लेजर बीम वेल्डिंग: Difference between revisions

From Vigyanwiki
No edit summary
Line 127: Line 127:
{{Lasers}}
{{Lasers}}
{{Authority control}}
{{Authority control}}
[[Category: लेजर मशीनिंग | वेल्डिंग]] [[Category: लेजर अनुप्रयोग | वेल्डिंग]] [[Category: वेल्डिंग]] [[Category: वीडियो क्लिप वाले लेख]]


 
[[Category:CS1 British English-language sources (en-gb)]]
 
[[Category:CS1 English-language sources (en)]]
[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 23/03/2023]]
[[Category:Created On 23/03/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:लेजर अनुप्रयोग| वेल्डिंग]]
[[Category:लेजर मशीनिंग| वेल्डिंग]]
[[Category:वीडियो क्लिप वाले लेख]]
[[Category:वेल्डिंग]]

Revision as of 11:40, 24 April 2023

एक रोबोट रिमोट फाइबर लेजर वेल्डिंग करता है।

लेज़र बीम वेल्डिंग (एलबीडब्ल्यू) एक वेल्डिंग तकनीक है जिसका उपयोग लेजर के उपयोग के माध्यम से धातु या थर्मोप्लास्टिक्स के टुकड़ों को जोड़ने के लिए किया जाता है। बीम एक केंद्रित ताप स्रोत प्रदान करता है, जो संकीर्ण, गहरे वेल्ड और उच्च वेल्डिंग दरों की अनुमति देता है। स्वचालित और वैमानिकी उद्योगों की तरह स्वचालन का उपयोग करने वाले अनुप्रयोगों में प्रक्रिया का उपयोग प्रायः उच्च मात्रा और सटीक अनुप्रयोगों में किया जाता है। यह कीहोल या पेनिट्रेशन (अंतर्वेधन) प्रकार वेल्डिंग पर आधारित है।

संचालन

इलेक्ट्रॉन-बीम वेल्डिंग (ईबीडब्ल्यू) की तरह, लेजर बीम वेल्डिंग में उच्च शक्ति घनत्व (1 मेगावाट/सेमी2 के क्रम पर) होता है, जिसके परिणामस्वरूप छोटे ताप प्रभावित क्षेत्र और उच्च ताप और शीतलन दर होती है। लेजर का स्थान आकार 0.2 मिमी और 13 मिमी के बीच भिन्न हो सकता है, हालांकि केवल छोटे आकार वेल्डिंग के लिए उपयोग किए जाते हैं। पेनिट्रेशन की गहराई आपूर्ति की गई शक्ति की मात्रा के समानुपाती होती है, लेकिन यह फोकल बिंदु के स्थान पर भी निर्भर करती है: प्रवेश अधिकतम होता है जब केंद्र बिंदु वर्कपीस की सतह से थोड़ा नीचे होता है।

आवेदन के आधार पर एक सतत या स्पंदित लेजर बीम का उपयोग किया जा सकता है। मिलीसेकंड-लंबी दालों का उपयोग रेजर ब्लेड जैसी पतली सामग्री को वेल्ड करने के लिए किया जाता है, जबकि गहरे वेल्ड के लिए निरंतर लेजर प्रणाली कार्यरत हैं।

एलबीडब्ल्यू एक बहुमुखी प्रक्रिया है, जो कार्बन स्टील्स, एचएसएलए स्टील्स, स्टेनलेस स्टील, एल्यूमीनियम और टाइटेनियम को वेल्डिंग करने में सक्षम है। उच्च शीतलन दर के कारण, उच्च-कार्बन स्टील्स की वेल्डिंग करते समय दरार पड़ना एक चिंता का विषय है। वेल्ड की गुणवत्ता उच्च है, जो इलेक्ट्रॉन बीम वेल्डिंग के समान है। वेल्डिंग की गति आपूर्ति की गई शक्ति की मात्रा के समानुपाती होती है, लेकिन यह वर्कपीस के प्रकार और मोटाई पर भी निर्भर करती है। गैस लेज़रों की उच्च शक्ति क्षमता उन्हें विशेष रूप से उच्च-मात्रा अनुप्रयोगों के लिए उपयुक्त बनाती है। मोटर वाहन उद्योग में एलबीडब्ल्यू विशेष रूप से प्रभावी है।

