. 68. Bibcode:2006rhns.book....... ISBN 978-0-309-66039-6.
- ↑ "CERN latest data shows no sign of supersymmetry – yet". Phys.Org. 25 July 2013. Retrieved 28 August 2013.
- ↑ Smolin, Lee (Feb 2006). "Atoms of Space and Time". Scientific American. Vol. 16. pp. 82–92. doi:10.1038/scientificamerican0206-82sp.