सुपरस्पेस: Difference between revisions

From Vigyanwiki
(text)
(text)
Line 1: Line 1:
{{Short description|Base space for supersymmetric theories}}
{{Short description|Base space for supersymmetric theories}}
अतिदिक् [[सुपरसिमेट्री|अतिसममिति]] प्रदर्शित करने वाले सिद्धांत का समन्वय स्थान है। इस तरह के सूत्रीकरण में, सामान्य दिक् आयाम ''x'', ''y'', ''z'', ... के साथ-साथ प्रतिन्यूनीकरण आयाम भी होते हैं जिनके निर्देशांक वास्तविक संख्याओं के स्थान पर [[ग्रासमैन संख्या]] में वर्गीकृत किए जाते हैं। सामान्य दिक् आयाम स्वतंत्रता की बोसोनिक घात के अनुरूप होते हैं, प्रतिन्यूनीकरण आयाम स्वतंत्रता की [[फर्मिओनिक|तापायनिक]] कोटि के अनुरूप होते हैं।
सुपरस्पेस [[सुपरसिमेट्री|अतिसममिति]] प्रदर्शित करने वाले सिद्धांत का समन्वय स्थान है। इस तरह के सूत्रीकरण में, सामान्य दिक् आयाम ''x'', ''y'', ''z'', ... के साथ-साथ एंटीकम्यूटिंग आयाम भी होते हैं जिनके निर्देशांक वास्तविक संख्याओं के स्थान पर [[ग्रासमैन संख्या]] में वर्गीकृत किए जाते हैं। सामान्य दिक् आयाम स्वतंत्रता की बोसोनिक घात के अनुरूप होते हैं, एंटीकम्यूटिंग आयाम स्वतंत्रता की [[फर्मिओनिक|तापायनिक]] कोटि के अनुरूप होते हैं।


अतिदिक् शब्द का प्रयोग पहली बार [[ जॉन आर्चीबाल्ड व्हीलर |जॉन आर्चीबाल्ड व्हीलर]] द्वारा [[सामान्य सापेक्षता]] के [[विन्यास स्थान (भौतिकी)]] का वर्णन करने के लिए एक असंबंधित अर्थ में किया गया था; उदाहरण के लिए, यह प्रयोग उनकी 1973 की पाठ्यपुस्तक ''[[गुरुत्वाकर्षण (पुस्तक)]]'' में देखा जा सकता है।
सुपरस्पेस शब्द का प्रयोग पहली बार [[ जॉन आर्चीबाल्ड व्हीलर |जॉन आर्चीबाल्ड व्हीलर]] द्वारा [[सामान्य सापेक्षता]] के [[विन्यास स्थान (भौतिकी)]] का वर्णन करने के लिए एक असंबंधित अर्थ में किया गया था; उदाहरण के लिए, यह प्रयोग उनकी 1973 की पाठ्यपुस्तक ''[[गुरुत्वाकर्षण (पुस्तक)]]'' में देखा जा सकता है।


== अनौपचारिक चर्चा ==
== अनौपचारिक चर्चा ==
कई अतिदिक् की परिभाषाएं जिनका उपयोग किया गया है, समान हैं, लेकिन समकक्ष नहीं हैं, और उनका गणितीय और भौतिकी साहित्य में उपयोग किया जाना जारी है। ऐसा ही एक प्रयोग [[सुपर मिन्कोव्स्की अंतरिक्ष|अति मिन्कोव्स्की दिक्]] के पर्याय के रूप में है।<ref>[[Sylvester James Gates|S. J. Gates, Jr.]], [[Marcus T. Grisaru|M. T. Grisaru]], [[Martin Rocek|M. Roček]], [[Warren Siegel|W. Siegel]], ''Superspace or One Thousand and One Lessons in Supersymmetry'', Benjamins Cumming Publishing (1983) {{ISBN|0-8053 3161-1}}.</ref> इस स्तिथि में, कोई सामान्य मिन्कोव्स्की स्थान लेता है, और इसे [[लोरेंत्ज़ समूह]] से जुड़े [[क्लिफर्ड बीजगणित]] से प्रति-न्यूनीकरण [[वेइल स्पिनर|वेइल स्पाइनर]] के रूप में लिया जाता है, जो स्वतंत्रता के प्रति-न्यूनीकरण तापायनिक घात के साथ विस्तारित होता है। समतुल्य रूप से, अति मिन्कोव्स्की दिक् को लोरेंत्ज़ समूह के बीजगणित अति पोंकारे बीजगणित सापेक्ष के भागफल के रूप में समझा जा सकता है। ऐसी जगह पर निर्देशांक के लिए एक विशिष्ट संकेतन <math>(x,\theta,\bar{\theta})</math> है चित्र शीर्षक से यह पता चलता है कि अति मिंकॉस्की दिक् इच्छित स्थान है।
कई सुपरस्पेस की परिभाषाएं जिनका उपयोग किया गया है, समान हैं, लेकिन समकक्ष नहीं हैं, और उनका गणितीय और भौतिकी साहित्य में उपयोग किया जाना जारी है। ऐसा ही एक प्रयोग [[सुपर मिन्कोव्स्की अंतरिक्ष|अति मिन्कोव्स्की दिक्]] के पर्याय के रूप में है।<ref>[[Sylvester James Gates|S. J. Gates, Jr.]], [[Marcus T. Grisaru|M. T. Grisaru]], [[Martin Rocek|M. Roček]], [[Warren Siegel|W. Siegel]], ''Superspace or One Thousand and One Lessons in Supersymmetry'', Benjamins Cumming Publishing (1983) {{ISBN|0-8053 3161-1}}.</ref> इस स्तिथि में, कोई सामान्य मिन्कोव्स्की स्थान लेता है, और इसे [[लोरेंत्ज़ समूह]] से जुड़े [[क्लिफर्ड बीजगणित]] से प्रति-न्यूनीकरण [[वेइल स्पिनर|वेइल स्पाइनर]] के रूप में लिया जाता है, जो स्वतंत्रता के प्रति-न्यूनीकरण तापायनिक घात के साथ विस्तारित होता है। समतुल्य रूप से, अति मिन्कोव्स्की दिक् को लोरेंत्ज़ समूह के बीजगणित अति पोंकारे बीजगणित सापेक्ष के भागफल के रूप में समझा जा सकता है। ऐसी जगह पर निर्देशांक के लिए एक विशिष्ट संकेतन <math>(x,\theta,\bar{\theta})</math> है चित्र शीर्षक से यह पता चलता है कि अति मिंकॉस्की दिक् इच्छित स्थान है।


अतिदिक् को आमतौर पर अति [[ सदिश स्थल |सदिश स्थल]] के पर्याय के रूप में भी प्रयोग किया जाता है। इसे [[ग्रासमैन बीजगणित]] से लिए गए अतिरिक्त निर्देशांकों के साथ एक सामान्य सदिश स्थान के रूप में लिया जाता है, अर्थात ग्रासमान संख्या वाले निर्देशांक दिशाएँ। उपयोग में आने वाले [[ सुपर वेक्टर अंतरिक्ष |अति सदिश दिक्]] के निर्माण के लिए कई परंपराएँ हैं; इनमें से दो का वर्णन रोजर्स ने किया है।<ref name="rogers">[[Alice Rogers]], ''Supermanifolds: Theory and Applications'', World Scientific (2007) {{ISBN|978-981-3203-21-1}}.</ref> <ref name="dewitt">[[Bryce DeWitt]], ''Supermanifolds'', Cambridge University Press (1984) {{ISBN|0521 42377 5}}.</ref>  
सुपरस्पेस को सामान्यतः अति [[ सदिश स्थल |सदिश स्थल]] के पर्याय के रूप में भी प्रयोग किया जाता है। इसे [[ग्रासमैन बीजगणित]] से लिए गए अतिरिक्त निर्देशांकों के साथ एक सामान्य सदिश स्थान के रूप में लिया जाता है, अर्थात ग्रासमान संख्या वाले निर्देशांक दिशाएँ। उपयोग में आने वाले [[ सुपर वेक्टर अंतरिक्ष |अति सदिश दिक्]] के निर्माण के लिए कई परंपराएँ हैं; इनमें से दो का वर्णन रोजर्स ने किया है।<ref name="rogers">[[Alice Rogers]], ''Supermanifolds: Theory and Applications'', World Scientific (2007) {{ISBN|978-981-3203-21-1}}.</ref> <ref name="dewitt">[[Bryce DeWitt]], ''Supermanifolds'', Cambridge University Press (1984) {{ISBN|0521 42377 5}}.</ref>  