ईबीडब्ल्यू की तुलना में एलबीडब्ल्यू के कुछ फायदे हैं:

  • लेजर बीम को वैक्यूम की आवश्यकता के बजाय हवा के माध्यम से प्रेषित किया जा सकता है
  • रोबोट वेल्डिंग के साथ प्रक्रिया आसानी से स्वचालित है
  • एक्स-रे उत्पन्न नहीं होते हैं
  • एलबीडब्ल्यू के परिणामस्वरूप उच्च गुणवत्ता वाले वेल्ड होते हैं

एलबीडब्ल्यू, लेजर-हाइब्रिड वेल्डिंग का एक व्युत्पन्न, एलबीडब्ल्यू के लेजर को एक चाप वेल्डिंग विधि जैसे कि गैस मेटल आर्क वेल्डिंग के साथ जोड़ती है। यह संयोजन अधिक स्थिति लचीलेपन की अनुमति देता है, क्योंकि जीएमएडब्ल्यू जोड़ को भरने के लिए पिघली हुई धातु की आपूर्ति करता है, और लेजर के उपयोग के कारण, जीएमएडब्ल्यू के साथ सामान्य रूप से संभव होने पर वेल्डिंग की गति बढ़ जाती है। अंडरकटिंग की संभावना कम होने के साथ-साथ वेल्ड की गुणवत्ता भी अधिक होती है।[1]

उपकरण

स्वचालन और सीएएम

हालांकि लेजर बीम वेल्डिंग को हाथ से पूरा किया जा सकता है, अधिकांश प्रणालियां स्वचालित हैं और कंप्यूटर एडेड डिजाइनों के आधार पर कंप्यूटर-एडेड निर्माण की एक प्रणाली का उपयोग करती हैं।[2][3][4] लेजर वेल्डिंग को मिलिंग के साथ जोड़ा जा सकता है ताकि एक तैयार भाग तैयार किया जा सके।[5]

2016 में रेपराप प्रोजेक्ट, जो ऐतिहासिक रूप से जुड़े हुए रेशा निर्माण पर काम करता था, ने खुला स्रोत लेजर वेल्डिंग प्रणाली के विकास का विस्तार किया। इस तरह की प्रणालियों को पूरी तरह से चित्रित किया गया है और पारंपरिक निर्माण लागत को कम करते हुए व्यापक उपायों पर अनुप्रयोगों में इसका उपयोग किया जा सकता है।

लेज़र

  • सामान्यतः उपयोग किए जाने वाले दो प्रकार के लेज़र ठोस-अवस्था वाले लेज़र (विशेष रूप से रूबी लेजर और एनडी: वाईएजी लेज़र) और गैस लेज़र हैं।
  • पहला प्रकार कई ठोस माध्यमों में से एक का उपयोग करता है, जिसमें सिंथेटिक रूबी (एल्यूमीनियम ऑक्साइड में क्रोमियम), ग्लास में नियोडिमियम (एनडी: ग्लास) और सबसे आम प्रकार, येट्रियम एल्यूमीनियम गार्नेट (एनडी: वाईएजी) में नियोडिमियम सम्मिलित है।
  • गैस लेसर एक माध्यम के रूप में हीलियम, नाइट्रोजन और कार्बन डाईऑक्साइड (CO2 लेजर) जैसी गैसों के मिश्रण का उपयोग करते हैं।
  • प्रकार के बावजूद, हालांकि, जब माध्यम उत्साहित होता है, तो यह फोटान उत्सर्जित करता है और लेजर बीम बनाता है।

ठोस अवस्था

सॉलिड-स्टेट लेज़र 1 माइक्रोमीटर के क्रम में तरंग दैर्ध्य पर काम करते हैं, जो वेल्डिंग के लिए उपयोग किए जाने वाले गैस लेज़रों की तुलना में बहुत कम है, और इसके परिणामस्वरूप, संचालकों को विशेष चश्मा पहनने या रेटिना क्षति को रोकने के लिए विशेष स्क्रीन का उपयोग करने की आवश्यकता होती है। एनडी: वाईएजी लेजर स्पंदित और निरंतर प्रकार दोनों में काम कर सकते हैं, लेकिन अन्य प्रकार स्पंदित प्रकार तक ही सीमित हैं। मूल और अभी भी लोकप्रिय सॉलिड-स्टेट डिज़ाइन एक सिंगल क्रिस्टल के आकार की छड़ है जिसका व्यास लगभग 20 मिमी और 200 मिमी लंबा है, और सिरे जमीन पर सपाट हैं। यह रॉड जेनॉन या क्रिप्टन युक्त फ्लैश ट्यूब से घिरी होती है। जब फ्लैश किया जाता है, तो लेजर द्वारा लगभग दो मिलीसेकंड तक चलने वाली प्रकाश की एक पल्स उत्सर्जित होती है। डिस्क के आकार के क्रिस्टल उद्योग में लोकप्रियता में बढ़ रहे हैं, और क्षण दीप अपनी उच्च दक्षता के कारण डायोड को रास्ता दे रहे हैं। माणिक लेज़रों के लिए विशिष्ट बिजली उत्पादन 10–20 वॉट है, जबकि एनडी: वाईएजी लेज़र का उत्पादन 0.04–6,000 वॉट के बीच होता है। लेजर बीम को वेल्ड क्षेत्र तक पहुँचाने के लिए, फाइबर ऑप्टिक्स सामान्यतः नियोजित होते हैं।

गैस

लेज़िंग माध्यम के रूप में उपयोग किए जाने वाले गैस मिश्रण को उत्तेजित करने के लिए आवश्यक ऊर्जा की आपूर्ति करने के लिए गैस लेज़र उच्च-वोल्टेज, कम-वर्तमान बिजली स्रोतों का उपयोग करते हैं।

ये लेजर निरंतर और स्पंदित दोनों प्रकार में काम कर सकते हैं, और तरंग दैर्ध्य CO2 गैस लेजर बीम 10.6 μm, गहरा अवरक्त, यानी 'हीट' है।

फाइबर ऑप्टिक केबल इस तरंग दैर्ध्य द्वारा अवशोषित और नष्ट हो जाती है, इसलिए एक कठोर लेंस और दर्पण वितरण प्रणाली का उपयोग किया जाता है।

गैस लेज़रों के लिए पावर आउटपुट सॉलिड-स्टेट लेज़रों की तुलना में बहुत अधिक हो सकता है, जो 25 kW तक पहुँचता है।[6]

फाइबर

फाइबर लेसरों में, मुख्य माध्यम ऑप्टिकल फाइबर ही है। वे 50 किलोवाट तक बिजली देने में सक्षम हैं और तेजी से रोबोट औद्योगिक वेल्डिंग के लिए उपयोग किए जा रहे हैं।

लेजर बीम वितरण

आधुनिक लेजर बीम वेल्डिंग मशीनों को दो प्रकारों में समूहीकृत किया जा सकता है। पारंपरिक प्रकार में, सीवन का पालन करने के लिए लेजर आउटपुट को स्थानांतरित किया जाता है। यह सामान्यतः रोबोट के साथ प्राप्त किया जाता है। कई आधुनिक अनुप्रयोगों में, रिमोट लेजर बीम वेल्डिंग का उपयोग किया जाता है। इस विधि में, लेजर बीम को लेजर स्कैनर की मदद से सीम के साथ ले जाया जाता है, ताकि रोबोटिक आर्म को अब सीम का पालन करने की आवश्यकता न हो। दूरस्थ लेजर वेल्डिंग के फायदे उच्च गति और वेल्डिंग प्रक्रिया की उच्च परिशुद्धता हैं।

स्पंदित-लेजर वेल्डिंग का थर्मल मॉडलिंग

स्पंदित लेजर वेल्डिंग में निरंतर तरंग (सीडब्ल्यू) लेजर वेल्डिंग की तुलना में लाभ हैं। इन फायदों में से कुछ कम सरंध्रता और कम छींटे हैं।[7] स्पंदित-लेजर वेल्डिंग के कुछ नुकसान भी हैं जैसे कि एल्यूमीनियम मिश्र धातुओं में गर्म दरार पैदा करना। स्पंदित-लेजर वेल्डिंग प्रक्रिया का थर्मल विश्लेषण वेल्डिंग मापदंडों जैसे संलयन की गहराई, शीतलन दर और अवशिष्ट तनाव की भविष्यवाणी में सहायता कर सकता है। स्पंदित लेजर प्रक्रिया की जटिलता के कारण, एक ऐसी प्रक्रिया को नियोजित करना आवश्यक है जिसमें एक विकास चक्र सम्मिलित हो। चक्र में एक गणितीय मॉडल का निर्माण करना और संख्यात्मक मॉडलिंग तकनीकों जैसे परिमित तत्व मॉडलिंग (एफईएम) परिमित अंतर विधि (एफडीएम) या विश्लेषणात्मक मॉडल का उपयोग करके एक थर्मल चक्र की गणना करना सम्मिलित है, जिसमें मॉडल को मान्य करके मान्यताओं और प्रायोगिक मापों को सरल बनाया जाता है।