अतिदिक् शब्द का तीसरा उपयोग [[supermanifold|अतिबहुविध]] के पर्याय के रूप में है: [[कई गुना|बहुविध]] का अतिसममितीय सामान्यीकरण है। ध्यान दें कि अति मिंकोव्स्की दिक् और अति सदिश दिक् दोनों को अतिबहुविध की विशेष स्तिथियों के रूप में लिया जा सकता है।
सुपरस्पेस शब्द का तीसरा उपयोग [[supermanifold|अतिबहुविध]] के पर्याय के रूप में है: [[कई गुना|बहुविध]] का अतिसममितीय सामान्यीकरण है। ध्यान दें कि अति मिंकोव्स्की दिक् और अति सदिश दिक् दोनों को अतिबहुविध की विशेष स्तिथियों के रूप में लिया जा सकता है।


चौथा और पूरी तरह से असंबंधित अर्थ ने सामान्य सापेक्षता में एक संक्षिप्त उपयोग देखा; इस पर नीचे और अधिक विस्तार से चर्चा की गई है।
चौथा और पूरी तरह से असंबंधित अर्थ ने सामान्य सापेक्षता में एक संक्षिप्त उपयोग देखा; इस पर नीचे और अधिक विस्तार से चर्चा की गई है।


== उदाहरण ==
== उदाहरण ==
नीचे कई उदाहरण दिए गए हैं। पहले कुछ अतिसदिश दिक् के रूप में अतिदिक् की परिभाषा मानते हैं। इसे R<sup>m|n</sup> के रूप में निरूपित किया जाता है, Z<sub>2</sub>-श्रेणीबद्ध सदिश समष्टि जिसमें R<sup>m</sup> सम उपसमष्टि है और R<sup>n</sup> विषम उपसमष्टि है। यही परिभाषा '''C'''<sup>m|n</sup> पर लागू होती है।
नीचे कई उदाहरण दिए गए हैं। पहले कुछ अतिसदिश दिक् के रूप में सुपरस्पेस की परिभाषा मानते हैं। इसे R<sup>m|n</sup> के रूप में निरूपित किया जाता है, Z<sub>2</sub>-श्रेणीबद्ध सदिश समष्टि जिसमें R<sup>m</sup> सम उपसमष्टि है और R<sup>n</sup> विषम उपसमष्टि है। यही परिभाषा '''C'''<sup>m|n</sup> पर लागू होती है।


चार-आयामी उदाहरण अतिदिक् को अति मिंकोवस्की दिक् के रूप में लेते हैं। हालांकि सदिश स्थान के समान, इसमें कई महत्वपूर्ण अंतर हैं: सबसे पहले, यह एक सजातीय स्थान है, जिसमें मूल को दर्शाने वाला कोई विशेष बिंदु नहीं है। इसके बाद, ग्रासमैन संख्या होने के स्थान पर, क्लिफर्ड बीजगणित से तापायनिक निर्देशांक को क्रमविनिमेय वेइल स्पाइनर के रूप में लिया जाता है। यहाँ अंतर यह है कि क्लिफर्ड बीजगणित में ग्रासमैन संख्या की तुलना में काफी समृद्ध और अधिक सूक्ष्म संरचना है। तो, ग्रास्मान संख्या [[बाहरी बीजगणित]] के तत्व हैं, और क्लिफोर्ड बीजगणित में बाहरी बीजगणित के लिए एक समरूपता है, लेकिन [[ऑर्थोगोनल समूह|आयतीय समूह]] और [[स्पिन समूह|स्पाइन समूह]] से इसका संबंध, स्पाइन प्रस्तुतियों का निर्माण करने के लिए उपयोग किया जाता है, इसे एक गहरा ज्यामितीय महत्व देता है। (उदाहरण के लिए, स्पाइन समूह रिमेंनियन ज्यामिति के भौतिकी की सामान्य सीमाओं और सरोकारों से बिल्कुल बाहर अध्ययन का एक सामान्य हिस्सा है<ref>[[Jürgen Jost]], ''Riemannian Geometry and Geometric Analysis'', Springer-Verlag (2002) {{ISBN|3-540-63654-4}}.</ref>।)
चार-आयामी उदाहरण सुपरस्पेस को अति मिंकोवस्की दिक् के रूप में लेते हैं। हालांकि सदिश स्थान के समान, इसमें कई महत्वपूर्ण अंतर हैं: सबसे पहले, यह एक सजातीय स्थान है, जिसमें मूल को दर्शाने वाला कोई विशेष बिंदु नहीं है। इसके बाद, ग्रासमैन संख्या होने के स्थान पर, क्लिफर्ड बीजगणित से तापायनिक निर्देशांक को क्रमविनिमेय वेइल स्पाइनर के रूप में लिया जाता है। यहाँ अंतर यह है कि क्लिफर्ड बीजगणित में ग्रासमैन संख्या की तुलना में काफी समृद्ध और अधिक सूक्ष्म संरचना है। तो, ग्रास्मान संख्या [[बाहरी बीजगणित]] के तत्व हैं, और क्लिफोर्ड बीजगणित में बाहरी बीजगणित के लिए एक समरूपता है, लेकिन [[ऑर्थोगोनल समूह|आयतीय समूह]] और [[स्पिन समूह|स्पाइन समूह]] से इसका संबंध, स्पाइन प्रस्तुतियों का निर्माण करने के लिए उपयोग किया जाता है, इसे एक पश्च ज्यामितीय महत्व देता है। (उदाहरण के लिए, स्पाइन समूह रिमेंनियन ज्यामिति के भौतिकी की सामान्य सीमाओं और सरोकारों से बिल्कुल बाहर अध्ययन का एक सामान्य हिस्सा है<ref>[[Jürgen Jost]], ''Riemannian Geometry and Geometric Analysis'', Springer-Verlag (2002) {{ISBN|3-540-63654-4}}.</ref>।)


=== तुच्छ उदाहरण ===
=== तुच्छ उदाहरण ===


सबसे छोटा अतिदिक् एक ऐसा बिंदु है जिसमें न तो बोसोनिक और न ही तापायनिक दिशाएँ होती हैं। अन्य तुच्छ उदाहरणों में  n-आयामी वास्तविक तल 'R'<sup>n</sup> सम्मिलित हैं, जो एक सदिश स्थान है जो n वास्तविक, बोसोनिक दिशाओं में फैला हुआ है और कोई तापायनिक दिशा नहीं है। सदिश स्थान '''R'''<sup>0|n</sup>, जो कि n-विमीय यथार्थ ग्रासमैन बीजगणित है। दिक् '''R'''<sup>1|1</sup> एक सम और एक विषम दिशा को [[दोहरी संख्या]]ओं के स्थान के रूप में जाना जाता है, जिसे 1873 में [[विलियम किंग्डन क्लिफोर्ड]] द्वारा प्रस्तुत किया गया था।
सबसे छोटा सुपरस्पेस एक ऐसा बिंदु है जिसमें न तो बोसोनिक और न ही तापायनिक दिशाएँ होती हैं। अन्य तुच्छ उदाहरणों में  n-आयामी वास्तविक तल 'R'<sup>n</sup> सम्मिलित हैं, जो एक सदिश स्थान है जो n वास्तविक, बोसोनिक दिशाओं में विस्तारित है और कोई तापायनिक दिशा नहीं है। सदिश स्थान '''R'''<sup>0|n</sup>, जो कि n-विमीय यथार्थ ग्रासमैन बीजगणित है। दिक् '''R'''<sup>1|1</sup> एक सम और एक विषम दिशा को [[दोहरी संख्या]]ओं के स्थान के रूप में जाना जाता है, जिसे 1873 में [[विलियम किंग्डन क्लिफोर्ड]] द्वारा प्रस्तुत किया गया था।