कुछ प्रकाशित मॉडलों के संयोजन वाली पद्धति में सम्मिलित हैं:[8][9][10]

  1. बिजली अवशोषण दक्षता का निर्धारण।
  2. तापमान और क्लॉसियस-क्लैप्रोन समीकरण के आधार पर हटना दबाव की गणना करना।
  3. द्रव विधि (वीओएफ) की मात्रा का उपयोग करके द्रव प्रवाह वेगों की गणना करें।
  4. तापमान वितरण की गणना।
  5. समय बढ़ाएँ और चरण 1-4 दोहराएं।
  6. परिणामों का सत्यापन

चरण 1

सभी उज्ज्वल ऊर्जा अवशोषित नहीं होती है और वेल्डिंग के लिए गर्मी में परिवर्तित हो जाती है। कुछ दीप्तिमान ऊर्जा वाष्पीकरण द्वारा बनाए गए प्लाज्मा में अवशोषित हो जाती है और फिर बाद में गैस को आयनित कर देती है। इसके अलावा, बीम की तरंग दैर्ध्य, वेल्ड की जाने वाली सामग्री की सतह संरचना, घटना के कोण और सामग्री के तापमान से अवशोषण प्रभावित होता है।[7]

रोसेन्थल बिंदु स्रोत धारणा एक असीम रूप से उच्च तापमान विच्छिन्नता छोड़ती है जिसे इसके बजाय गॉसियन वितरण मानकर संबोधित किया जाता है। दीप्तिमान ऊर्जा भी बीम के भीतर समान रूप से वितरित नहीं होती है। कुछ डिवाइस गाऊसी ऊर्जा वितरण का उत्पादन करते हैं, जबकि अन्य बिमॉडल हो सकते हैं।[7] एक गाऊसी ऊर्जा वितरण को इस तरह से एक फ़ंक्शन द्वारा शक्ति घनत्व को गुणा करके लागू किया जा सकता है:[9], जहां r बीम के केंद्र से रेडियल दूरी है, = बीम त्रिज्या या स्थान का आकार है।

बिंदु स्रोत धारणा के बजाय तापमान वितरण का उपयोग तापमान-निर्भर भौतिक गुणों जैसे अवशोषकता की आसान गणना के लिए अनुमति देता है। विकिरणित सतह पर, जब एक कीहोल बनता है, फ्रेस्नेल प्रतिबिंब (कीहोल गुहा के भीतर कई प्रतिबिंबों के कारण बीम ऊर्जा का लगभग पूर्ण अवशोषण) होता है और इसके द्वारा मॉडलिंग किया जा सकता है , जहां ε ढांकता हुआ स्थिरांक, विद्युत चालकता और लेजर आवृत्ति का एक कार्य है। θ आपतन कोण है।[8] थर्मल प्रभावों की गणना करने के लिए अवशोषण दक्षता को समझना महत्वपूर्ण है।

चरण 2

लेजर दो तरीकों में से एक में वेल्ड कर सकते हैं: प्रवाहकत्त्व और कीहोल। कौन सा प्रकार संचालन में है, यह इस बात पर निर्भर करता है कि क्या बिजली का घनत्व इतना अधिक है कि वाष्पीकरण का कारण बन सके।[7] प्रवाहकत्त्व प्रकार वाष्पीकरण बिंदु के नीचे होता है जबकि कीहोल प्रकार वाष्पीकरण बिंदु से ऊपर होता है। कीहोल एक एयर पॉकेट के समान है। एयर पॉकेट फ्लक्स की स्थिति में है। वाष्पित धातु के रिकॉइल प्रेशर जैसे बल कीहोल को खोलते हैं[8] जबकि गुरुत्वाकर्षण (उर्फ हाइड्रोस्टेटिक बल) और धातु की सतह का तनाव इसे ध्वस्त कर देता है।[10]उच्च शक्ति घनत्व पर भी, प्लाज्मा बनाने के लिए वाष्प को आयनित किया जा सकता है।

हटना दबाव क्लॉसियस-क्लैप्रोन समीकरण का उपयोग करके निर्धारित किया जाता है।[9], जहां P संतुलन वाष्प दबाव है, T तरल सतह का तापमान है,HLV वाष्पीकरण की गुप्त ऊष्मा है, TLV तरल-वाष्प इंटरफेस पर संतुलन तापमान है। इस धारणा का उपयोग करते हुए कि वाष्प का प्रवाह ध्वनि वेगों तक सीमित है,[4] , जहां Po वायुमंडलीय दबाव है और Pr प्रतिक्षेपक दबाव है।

चरण 3

यह कीहोल प्रोफाइल से संबंधित है। द्रव प्रवाह वेग द्वारा निर्धारित किया जाता है[8]

कहाँ वेग सदिश है, P=दबाव, ρ= द्रव्यमान घनत्व, = चिपचिपापन, β = थर्मल विस्तार गुणांक, g= गुरुत्वाकर्षण, और F सिमुलेशन ग्रिड सेल में तरल पदार्थ का आयतन अंश है।

चरण 4

लेजर टकराव सतह पर सीमा तापमान निर्धारित करने के लिए, आप इस तरह एक समीकरण लागू करेंगे। ,[10] जहाँ kn=लेज़र द्वारा टकराई गई सतह पर तापीय चालकता सामान्य है, h=वायु के लिए संवहन ताप अंतरण गुणांक, σ विकिरण के लिए स्टीफ़न-बोल्ट्जमैन स्थिरांक कहां है, और ε वेल्ड की जा रही सामग्री का उत्सर्जन है, q लेजर बीम हीट फ्लक्स है।

सीडब्ल्यू (कंटीन्यूअस वेव) लेजर वेल्डिंग के विपरीत, जिसमें एक गतिमान थर्मल चक्र सम्मिलित होता है, स्पंदित लेजर में एक ही स्थान पर बार-बार टकराना सम्मिलित होता है, इस प्रकार कई अतिव्यापी थर्मल चक्र बनते हैं।[10] इसे संबोधित करने का एक तरीका एक स्टेप फ़ंक्शन जोड़ना है जो बीम चालू होने पर गर्मी प्रवाह को एक से गुणा करता है लेकिन बीम बंद होने पर गर्मी प्रवाह को शून्य से गुणा करता है।[9] एक तरफ़ा रास्ता[10] इसे प्राप्त करने के लिए क्रोनकर डेल्टा का उपयोग किया जाता है जो q को निम्नानुसार संशोधित करता है: , जहां δ = क्रोनेकर डेल्टा, क्यूई = प्रयोगात्मक रूप से निर्धारित गर्मी प्रवाह। इस पद्धति के साथ समस्या यह है कि यह आपको पल्स अवधि के प्रभाव को देखने की अनुमति नहीं देती है। एक तरफ़ा रास्ता[9] इसे हल करने के लिए एक संशोधक का उपयोग करना है जो समय-निर्भर कार्य है जैसे कि:

जहाँ v= स्पंद आवृत्ति, n=0,1, 2,...,v-1), τ= स्पंद अवधि।

इसके बाद, आप इस सीमा शर्त को लागू करेंगे और आंतरिक तापमान वितरण प्राप्त करने के लिए फूरियर के नियम|फूरियर के दूसरे नियम को हल करेंगे। कोई आंतरिक ताप उत्पादन नहीं मानते हुए, समाधान है

,

जहाँ k = तापीय चालकता, ρ = घनत्व, Cp = विशिष्ट ताप क्षमता, = द्रव वेग वेक्टर।

चरण 5

पिछले चरणों में प्रस्तुत शासकीय समीकरणों को ध्यान में रखते हुए और अगली बार और लंबाई के चरणों को लागू करके वृद्धि की जाती है।