=== [[सुपरसिमेट्रिक क्वांटम यांत्रिकी|अतिसममितीय परिमाण यांत्रिकी]] का अतिदिक् ===
=== [[सुपरसिमेट्रिक क्वांटम यांत्रिकी|अतिसममितीय परिमाण यांत्रिकी]] का सुपरस्पेस ===
N[[ अत्यधिक प्रभावकारी ]]के साथ अतिसममितीय परिमाण यांत्रिकी प्रायः अतिदिक् '''R'''<sup>1|2N</sup> में तैयार की जाती है। जिसमें एक वास्तविक दिशा t सम्मिलित है जिसे [[समय]] के साथ पहचाना जाता है और N संकुल ग्रासमैन संख्या जो Θ द्वारा फैली हुई है<sub>''i''</sub> और Θ जहाँ i 1 से N तक चलता है।
N[[ अत्यधिक प्रभावकारी ]]के साथ अतिसममितीय परिमाण यांत्रिकी प्रायः सुपरस्पेस '''R'''<sup>1|2N</sup> में प्रस्तुत की जाती है। जिसमें एक वास्तविक दिशा t सम्मिलित है जिसे [[समय]] के साथ पहचाना जाता है और N संकुल ग्रासमैन संख्या जो Θ द्वारा फैली हुई है<sub>''i''</sub> और Θ जहाँ i 1 से N तक चलता है।


विशेष स्थिति N = 1 पर विचार करें। अतिदिक् 'R'<sup>1|2</sup> एक 3-आयामी सदिश स्थान है। इसलिए दिए गए निर्देशांक को त्रिक (t, Θ, Θ) के रूप में लिखा जा सकता है। निर्देशांक एक लाइ सुपरएलजेब्रा बनाते हैं, जिसमें t की वर्गीकरण घात भी  है और Θ और Θ की विषम है। इसका अर्थ यह है कि इस सदिश दिक् के किसी भी दो तत्वों के बीच एक कोष्ठक को परिभाषित किया जा सकता है, और यह कोष्ठक दिक्परिवर्तक को दो सम निर्देशांकों पर और एक सम और एक विषम समन्वय पर कम करता है, जबकि यह दो विषम निर्देशांकों पर एक प्रतिदिक्परिवर्तक है। यह अतिदिक् एक एबेलियन लाइ सुपरलेजेब्रा है, जिसका अर्थ है कि उपरोक्त सभी कोष्ठक विलुप्त हो जाते हैं
विशेष स्थिति N = 1 पर विचार करें। सुपरस्पेस 'R'<sup>1|2</sup> एक 3-आयामी सदिश स्थान है। इसलिए दिए गए निर्देशांक को त्रिक (t, Θ, Θ) के रूप में लिखा जा सकता है। निर्देशांक एक लाइ सुपरएलजेब्रा बनाते हैं, जिसमें t की वर्गीकरण घात भी  है और Θ और Θ की विषम है। इसका अर्थ यह है कि इस सदिश दिक् के किसी भी दो तत्वों के बीच एक कोष्ठक को परिभाषित किया जा सकता है, और यह कोष्ठक दिक्परिवर्तक को दो सम निर्देशांकों पर और एक सम और एक विषम समन्वय पर कम करता है, जबकि यह दो विषम निर्देशांकों पर एक प्रतिदिक्परिवर्तक है। यह सुपरस्पेस एक एबेलियन लाइ सुपरलेजेब्रा है, जिसका अर्थ है कि उपरोक्त सभी कोष्ठक विलुप्त हो जाते हैं


:::<math>\left[ t,t\right]=\left[ t, \theta\right]=\left[ t, \theta^*\right]=\left\{\theta, \theta\right\}=\left\{ \theta, \theta^*\right\} =\left\{ \theta^*, \theta^*\right\}=0</math>
:::<math>\left[ t,t\right]=\left[ t, \theta\right]=\left[ t, \theta^*\right]=\left\{\theta, \theta\right\}=\left\{ \theta, \theta^*\right\} =\left\{ \theta^*, \theta^*\right\}=0</math>
जहाँ <math>[a,b]</math> a और b का दिक्परिवर्तक है और <math>\{a,b\}</math> ए और बी के प्रतिदिक्परिवर्तक है।
जहाँ <math>[a,b]</math> a और b का दिक्परिवर्तक है और <math>\{a,b\}</math> ए और बी के प्रतिदिक्परिवर्तक है।


कोई इस सदिश स्थान से कार्यों को परिभाषित कर सकता है, जिन्हें [[सुपरफ़ील्ड|अधिक्षेत्र]] कहा जाता है। उपरोक्त बीजगणितीय संबंधों का अर्थ है कि, यदि हम Θ और Θ में शक्ति श्रृंखला के रूप में अपने अधिक्षेत्र का विस्तार करते हैं, तब हम केवल शून्य और प्रथम कोटि पर पद प्राप्त करेंगे, क्योंकि Θ<sup>2= Θ*<sup>2 = 0 है। इसलिए, अधिक्षेत्र को t के स्वेच्छाचारी फलन के रूप में लिखा जा सकता है जिसे दो ग्रासमैन निर्देशांकों में शून्य और पहले क्रम के शब्दों से गुणा किया जाता है
कोई इस सदिश स्थान से कार्यों को परिभाषित कर सकता है, जिन्हें [[सुपरफ़ील्ड|अधिक्षेत्र]] कहा जाता है। उपरोक्त बीजगणितीय संबंधों का अर्थ है कि, यदि हम Θ और Θ में शक्ति श्रृंखला के रूप में अपने अधिक्षेत्र का विस्तार करते हैं, तब हम केवल शून्य और प्रथम कोटि पर पद प्राप्त करेंगे, क्योंकि Θ<sup>2= Θ* 2 = 0 है। इसलिए, अधिक्षेत्र को t के स्वेच्छाचारी फलन के रूप में लिखा जा सकता है जिसे दो ग्रासमैन निर्देशांकों में शून्य और पहले क्रम के शब्दों से गुणा किया जाता है  


:::<math>\Phi \left(t,\Theta,\Theta^* \right)=\phi(t)+\Theta\Psi(t)-\Theta^*\Phi^*(t)+\Theta\Theta^* F(t)</math>
:::<math>\Phi \left(t,\Theta,\Theta^* \right)=\phi(t)+\Theta\Psi(t)-\Theta^*\Phi^*(t)+\Theta\Theta^* F(t)</math>
अधिक्षेत्र, जो अतिदिक् के अतिसममिति का प्रतिनिधित्व करते हैं, [[टेन्सर]] की धारणा को सामान्य करते हैं, जो एक बोसोनिक दिक् के क्रमावर्तन समूह का प्रतिनिधित्व करते हैं।
अधिक्षेत्र, जो सुपरस्पेस के अतिसममिति का प्रतिनिधित्व करते हैं, [[टेन्सर]] की धारणा को सामान्य करते हैं, जो एक बोसोनिक दिक् के क्रमावर्तन समूह का प्रतिनिधित्व करते हैं।


इसके बाद ग्रासमैन दिशाओं में व्युत्पादित को परिभाषित किया जा सकता है, जो अधिक्षेत्र के विस्तार में पहले अनुक्रम शब्द को ज़ीरोथ अनुक्रम अवधि तक ले जाता है और ज़ीरोथ अनुक्रम अवधि को मिटा देता है। कोई चिह्न परिपाटी चुन सकता है जैसे कि व्युत्पादित प्रतिविनिमय संबंधों को संतुष्ट करते हैं
इसके बाद ग्रासमैन दिशाओं में व्युत्पादित को परिभाषित किया जा सकता है, जो अधिक्षेत्र के विस्तार में पहले अनुक्रम शब्द को ज़ीरोथ अनुक्रम अवधि तक ले जाता है और ज़ीरोथ अनुक्रम अवधि को मिटा देता है। कोई चिह्न परिपाटी चुन सकता है जैसे कि व्युत्पादित प्रतिविनिमय संबंधों को संतुष्ट करते हैं
Line 50: Line 50:


:::<math>\left[Q,\Phi \right]=\left(\frac{\partial}{\partial \theta}\,-i\theta^*\frac{\partial}{\partial t}\right)\Phi=\psi+\theta^*\left(F-i\dot{\phi}\right)+i\theta\theta^*\dot{\psi}.</math>
:::<math>\left[Q,\Phi \right]=\left(\frac{\partial}{\partial \theta}\,-i\theta^*\frac{\partial}{\partial t}\right)\Phi=\psi+\theta^*\left(F-i\dot{\phi}\right)+i\theta\theta^*\dot{\psi}.</math>
इसी प्रकार कोई अतिदिक् पर सहसंयोजक व्युत्पादित को परिभाषित कर सकता है
इसी प्रकार कोई सुपरस्पेस पर सहसंयोजक व्युत्पादित को परिभाषित कर सकता है


:::<math>D=\frac{\partial}{\partial \theta}-i\theta^*\frac{\partial}{\partial t}\quad \text{and} \quad D^\dagger=\frac{\partial}{\partial \theta^*}-i\theta\frac{\partial}{\partial t}</math>
:::<math>D=\frac{\partial}{\partial \theta}-i\theta^*\frac{\partial}{\partial t}\quad \text{and} \quad D^\dagger=\frac{\partial}{\partial \theta^*}-i\theta\frac{\partial}{\partial t}</math>
Line 57: Line 57:
:::<math>\left\{D,D^\dagger\right\}=-2i\frac{\partial}{\partial t}</math>.
:::<math>\left\{D,D^\dagger\right\}=-2i\frac{\partial}{\partial t}</math>.


तथ्य यह है कि सहसंयोजक व्युत्पादित अतिप्रभार के साथ प्रतिअभिगम का अर्थ है कि एक अधिक्षेत्र के सहसंयोजक व्युत्पन्न का अतिसममिति परिवर्तन उसी अधिक्षेत्र के समान अतिसममिति परिवर्तन के सहसंयोजक व्युत्पन्न के बराबर है। इस प्रकार, बोसोनिक ज्यामिति में सहसंयोजक व्युत्पन्न का सामान्यीकरण, जो टेंसरों से टेंसरों का निर्माण करता है, अतिदिक् सहसंयोजक व्युत्पन्न सुपरफ़ील्ड्स से अधिक्षेत्र का निर्माण करता है।
तथ्य यह है कि सहसंयोजक व्युत्पादित अतिप्रभार के साथ प्रतिअभिगम का अर्थ है कि एक अधिक्षेत्र के सहसंयोजक व्युत्पन्न का अतिसममिति परिवर्तन उसी अधिक्षेत्र के समान अतिसममिति परिवर्तन के सहसंयोजक व्युत्पन्न के बराबर है। इस प्रकार, बोसोनिक ज्यामिति में सहसंयोजक व्युत्पन्न का सामान्यीकरण, जो टेंसरों से टेंसरों का निर्माण करता है, सुपरस्पेस सहसंयोजक व्युत्पन्न सुपरफ़ील्ड्स से अधिक्षेत्र का निर्माण करता है।


=== मिंकोवस्की दिक् का अतिसममितीय विस्तार<!--'Bosonic dimension', 'Bosonic dimensions', 'Grassmann dimension', 'Grassmann dimensions', 'Fermionic dimension', and 'Fermionic dimensions' redirect here-->===
=== मिंकोवस्की दिक् का अतिसममितीय विस्तार<!--'Bosonic dimension', 'Bosonic dimensions', 'Grassmann dimension', 'Grassmann dimensions', 'Fermionic dimension', and 'Fermionic dimensions' redirect here-->===
Line 64: Line 64:
==== एन = 1 अति मिंकोवस्की दिक् ====
==== एन = 1 अति मिंकोवस्की दिक् ====


संभवतः भौतिकी में सबसे अधिक अध्ययन किया जाने वाला ठोस अतिदिक् <math>d = 4, \mathcal{N} = 1</math> है अति मिन्कोव्स्की दिक् <math>\mathbb{R}^{4|4}</math> या कभी-कभी लिखा जाता <math>\mathbb{R}^{1,3|4}</math> है, जो चार वास्तविक बोसोनिक आयामों के [[मॉड्यूल का प्रत्यक्ष योग|प्रमात्रक का प्रत्यक्ष योग]] है<!--boldface per WP:R#PLA--> और चार वास्तविक ग्रासमैन आयाम<!--boldface per WP:R#PLA--> (तापायनिक आयाम के रूप में भी जाना जाता है<!--boldface per WP:R#PLA--> या स्पाइन आयाम)।<ref>[[Yuval Ne'eman]], Elena Eizenberg, ''Membranes and Other Extendons (p-branes)'', World Scientific, 1995,  p. 5.</ref> [[ अति सममित |अति सममित]] [[ क्वांटम क्षेत्र सिद्धांत |परिमाण क्षेत्र सिद्धांत]] में किसी को अतिदिक् में रूचि रखता है, जो [[सुपरसिमेट्री बीजगणित|अतिसममिति बीजगणित]] कहे जाने वाले सुपरलेजेब्रा के [[समूह प्रतिनिधित्व]] को प्रस्तुत करता है। अतिसममिति बीजगणित का बोसोनिक हिस्सा पोनकारे बीजगणित है, जबकि ग्रासमैन नंबर मूल्यवान घटकों के साथ स्पाइन का उपयोग करके तापायनिक भाग का निर्माण किया जाता है।
संभवतः भौतिकी में सबसे अधिक अध्ययन किया जाने वाला ठोस सुपरस्पेस <math>d = 4, \mathcal{N} = 1</math> है अति मिन्कोव्स्की दिक् <math>\mathbb{R}^{4|4}</math> या कभी-कभी लिखा जाता <math>\mathbb{R}^{1,3|4}</math> है, जो चार वास्तविक बोसोनिक आयामों के [[मॉड्यूल का प्रत्यक्ष योग|प्रमात्रक का प्रत्यक्ष योग]] है<!--boldface per WP:R#PLA--> और चार वास्तविक ग्रासमैन आयाम<!--boldface per WP:R#PLA--> (तापायनिक आयाम के रूप में भी जाना जाता है<!--boldface per WP:R#PLA--> या स्पाइन आयाम)।<ref>[[Yuval Ne'eman]], Elena Eizenberg, ''Membranes and Other Extendons (p-branes)'', World Scientific, 1995,  p. 5.</ref> [[ अति सममित |अति सममित]] [[ क्वांटम क्षेत्र सिद्धांत |परिमाण क्षेत्र सिद्धांत]] में किसी को सुपरस्पेस में रूचि रखता है, जो [[सुपरसिमेट्री बीजगणित|अतिसममिति बीजगणित]] कहे जाने वाले सुपरलेजेब्रा के [[समूह प्रतिनिधित्व]] को प्रस्तुत करता है। अतिसममिति बीजगणित का बोसोनिक हिस्सा पोनकारे बीजगणित है, जबकि ग्रासमैन नंबर मूल्यवान घटकों के साथ स्पाइन का उपयोग करके तापायनिक भाग का निर्माण किया जाता है।