चरण 6

परिणामों को विशिष्ट प्रयोगात्मक अवलोकनों या सामान्य प्रयोगों से प्रवृत्तियों द्वारा मान्य किया जा सकता है। इन प्रयोगों में संलयन की गहराई का मेटलोग्राफिक सत्यापन सम्मिलित है।[5]

धारणाओं को सरल बनाने के परिणाम

स्पंदित लेजर की भौतिकी बहुत जटिल हो सकती है और इसलिए, गणना को गति देने या भौतिक गुणों की कमी के लिए क्षतिपूर्ति करने के लिए कुछ सरल मान्यताओं की आवश्यकता होती है। कंप्यूटिंग समय को कम करने के लिए विशिष्ट ताप जैसे भौतिक गुणों की तापमान-निर्भरता को अनदेखा किया जाता है।

तरल-धातु अंतरापृष्ठ छोड़ने वाले वाष्प से बड़े उपायों पर होने वाले नुकसान के कारण होने वाली ऊष्मा हानि की मात्रा का हिसाब नहीं दिया जाता है, तो तरल तापमान का अधिक अनुमान लगाया जा सकता है।[9]

संदर्भ

  1. Weman, p 98
  2. Reinhart, G., Munzert, U. and Vogl, W., 2008. A programming system for robot-based remote-laser-welding with conventional optics. CIRP Annals-Manufacturing Technology, 57(1), pp.37-40.
  3. Kim, P., Rhee, S. and Lee, C.H., 1999. Automatic teaching of welding robot for free-formed seam using laser vision sensor. Optics and Lasers in Engineering, 31(3), pp.173-182.
  4. 4.0 4.1 Cline, H. E.; Anthony, T. R. (1977-09-01). "स्कैनिंग लेजर या इलेक्ट्रॉन बीम के साथ गर्मी का इलाज और पिघलने वाली सामग्री". Journal of Applied Physics. 48 (9): 3895–3900. doi:10.1063/1.324261. ISSN 0021-8979.
  5. 5.0 5.1 Sabbaghzadeh, Jamshid; Azizi, Maryam; Torkamany, M. Javad (2008). "स्पंदित लेजर के साथ सीम वेल्डिंग की संख्यात्मक और प्रायोगिक जांच". Optics & Laser Technology (in English). 40 (2): 289–296. doi:10.1016/j.optlastec.2007.05.005.
  6. Cary and Helzer, p 209
  7. 7.0 7.1 7.2 7.3 Steen, William M.; Mazumder, Jyotirmoy (2010). Laser Material Processing | SpringerLink (in British English). doi:10.1007/978-1-84996-062-5. ISBN 978-1-84996-061-8.
  8. 8.0 8.1 8.2 8.3 Lee, Jae Y.; Ko, Sung H.; Farson, Dave F.; Yoo, Choong D. (2002). "स्थिर लेजर वेल्डिंग में कीहोल गठन और स्थिरता का तंत्र". Journal of Physics D: Applied Physics (in English). 35 (13): 1570. doi:10.1088/0022-3727/35/13/320. ISSN 0022-3727. S2CID 250782960.
  9. 9.0 9.1 9.2 9.3 9.4 9.5 Chen, Guibo; Gu, Xiuying; Bi, Juan (2016). "दोहराव आवृत्ति स्पंदित लेजर द्वारा एल्यूमीनियम मिश्र धातु में थर्मल प्रभाव का संख्यात्मक विश्लेषण". Optik. 127 (20): 10115–10121. doi:10.1016/j.ijleo.2016.08.010.
  10. 10.0 10.1 10.2 10.3 10.4 Frewin (January 1999). "स्पंदित लेजर वेल्डिंग का परिमित तत्व मॉडल". Welding Journal. 78: 15–2.

ग्रन्थसूची

  • Cary, Howard B. and Scott C. Helzer (2005). Modern Welding Technology. Upper Saddle River, New Jersey: Pearson Education. ISBN 0-13-113029-3.
  • Weman, Klas (2003). Welding processes handbook. New York: CRC Press LLC. ISBN 0-8493-1773-8.
  • Kalpakjian, Serope and Schmid,Steven R.(2006). Manufacturing Engineering and Technology5th ed. Upper Saddle River, New Jersey: Pearson Education. ISBN 0-13-148965-8


बाहरी संबंध