इस कारण से, भौतिक अनुप्रयोगों में एक अतिसममिति बीजगणित की चार तापायनिक दिशाओं पर एक क्रिया पर <math>\mathbb{R}^{4|4}</math> विचार करता है जैसे कि वे पॉइनकेयर सबलजेब्रा के अनुसार एक स्पाइनर के रूप में परिवर्तित हो जाते हैं। चार आयामों में तीन अलग-अलग अलघुकरणीय 4-घटक स्पाइनर हैं। [[मेजराना स्पिनर|मेजराना स्पाइनर]], बाएं हाथ के वेइल स्पाइनर और दाएं हाथ के वीइल स्पाइनर हैं। CPT प्रमेय का तात्पर्य है कि यूनिटेरिटी (भौतिकी) में, पॉइंकेयर अपरिवर्तनीय सिद्धांत, जो एक सिद्धांत है जिसमें [[ एस मैट्रिक्स | एस आव्यूह]] एक [[एकात्मक मैट्रिक्स|एकात्मक आव्यूह]] है और समान पॉइंकेयर जनित्र अनंतस्पर्शी प्रति-स्तिथि पर अनंतस्पर्शी निषिद्ध-स्तिथि के रूप में कार्य करते हैं, अतिसममिति बीजगणित में बाएं हाथ और दाएं हाथ के वेइल स्पाइन की समान संख्या होनी चाहिए। हालाँकि, चूंकि प्रत्येक वीइल स्पाइनर के चार घटक होते हैं, इसका अर्थ यह है कि यदि किसी में कोई वीइल स्पाइनर सम्मिलित है, तो उसके पास 8 फर्मोनिक दिशाएँ होनी चाहिए। कहा जाता है कि इस तरह के सिद्धांत ने सुपरसममिति को बढ़ाया है, और ऐसे प्रतिरूपों ने बहुत अधिक ध्यान आकर्षित किया है। उदाहरण के लिए, [[नाथन सीबर्ग]] और [[एडवर्ड विटन]] द्वारा आठ अतिप्रभार और मौलिक पदार्थ के साथ अतिसममितीय गेज सिद्धांतों को हल किया गया है, सीबर्ग-विटन गेज सिद्धांत देखें। हालाँकि, इस उपखंड में हम अतिदिक् पर चार फ़र्मोनिक घटकों के साथ विचार कर रहे हैं और इसलिए कोई भी वीइल स्पाइनर [[सीपीटी प्रमेय]] के अनुरूप नहीं हैं।
इस कारण से, भौतिक अनुप्रयोगों में एक अतिसममिति बीजगणित की चार तापायनिक दिशाओं पर एक क्रिया पर <math>\mathbb{R}^{4|4}</math> विचार करता है जैसे कि वे पॉइनकेयर सबलजेब्रा के अनुसार एक स्पाइनर के रूप में परिवर्तित हो जाते हैं। चार आयामों में तीन अलग-अलग अलघुकरणीय 4-घटक स्पाइनर हैं। [[मेजराना स्पिनर|मेजराना स्पाइनर]], बाएं हाथ के वेइल स्पाइनर और दाएं हाथ के वीइल स्पाइनर हैं। CPT प्रमेय का तात्पर्य है कि यूनिटेरिटी (भौतिकी) में, पॉइंकेयर अपरिवर्तनीय सिद्धांत, जो एक सिद्धांत है जिसमें [[ एस मैट्रिक्स | एस आव्यूह]] एक [[एकात्मक मैट्रिक्स|एकात्मक आव्यूह]] है और समान पॉइंकेयर जनित्र अनंतस्पर्शी प्रति-स्तिथि पर अनंतस्पर्शी निषिद्ध-स्तिथि के रूप में कार्य करते हैं, अतिसममिति बीजगणित में बाएं हाथ और दाएं हाथ के वेइल स्पाइन की समान संख्या होनी चाहिए। हालाँकि, चूंकि प्रत्येक वीइल स्पाइनर के चार घटक होते हैं, इसका अर्थ यह है कि यदि किसी में कोई वीइल स्पाइनर सम्मिलित है, तो उसके पास 8 फर्मोनिक दिशाएँ होनी चाहिए। कहा जाता है कि इस तरह के सिद्धांत ने सुपरसममिति को बढ़ाया है, और ऐसे प्रतिरूपों ने बहुत अधिक ध्यान आकर्षित किया है। उदाहरण के लिए, [[नाथन सीबर्ग]] और [[एडवर्ड विटन]] द्वारा आठ अतिप्रभार और मौलिक पदार्थ के साथ अतिसममितीय गेज सिद्धांतों को हल किया गया है, सीबर्ग-विटन गेज सिद्धांत देखें। हालाँकि, इस उपखंड में हम सुपरस्पेस पर चार फ़र्मोनिक घटकों के साथ विचार कर रहे हैं और इसलिए कोई भी वीइल स्पाइनर [[सीपीटी प्रमेय]] के अनुरूप नहीं हैं।


नोट: उपयोग में कई[[ संधिपत्र पर हस्ताक्षर करें | चिह्न परिपाटी]] हैं और यह उनमें से केवल एक है।
नोट: उपयोग में कई[[ संधिपत्र पर हस्ताक्षर करें | चिह्न परिपाटी]] हैं और यह उनमें से केवल एक है।
Line 73: Line 73:


:::<math>\bar{\theta}\ \stackrel{\mathrm{def}}{=}\  i\theta^\dagger\gamma^0=-\theta^\perp C</math>
:::<math>\bar{\theta}\ \stackrel{\mathrm{def}}{=}\  i\theta^\dagger\gamma^0=-\theta^\perp C</math>
जहाँ <math>C</math> प्रभार संयुग्मन आव्यूह है, जिसे संपत्ति द्वारा परिभाषित किया गया है कि जब यह [[गामा मैट्रिक्स|गामा आव्यूह]] को संयुग्मित करता है, तो गामा आव्यूह को नकारा और स्थानांतरित किया जाता है। पहली समानता की परिभाषा <math>\bar\theta</math> है जबकि दूसरा मेजराना स्पिनोर स्थिति का परिणाम <math>\theta^* = i\gamma_0 C\theta</math> है। संयुग्मी स्पाइनर के समान <math>\theta^*</math>अतिदिक् में <math>\mathbb{R}^{1|2}</math> भूमिका निभाता है, अतिरिक्त इसके कि मेजराना स्थिति, जैसा कि उपरोक्त समीकरण में प्रकट हुआ है, और लगाता है कि <math>\theta</math>और <math>\theta^*</math> स्वतंत्र नहीं हैं।
जहाँ <math>C</math> प्रभार संयुग्मन आव्यूह है, जिसे संपत्ति द्वारा परिभाषित किया गया है कि जब यह [[गामा मैट्रिक्स|गामा आव्यूह]] को संयुग्मित करता है, तो गामा आव्यूह को नकारा और स्थानांतरित किया जाता है। पहली समानता की परिभाषा <math>\bar\theta</math> है जबकि दूसरा मेजराना स्पिनोर स्थिति का परिणाम <math>\theta^* = i\gamma_0 C\theta</math> है। संयुग्मी स्पाइनर के समान <math>\theta^*</math>सुपरस्पेस में <math>\mathbb{R}^{1|2}</math> भूमिका निभाता है, अतिरिक्त इसके कि मेजराना स्थिति, जैसा कि उपरोक्त समीकरण में प्रकट हुआ है, और लगाता है कि <math>\theta</math>और <math>\theta^*</math> स्वतंत्र नहीं हैं।


विशेष रूप से हम निम्न अतिप्रभार का निर्माण कर सकते हैं
विशेष रूप से हम निम्न अतिप्रभार का निर्माण कर सकते हैं
Line 88: Line 88:
<math>I = 1, \cdots, \mathcal{N}</math> के साथ अतिप्रभार <math>Q^I</math> के <math>\mathcal{N}</math> सम्मुच्चय होना संभव है, हालांकि यह <math>\mathcal{N}</math> के सभी मूल्यों के लिए संभव नहीं है।
<math>I = 1, \cdots, \mathcal{N}</math> के साथ अतिप्रभार <math>Q^I</math> के <math>\mathcal{N}</math> सम्मुच्चय होना संभव है, हालांकि यह <math>\mathcal{N}</math> के सभी मूल्यों के लिए संभव नहीं है।


ये अतिप्रभार कुल <math>4\mathcal{N}</math> मिलाकर स्पाइन आयाम का अनुवाद उत्पन्न करते हैं, इसलिए अतिदिक् <math>\mathbb{R}^{4|4\mathcal N}</math>बनाते हैं।
ये अतिप्रभार कुल <math>4\mathcal{N}</math> मिलाकर स्पाइन आयाम का अनुवाद उत्पन्न करते हैं, इसलिए सुपरस्पेस <math>\mathbb{R}^{4|4\mathcal N}</math>बनाते हैं।


== सामान्य सापेक्षता में ==
== सामान्य सापेक्षता में ==
मिस्नर, थॉर्न और व्हीलर द्वारा गुरुत्वाकर्षण (पुस्तक) पुस्तक में अतिदिक् शब्द का प्रयोग पूरी तरह से अलग और असंबंधित अर्थ में भी किया जाता है। वहां, यह सामान्य सापेक्षता के विन्यास स्थान (भौतिकी) को संदर्भित करता है, और विशेष रूप से, [[ज्यामिति]] के रूप में गुरुत्वाकर्षण का दृष्टिकोण, गतिशील ज्यामिति के रूप में सामान्य सापेक्षता की व्याख्या करता है। आधुनिक शब्दों में, अतिदिक् के इस विशेष विचार को कई अलग-अलग औपचारिकताओं में से एक में आइंस्टीन समीकरणों को विभिन्न प्रकार की समायोजन में सैद्धांतिक और व्यावहारिक दोनों, जैसे संख्यात्मक सिमुलेशन में हल करने में उपयोग किया जाता है। इसमें मुख्य रूप से [[एडीएम औपचारिकता]], साथ ही हैमिल्टन-जैकोबी-आइंस्टीन समीकरण और व्हीलर-डेविट समीकरण के आसपास के विचार सम्मिलित हैं।
मिस्नर, थॉर्न और व्हीलर द्वारा गुरुत्वाकर्षण (पुस्तक) पुस्तक में सुपरस्पेस शब्द का प्रयोग पूरी तरह से अलग और असंबंधित अर्थ में भी किया जाता है। वहां, यह सामान्य सापेक्षता के विन्यास स्थान (भौतिकी) को संदर्भित करता है, और विशेष रूप से, [[ज्यामिति]] के रूप में गुरुत्वाकर्षण का दृष्टिकोण, गतिशील ज्यामिति के रूप में सामान्य सापेक्षता की व्याख्या करता है। आधुनिक शब्दों में, सुपरस्पेस के इस विशेष विचार को कई अलग-अलग औपचारिकताओं में से एक में आइंस्टीन समीकरणों को विभिन्न प्रकार की समायोजन में सैद्धांतिक और व्यावहारिक दोनों, जैसे संख्यात्मक सिमुलेशन में हल करने में उपयोग किया जाता है। इसमें मुख्य रूप से [[एडीएम औपचारिकता]], साथ ही हैमिल्टन-जैकोबी-आइंस्टीन समीकरण और व्हीलर-डेविट समीकरण के आसपास के विचार सम्मिलित हैं।


== यह भी देखें ==
== यह भी देखें ==
* [[चिरल सुपरस्पेस|चिरल अतिदिक्]]
* [[चिरल सुपरस्पेस]]
* [[हार्मोनिक सुपरस्पेस|सुसंगत अतिदिक्]]
* [[हार्मोनिक सुपरस्पेस|सुसंगत सुपरस्पेस]]
* [[प्रोजेक्टिव सुपरस्पेस|प्रक्षेपीय अतिदिक्]]
* [[प्रोजेक्टिव सुपरस्पेस|प्रक्षेपीय सुपरस्पेस]]
* अति मिन्कोवस्की दिक्
* अति मिन्कोवस्की दिक्
* [[सुपरग्रुप (भौतिकी)|अति समूह (भौतिकी)]]
* [[सुपरग्रुप (भौतिकी)|अति समूह (भौतिकी)]]

Revision as of 13:07, 18 April 2023

सुपरस्पेस अतिसममिति प्रदर्शित करने वाले सिद्धांत का समन्वय स्थान है। इस तरह के सूत्रीकरण में, सामान्य दिक् आयाम x, y, z, ... के साथ-साथ एंटीकम्यूटिंग आयाम भी होते हैं जिनके निर्देशांक वास्तविक संख्याओं के स्थान पर ग्रासमैन संख्या में वर्गीकृत किए जाते हैं। सामान्य दिक् आयाम स्वतंत्रता की बोसोनिक घात के अनुरूप होते हैं, एंटीकम्यूटिंग आयाम स्वतंत्रता की तापायनिक कोटि के अनुरूप होते हैं।

सुपरस्पेस शब्द का प्रयोग पहली बार जॉन आर्चीबाल्ड व्हीलर द्वारा सामान्य सापेक्षता के विन्यास स्थान (भौतिकी) का वर्णन करने के लिए एक असंबंधित अर्थ में किया गया था; उदाहरण के लिए, यह प्रयोग उनकी 1973 की पाठ्यपुस्तक गुरुत्वाकर्षण (पुस्तक) में देखा जा सकता है।

अनौपचारिक चर्चा

कई सुपरस्पेस की परिभाषाएं जिनका उपयोग किया गया है, समान हैं, लेकिन समकक्ष नहीं हैं, और उनका गणितीय और भौतिकी साहित्य में उपयोग किया जाना जारी है। ऐसा ही एक प्रयोग अति मिन्कोव्स्की दिक् के पर्याय के रूप में है।[1] इस स्तिथि में, कोई सामान्य मिन्कोव्स्की स्थान लेता है, और इसे लोरेंत्ज़ समूह से जुड़े क्लिफर्ड बीजगणित से प्रति-न्यूनीकरण वेइल स्पाइनर के रूप में लिया जाता है, जो स्वतंत्रता के प्रति-न्यूनीकरण तापायनिक घात के साथ विस्तारित होता है। समतुल्य रूप से, अति मिन्कोव्स्की दिक् को लोरेंत्ज़ समूह के बीजगणित अति पोंकारे बीजगणित सापेक्ष के भागफल के रूप में समझा जा सकता है। ऐसी जगह पर निर्देशांक के लिए एक विशिष्ट संकेतन है चित्र शीर्षक से यह पता चलता है कि अति मिंकॉस्की दिक् इच्छित स्थान है।

सुपरस्पेस को सामान्यतः अति सदिश स्थल के पर्याय के रूप में भी प्रयोग किया जाता है। इसे ग्रासमैन बीजगणित से लिए गए अतिरिक्त निर्देशांकों के साथ एक सामान्य सदिश स्थान के रूप में लिया जाता है, अर्थात ग्रासमान संख्या वाले निर्देशांक दिशाएँ। उपयोग में आने वाले अति सदिश दिक् के निर्माण के लिए कई परंपराएँ हैं; इनमें से दो का वर्णन रोजर्स ने किया है।[2] [3]

सुपरस्पेस शब्द का तीसरा उपयोग अतिबहुविध के पर्याय के रूप में है: बहुविध का अतिसममितीय सामान्यीकरण है। ध्यान दें कि अति मिंकोव्स्की दिक् और अति सदिश दिक् दोनों को अतिबहुविध की विशेष स्तिथियों के रूप में लिया जा सकता है।

चौथा और पूरी तरह से असंबंधित अर्थ ने सामान्य सापेक्षता में एक संक्षिप्त उपयोग देखा; इस पर नीचे और अधिक विस्तार से चर्चा की गई है।

उदाहरण

नीचे कई उदाहरण दिए गए हैं। पहले कुछ अतिसदिश दिक् के रूप में सुपरस्पेस की परिभाषा मानते हैं। इसे Rm|n के रूप में निरूपित किया जाता है, Z2-श्रेणीबद्ध सदिश समष्टि जिसमें Rm सम उपसमष्टि है और Rn विषम उपसमष्टि है। यही परिभाषा Cm|n पर लागू होती है।

चार-आयामी उदाहरण सुपरस्पेस को अति मिंकोवस्की दिक् के रूप में लेते हैं। हालांकि सदिश स्थान के समान, इसमें कई महत्वपूर्ण अंतर हैं: सबसे पहले, यह एक सजातीय स्थान है, जिसमें मूल को दर्शाने वाला कोई विशेष बिंदु नहीं है। इसके बाद, ग्रासमैन संख्या होने के स्थान पर, क्लिफर्ड बीजगणित से तापायनिक निर्देशांक को क्रमविनिमेय वेइल स्पाइनर के रूप में लिया जाता है। यहाँ अंतर यह है कि क्लिफर्ड बीजगणित में ग्रासमैन संख्या की तुलना में काफी समृद्ध और अधिक सूक्ष्म संरचना है। तो, ग्रास्मान संख्या बाहरी बीजगणित के तत्व हैं, और क्लिफोर्ड बीजगणित में बाहरी बीजगणित के लिए एक समरूपता है, लेकिन आयतीय समूह और स्पाइन समूह से इसका संबंध, स्पाइन प्रस्तुतियों का निर्माण करने के लिए उपयोग किया जाता है, इसे एक पश्च ज्यामितीय महत्व देता है। (उदाहरण के लिए, स्पाइन समूह रिमेंनियन ज्यामिति के भौतिकी की सामान्य सीमाओं और सरोकारों से बिल्कुल बाहर अध्ययन का एक सामान्य हिस्सा है[4]।)

तुच्छ उदाहरण

सबसे छोटा सुपरस्पेस एक ऐसा बिंदु है जिसमें न तो बोसोनिक और न ही तापायनिक दिशाएँ होती हैं। अन्य तुच्छ उदाहरणों में n-आयामी वास्तविक तल 'R'n सम्मिलित हैं, जो एक सदिश स्थान है जो n वास्तविक, बोसोनिक दिशाओं में विस्तारित है और कोई तापायनिक दिशा नहीं है। सदिश स्थान R0|n, जो कि n-विमीय यथार्थ ग्रासमैन बीजगणित है। दिक् R1|1 एक सम और एक विषम दिशा को दोहरी संख्याओं के स्थान के रूप में जाना जाता है, जिसे 1873 में विलियम किंग्डन क्लिफोर्ड द्वारा प्रस्तुत किया गया था।

अतिसममितीय परिमाण यांत्रिकी का सुपरस्पेस

Nअत्यधिक प्रभावकारी के साथ अतिसममितीय परिमाण यांत्रिकी प्रायः सुपरस्पेस R1|2N में प्रस्तुत की जाती है। जिसमें एक वास्तविक दिशा t सम्मिलित है जिसे समय के साथ पहचाना जाता है और N संकुल ग्रासमैन संख्या जो Θ द्वारा फैली हुई हैi और Θ जहाँ i 1 से N तक चलता है।

विशेष स्थिति N = 1 पर विचार करें। सुपरस्पेस 'R'1|2 एक 3-आयामी सदिश स्थान है। इसलिए दिए गए निर्देशांक को त्रिक (t, Θ, Θ) के रूप में लिखा जा सकता है। निर्देशांक एक लाइ सुपरएलजेब्रा बनाते हैं, जिसमें t की वर्गीकरण घात भी है और Θ और Θ की विषम है। इसका अर्थ यह है कि इस सदिश दिक् के किसी भी दो तत्वों के बीच एक कोष्ठक को परिभाषित किया जा सकता है, और यह कोष्ठक दिक्परिवर्तक को दो सम निर्देशांकों पर और एक सम और एक विषम समन्वय पर कम करता है, जबकि यह दो विषम निर्देशांकों पर एक प्रतिदिक्परिवर्तक है। यह सुपरस्पेस एक एबेलियन लाइ सुपरलेजेब्रा है, जिसका अर्थ है कि उपरोक्त सभी कोष्ठक विलुप्त हो जाते हैं

जहाँ a और b का दिक्परिवर्तक है और ए और बी के प्रतिदिक्परिवर्तक है।

कोई इस सदिश स्थान से कार्यों को परिभाषित कर सकता है, जिन्हें अधिक्षेत्र कहा जाता है। उपरोक्त बीजगणितीय संबंधों का अर्थ है कि, यदि हम Θ और Θ में शक्ति श्रृंखला के रूप में अपने अधिक्षेत्र का विस्तार करते हैं, तब हम केवल शून्य और प्रथम कोटि पर पद प्राप्त करेंगे, क्योंकि Θ2= Θ* 2 = 0 है। इसलिए, अधिक्षेत्र को t के स्वेच्छाचारी फलन के रूप में लिखा जा सकता है जिसे दो ग्रासमैन निर्देशांकों में शून्य और पहले क्रम के शब्दों से गुणा किया जाता है

अधिक्षेत्र, जो सुपरस्पेस के अतिसममिति का प्रतिनिधित्व करते हैं, टेन्सर की धारणा को सामान्य करते हैं, जो एक बोसोनिक दिक् के क्रमावर्तन समूह का प्रतिनिधित्व करते हैं।

इसके बाद ग्रासमैन दिशाओं में व्युत्पादित को परिभाषित किया जा सकता है, जो अधिक्षेत्र के विस्तार में पहले अनुक्रम शब्द को ज़ीरोथ अनुक्रम अवधि तक ले जाता है और ज़ीरोथ अनुक्रम अवधि को मिटा देता है। कोई चिह्न परिपाटी चुन सकता है जैसे कि व्युत्पादित प्रतिविनिमय संबंधों को संतुष्ट करते हैं

इन व्युत्पादित को अतिप्रभार में इकट्ठा किया जा सकता है

जिनके प्रतिदिक्परिवर्तक उन्हें एक अतिसममिति बीजगणित के तापायनिक जनित्र के रूप में पहचानते हैं

जहां i बार समय व्युत्पन्न परिमाण यांत्रिकी में हैमिल्टनियन (परिमाण यांत्रिकी) संचालक है। Q और इसके आसन्न दोनों स्वयं के साथ प्रतिअभिगम करते हैं। अधिक्षेत्र Φ के अतिसममिति मापदण्ड ε के साथ अतिसममिति विभिन्नता को परिभाषित किया गया है

अतिक्षेत्रक पर Q की कार्रवाई का उपयोग करके हम इस भिन्नता का मूल्यांकन कर सकते हैं

इसी प्रकार कोई सुपरस्पेस पर सहसंयोजक व्युत्पादित को परिभाषित कर सकता है

जो अतिप्रभार के साथ प्रतिअभिगम करते हैं और एक गलत चिह्न अतिसममिति बीजगणित को संतुष्ट करते हैं

.

तथ्य यह है कि सहसंयोजक व्युत्पादित अतिप्रभार के साथ प्रतिअभिगम का अर्थ है कि एक अधिक्षेत्र के सहसंयोजक व्युत्पन्न का अतिसममिति परिवर्तन उसी अधिक्षेत्र के समान अतिसममिति परिवर्तन के सहसंयोजक व्युत्पन्न के बराबर है। इस प्रकार, बोसोनिक ज्यामिति में सहसंयोजक व्युत्पन्न का सामान्यीकरण, जो टेंसरों से टेंसरों का निर्माण करता है, सुपरस्पेस सहसंयोजक व्युत्पन्न सुपरफ़ील्ड्स से अधिक्षेत्र का निर्माण करता है।

मिंकोवस्की दिक् का अतिसममितीय विस्तार

एन = 1 अति मिंकोवस्की दिक्

संभवतः भौतिकी में सबसे अधिक अध्ययन किया जाने वाला ठोस सुपरस्पेस है अति मिन्कोव्स्की दिक् या कभी-कभी लिखा जाता है, जो चार वास्तविक बोसोनिक आयामों के प्रमात्रक का प्रत्यक्ष योग है और चार वास्तविक ग्रासमैन आयाम (तापायनिक आयाम के रूप में भी जाना जाता है या स्पाइन आयाम)।[5] अति सममित परिमाण क्षेत्र सिद्धांत में किसी को सुपरस्पेस में रूचि रखता है, जो अतिसममिति बीजगणित कहे जाने वाले सुपरलेजेब्रा के समूह प्रतिनिधित्व को प्रस्तुत करता है। अतिसममिति बीजगणित का बोसोनिक हिस्सा पोनकारे बीजगणित है, जबकि ग्रासमैन नंबर मूल्यवान घटकों के साथ स्पाइन का उपयोग करके तापायनिक भाग का निर्माण किया जाता है।

इस कारण से, भौतिक अनुप्रयोगों में एक अतिसममिति बीजगणित की चार तापायनिक दिशाओं पर एक क्रिया पर विचार करता है जैसे कि वे पॉइनकेयर सबलजेब्रा के अनुसार एक स्पाइनर के रूप में परिवर्तित हो जाते हैं। चार आयामों में तीन अलग-अलग अलघुकरणीय 4-घटक स्पाइनर हैं। मेजराना स्पाइनर, बाएं हाथ के वेइल स्पाइनर और दाएं हाथ के वीइल स्पाइनर हैं। CPT प्रमेय का तात्पर्य है कि यूनिटेरिटी (भौतिकी) में, पॉइंकेयर अपरिवर्तनीय सिद्धांत, जो एक सिद्धांत है जिसमें एस आव्यूह एक एकात्मक आव्यूह है और समान पॉइंकेयर जनित्र अनंतस्पर्शी प्रति-स्तिथि पर अनंतस्पर्शी निषिद्ध-स्तिथि के रूप में कार्य करते हैं, अतिसममिति बीजगणित में बाएं हाथ और दाएं हाथ के वेइल स्पाइन की समान संख्या होनी चाहिए। हालाँकि, चूंकि प्रत्येक वीइल स्पाइनर के चार घटक होते हैं, इसका अर्थ यह है कि यदि किसी में कोई वीइल स्पाइनर सम्मिलित है, तो उसके पास 8 फर्मोनिक दिशाएँ होनी चाहिए। कहा जाता है कि इस तरह के सिद्धांत ने सुपरसममिति को बढ़ाया है, और ऐसे प्रतिरूपों ने बहुत अधिक ध्यान आकर्षित किया है। उदाहरण के लिए, नाथन सीबर्ग और एडवर्ड विटन द्वारा आठ अतिप्रभार और मौलिक पदार्थ के साथ अतिसममितीय गेज सिद्धांतों को हल किया गया है, सीबर्ग-विटन गेज सिद्धांत देखें। हालाँकि, इस उपखंड में हम सुपरस्पेस पर चार फ़र्मोनिक घटकों के साथ विचार कर रहे हैं और इसलिए कोई भी वीइल स्पाइनर सीपीटी प्रमेय के अनुरूप नहीं हैं।

नोट: उपयोग में कई चिह्न परिपाटी हैं और यह उनमें से केवल एक है।

इसलिए चार तापायनिक दिशाएँ मेजराना स्पिनोर के रूप में परिवर्तित हो जाती हैं। हम एक संयुग्मित स्पाइनर भी बना सकते हैं

जहाँ प्रभार संयुग्मन आव्यूह है, जिसे संपत्ति द्वारा परिभाषित किया गया है कि जब यह गामा आव्यूह को संयुग्मित करता है, तो गामा आव्यूह को नकारा और स्थानांतरित किया जाता है। पहली समानता की परिभाषा है जबकि दूसरा मेजराना स्पिनोर स्थिति का परिणाम है। संयुग्मी स्पाइनर के समान सुपरस्पेस में भूमिका निभाता है, अतिरिक्त इसके कि मेजराना स्थिति, जैसा कि उपरोक्त समीकरण में प्रकट हुआ है, और लगाता है कि और स्वतंत्र नहीं हैं।

विशेष रूप से हम निम्न अतिप्रभार का निर्माण कर सकते हैं

जो सुपरसममिति बीजगणित को संतुष्ट करते हैं

जहाँ 4-गति संचालक है। फिर से सहसंयोजक व्युत्पन्न को अतिप्रभार की तरह परिभाषित किया गया है, लेकिन दूसरे शब्द को नकार दिया गया है और यह अतिप्रभार के साथ प्रतिगामी है। इस प्रकार एक सुपरमल्टीप्लेट का सहसंयोजक व्युत्पन्न एक और सुपरमल्टीप्लेट है।

विस्तारित अति सममिति

के साथ अतिप्रभार के सम्मुच्चय होना संभव है, हालांकि यह के सभी मूल्यों के लिए संभव नहीं है।

ये अतिप्रभार कुल मिलाकर स्पाइन आयाम का अनुवाद उत्पन्न करते हैं, इसलिए सुपरस्पेस बनाते हैं।

सामान्य सापेक्षता में

मिस्नर, थॉर्न और व्हीलर द्वारा गुरुत्वाकर्षण (पुस्तक) पुस्तक में सुपरस्पेस शब्द का प्रयोग पूरी तरह से अलग और असंबंधित अर्थ में भी किया जाता है। वहां, यह सामान्य सापेक्षता के विन्यास स्थान (भौतिकी) को संदर्भित करता है, और विशेष रूप से, ज्यामिति के रूप में गुरुत्वाकर्षण का दृष्टिकोण, गतिशील ज्यामिति के रूप में सामान्य सापेक्षता की व्याख्या करता है। आधुनिक शब्दों में, सुपरस्पेस के इस विशेष विचार को कई अलग-अलग औपचारिकताओं में से एक में आइंस्टीन समीकरणों को विभिन्न प्रकार की समायोजन में सैद्धांतिक और व्यावहारिक दोनों, जैसे संख्यात्मक सिमुलेशन में हल करने में उपयोग किया जाता है। इसमें मुख्य रूप से एडीएम औपचारिकता, साथ ही हैमिल्टन-जैकोबी-आइंस्टीन समीकरण और व्हीलर-डेविट समीकरण के आसपास के विचार सम्मिलित हैं।

यह भी देखें

टिप्पणियाँ

  1. S. J. Gates, Jr., M. T. Grisaru, M. Roček, W. Siegel, Superspace or One Thousand and One Lessons in Supersymmetry, Benjamins Cumming Publishing (1983) ISBN 0-8053 3161-1.
  2. Alice Rogers, Supermanifolds: Theory and Applications, World Scientific (2007) ISBN 978-981-3203-21-1.
  3. Bryce DeWitt, Supermanifolds, Cambridge University Press (1984) ISBN 0521 42377 5.
  4. Jürgen Jost, Riemannian Geometry and Geometric Analysis, Springer-Verlag (2002) ISBN 3-540-63654-4.
  5. Yuval Ne'eman, Elena Eizenberg, Membranes and Other Extendons (p-branes), World Scientific, 1995, p. 5.


संदर्भ

  • Duplij, Steven [in українська]; Siegel, Warren; Bagger, Jonathan, eds. (2005), गणित और भौतिकी में सुपरसिमेट्री और नॉनकम्यूटेटिव स्ट्रक्चर्स का संक्षिप्त विश्वकोश, Berlin, New York: Springer, ISBN 978-1-4020-1338-6 (Second printing)